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ABSTRACT

Fiber-reinforced polymer (FRP) bars are gaining popularity as an alternative to steel reinforcement due to their
advantages such as corrosion resistance and high strength-to-weight ratio. However, FRP has a lower modulus
of elasticity compared to steel. Therefore, special attention is required in structural design to address deflection
related issues and ensure ductile failure. This research explores the use of machine learning algorithms such as
gene expression programming (GEP) to develop a simple and effective equation for predicting the elastic modulus
of hybrid fiber-reinforced polymer (HFPR) bars. A comprehensive database of 125 experimental results of HFPR
bars was used for training and validation. Statistical parameters such as R2, MAE, RRSE, and RMSE are used to
judge the accuracy of the developed model. Also, parametric analysis and SHAP analysis have been carried out
to reveal the most influential factors in the predictive model. Finally, the proposed model was compared to the
available equations for elastic modulus. The results demonstrate that the developed GEP model performance is
better than that of the traditional formula. Statistical parameters and K-fold cross-validation ensured the accuracy
and reliability of the predictive model. Finally, the study recommends the optimal GEP model for predicting the
elastic modulus of HFRP bars and improving the structural design of HFRP.
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CFRP Carbon Fiber Reinforced Polymer
GFRP Glass Fiber Reinforced Polymer
BFRP Basalt Fiber Reinforced Polymer
AFRP Aramid Fiber Reinforced Polymer
ML Machine Learning
ROM Rule of Mixture
RoHM Rule of Hybrid Mixtures
GP Genetic Programming
GF % Percentage of Glass Fiber
E-GF Elastic Modulus of Glass Fiber
CF % Percentage of Carbon Fiber
E-CF Elastic Modulus of Carbon Fiber
BF % Percentage of Basalt Fiber
E-BF Elastic Modulus of Basalt Fiber
MoE Modulus of Elasticity
ET Expression Tree
cos Cosine
sin Sine
ln Natural Logarithm
+ Addition
− Subtraction
∗ Multiplication
/ Division
% Percentage
avg Average
kN.m KiloNewtons.Metre
mm Millimeter
MPa Megapascal
GPa Gigapascal
bj Bias
Ec FRP Bars Modulus of Elasticity
fr FRP Bars Tensile Strength
K-FCV K-Fold Cross Validation
f’c Concrete Compressive strength
EHybrid Modulus of Hybrid Material
E11,fi Young’s Modulus of Fibers
Vfi Volume Fraction of Fibers
Em Young’s Modulus of Matrix
Vm Volume Fraction of Matrix
CO2 Carbon Dioxide
°C Degree Celsius
Pi Predictive Value
Ti Target Value
∞ Infinity
CV Cross Validation
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1 Introduction

Concrete has high brittleness and low tensile capacity [1]. The introduction of waste materials in
concrete provides better durability and strength [2] but still needs to improve tensile reinforcement.
Steel reinforced are used to improve the tensile capacity of concrete and ductility. However, reinforced
concrete structures have faced various challenges, including steel corrosion, freezing damage in cold
climates, and exposure to physical and chemical factors in corrosive conditions [3–6]. In humid
environments, air pollutants penetrate through the concrete cover and cause steel reinforcement
corrosion. The corrosion of steel within the reinforced concrete results in the expansion of steel, leading
to internal cracking, surface cracking, spalling, and failure as shown in Fig. 1 [7].
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Figure 1: Conceptual model of rebar corrosion process [7]

The reinforcements become exposed to direct environmental attack which accelerates corrosion.
The corrosion decreased the overall load-bearing capacity of the structures due to decreased bonds
between the steel and concrete. The deterioration not only compromises the structural performance
but also demands costly repairs and maintenance [8]. A study also noted that the corrosion of steel
strands significantly the serviceability of prestressed concrete structures [9]. Similarly, a study [10]
noted that fiber rope has many advantages as compared to steel in marine engineering. Therefore,
it is necessary to adopt alternative materials as a solution to overcome the corrosion-related problems
of traditional reinforcement. The research proposed different ways to decrease the corrosion of steel.
A practical solution involves substituting steel bars with non-corrosive reinforcement materials such
as fiber-reinforced polymer (FRP) bars.

Fiber-reinforced polymer (FRP) composites are creative and innovative ideas for addressing the
growing problem of infrastructure [11]. FRP bars are promising alternative bars to steel reinforcement
due to their high corrosion resistance and high strength properties [12]. Furthermore, FRP (carbon
fiber-reinforced polymer) also improved seismic performance [13]. Studies show the anti-degradation
performance of FRP bars in corrosive environments. Guo et al. [14] studied the degradation of
carbon fiber-reinforced polymer (CFRP), glass fiber-reinforced polymer (GFRP), and basalt fiber-
reinforced polymer (BFRP) in sea sand concrete. Results showed CFRP has the highest durability,
followed by GFRP, BFRP, and steel. Li [15] explored CFRP and GFRP bars as replacements for
steel reinforcement in sea sand concrete. The test findings indicated that the addition of CFRP greatly
improves the shear capacity of beams without shear reinforcement, exceeding its effect on beams with
appropriate shear reinforcement [16]. The study revealed differing corrosion resistance due to resin
matrix dissolution in FRP bars. However, FRP bars demonstrate superior corrosion resistance to
steel bars. Nevertheless, FRP bars have a lower elastic modulus than steel bars, and their brittleness
is typically caused by their linear stress-strain behavior. Abdalla [17] developed simple methods to
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estimate deflection in FRP-reinforced concrete members under flexural stress, highlighting the brittle
behavior of CFRP-reinforced beams. Ferreira et al. [18] analyzed simply supported concrete beams
reinforced with composite rebars, comparing the effects of reinforcement with composite and steel
rebars on concrete. A study [19] reported that hybrid fiber-reinforced concrete (HFRC) shows better
performance in terms of tensile and flexural capacity. Recently, GFRP bars have been utilized in
various structural elements to investigate their behavior. Chaallal et al. [20] investigated the glass-fiber
plastic rods as rebars in concrete structures, focusing on rod characterization, bond performance, and
flexural behavior in concrete beams. Results indicate satisfactory performance of concrete beams with
glass-fiber rebars compared to steel rebars. However, more cracking under moderate to high loading
was observed. Numerous investigations on concrete beams reinforced with FRP bars have been carried
out [21–24], and it has been found that using FRP bars enhanced the durability of FRP-reinforced
structures [25–27]. However, FRP-reinforced structures often exhibit lower serviceability due to the
lower modulus of elasticity and reduced ductility of FRP compared to those reinforced with steel
bars [28,29].

The types of FRP bars that are commercially available are CFRP, GFRP, BFRP, and aramid
(AFRP). Each FRP bar possesses distinct tensile strength, Young’s modulus, ductility, and other
characteristics depending on the type of fiber used [30]. Certain types of bars are relatively expensive to
produce, and other varieties do not meet the strength requirements. The development of hybrid fiber-
reinforced polymer (HFRP) bars presents an optimal solution. HFRP bars have shown significant
attention due to their potential for enhanced mechanical properties.

Previous researches Hayashi [31], Belarbi et al. [32], and Ali et al. [33] have highlighted the
importance of achieving specific characteristics in HFRP bars, particularly ductility under tensile load
and variation of the modulus of elasticity through hybrid fiber configurations. However, experimental
studies Bakis et al. [34], Cui et al. [35], You et al. [36], and Harris et al. [37] suggest that more efficient
and cost-effective methods are required to optimize the design of HFPR bars. Table 1 [38] illustrates
a comparison between machine learning (ML) models and traditional methods, focusing on different
aspects such as computational cost, working mechanism, and model applicability. Studies [39–41]
reported that ML is a cheaper, more efficient, and alternative approach to the traditional approach.

Table 1: Comparison between ML and traditional models [38]

Type Machine learning Traditional methods

Computation cost Medium Low
Model structure Complex Simple
Working mechanism Complex Simple
Model accuracy High Low
Limitation Low High
Feasibility High Low
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To optimize cost and time efficiency in the construction industry, ML techniques are being
increasingly used to precisely predict various properties [42]. A study [43] concluded that the random
forest model shows better accuracy than the back propagation neural network (BPNN) ML model.
A study [44] applied machine learning approaches, such as adaptive neuro-fuzzy inference systems
(ANFIS), artificial neural networks (ANN), and gene expression programming (GEP), to forecast
the compressive strength (CS) of steel fiber-reinforced concrete (SFRC) under high temperatures.
The findings indicate that the GEP model has high accuracy and the lowest error in comparison
to the ANN and ANFIS models. However, a study [45] predicted the split tensile strength of fiber-
reinforced recycled aggregate concrete. Five prediction models namely two deep neural network
models (DNN1 and DNN2), one optimizable Gaussian process regression (OGPR) model, and two
genetic programming-based models (GEP1 and GEP2) are apply for analysis. The results indicate that
all the models demonstrated high accuracy in predicting split tensile strength. The DNN2 model shows
highest R2 value 0.94, while the GEP1 model shows lowest R2 value 0.76. The R2 value of the DNN2
model was 3.3% and 13.5% greater than the R2 values of the OGPR and GEP2 models, respectively.
Therefore, a more detailed study is required on GEP to improve its accuracy.

Traditional regression models show lower computational costs due to their dependence on
individual parameters for accuracy. However, several factors like hyperparameter tuning and model
structure impact the predictive performance of ML models. These factors increase the computational
cost and complexity of work than traditional methods. However, traditional models primarily rely
on individual sample fittings, resulting in significantly lower prediction accuracy than ML models.
Therefore, this study focuses on utilizing GEP, an advanced machine learning technique, to develop
HFRP bars that can fill the gap by providing a systematic approach to design optimization, potentially
offering improvements in mechanical performance, cost-effectiveness, and time efficiency compared
to traditional experimental methods. The proposed approach reduces the limitations of conventional
methods and offers an advanced methodology for predicting mechanical properties which bridge the
gap between theory and practice. Integrating machine learning techniques into materials science holds
significant potential for future advancements in structural design and engineering optimization.

2 Research Methodology

The methodology of this research is described in this section and the steps can be visualized
in Fig. 2. Initially, the data was collected from previous published research articles and influential
variables were defined. Afterward, the collected data underwent screening to process in which
dependent and independent variables statistical analysis is conducted. For the utilization of ML
approaches, the data was split into training and testing datasets. Subsequently, GEP algorithms were
then employed to develop a highly accurate predictive model, and the best models were selected
based on statistical parameters. Validation of the model was carried out. Furthermore, the proposed
model was compared with the traditional method to assess robustness and accuracy. The conclusion
recommends the most accurate model based on the comprehensive evaluation.
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Figure 2: Research methodology

3 Existing Analytical Approach

There are various micromechanical models available in literature with differing accuracy and
complexity including Halpin Tsai and rule of mixture (ROM) models. The ROM models are more
often utilized as it is relatively simple and yield acceptable prediction values compared to experi-
mental values. Andersons et al. [46] investigated the strength and stiffness of flax fiber composite
under uniaxial tension using thermoset and thermoplastic polymer matrices. The study assesses
the suitability of orientational averaging-based models and ROM models, originally developed for
short fiber composites, to flax-reinforced polymer. Affdl et al. [47] concluded that the Halpin-Tsai
equation is preferred for predicting the accuracy of short random fiber composites. Sandier et al. [48]
studied the Cai-Pagano equation, which determines longitudinal and transverse modulus to assess
composite stiffness, concluding that mixing rules for equations of state enables accurate predictions.
Tham et al. [49] have conducted a detailed study on the ROM models, concluding that they assume
homogeneity and neglect variations, interfacial effects, and non-linear behavior, thereby indicating
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limitations in accurately predicting composite properties. Eq. (1) presents the mathematical model of
ROM used to estimate the mechanical properties of composite materials based on their individual
components’ properties.

EHybrid =
∑

i

E11,fiVfi + EmVm (1)

where E11 is Young’s modulus of fibers along the longitudinal axis; Vfi is the volume fraction of fibers;
Em is Young’s modulus of the matrix and Vm is the volume fraction of the matrix. Table 2 reviews mixing
approaches for composite materials, revealing inconsistent predictions with experimental values [50–
61]. It emphasizes the need for improved mixing equations and alternative approaches in composite
materials research.

4 Gene Expression Programming (GEP)

Genetic Algorithms (GA) are optimization and search algorithms inspired by genetics [62–65]
Genetic Programming (GP) was developed by Cramer in 1985 and enhanced by Koza [66,67]. In GP,
an initial population of programs with terminals and functions is provided. Functions play a crucial
role in program excitation and defining terminals [68,69]. GEP introduced by Candida Ferreria mimics
living organisms and involves generating complex tree-like structures/models. GEP considers input
variable shapes, compositions, and sizes to search for optimal solutions. It leverages computational
intelligence and genetic programming principles rooted in Darwin’s and Mendel’s theories [70,71].

In GEP, a linear chromosome encodes multiple computer programs, offering advantages like
accurate predictive models and robust mathematical expressions [72]. In civil engineering, GEP models
are increasingly popular for predictive equations, utilizing generated mathematical formulas. GEP has
been successfully applied in structural engineering, predicting concrete parameters [73–77] strength
characteristics of steel slag [78], prediction of compression strength of geopolymer concrete [79],
determining the nominal shear capacity of steel fiber beam [80], etc. Additionally, GEP modeling
is widely used for predicting functions, data mining pattern detection, and equation solving [81].

The GA and GEP work mechanism shown in Figs. 3 and 4 involve generating random generation
of chromosomes using the Karva language. A typical chromosome or gene in gene expression
programming (GEP) consists of two parts: a head and a tail. The head contains function or terminal
symbols, while the tail includes only parameters. The number of genes determines the number of sub
ETs in the model. Chromosomes have fixed lengths and can be simply transformed into an algebraic
expression [82]. Each GEP gene is composed of a fixed length list of terms, with each term derived from
a set of functions. These functions can include arithmetic operations (e.g., +, −, x, /), Boolean logic
functions (e.g., AND, OR, NOT, etc.), mathematical functions (e.g., cos, sin, natural log), conditional
functions (e.g., IF, THEN, ELSE), or others [83].
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Afterward, the chromosomes are represented by expression trees (ETs) that come in various
shapes and sizes. Then, the main genetic operators such as crossover, mutation, transposition and
recombination (including 1-point, 2-point, and gene recombination) are executed on the chromosomes
based on their ratios [84]. The ETs are then expressed using karva notation or K-expression [85].
The entire process concludes once the stopping condition (highest number of generations or suitable
solution) is met.

5 Data Acquisition and Model Development
5.1 Data Acquisition

In this research, a dataset of 125 values is considered for the GEP and ROM prediction model
for HFRP elastic modulus. The data section 1–11 is acquired from [70], data section 12–23 [86], data
section 24–25 [87], data section 26–38 [88], data section 39–46 [89], data section 47 [90], data section 48–
65 [91], data section 66–106 [92], data section 107–112 [93], data section 113–118 [94], and data section
119–125 [95]. In the current study, 100 data points for training and 25 data points for testing were
considered for the generation of the GEP model. Moreover, ten input variables and one dependent
variable were taken, i.e., the Diameter of the bar (Dia of the bar), percentage of glass fiber (GF), the
elastic modulus of glass fiber (E-GF), percentage of carbon fiber (CF), the elastic modulus of carbon
fiber (E-CF), percentage of basalt fiber (BF), elastic modulus of basalt fiber (E-BF), percentage of resin
(Resin), tensile strength of resin elastic and modulus of resin (Resin Modulus) against HFRP elastic
modulus. The statistical analysis and frequency distribution of the database are shown in Table 3 and
Fig. 5, respectively. These are highly dependent variables for governing the elastic modulus of HFRP
bars which are collected from previous studies.
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Table 3: Statistical analysis of the database

Parameters Dia GF E-GF CF E-CF BF E-BF Resin Tensile
strength

Resin
modulus

MoE

Compiled database

Unit (mm) (%) (GPa) (%) (GPa) (%) (GPa) (%) (MPa) (GPa) (GPa)

Mean 10.45 40.99 43.04 8.55 103.11 15.84 20.08 34.62 75.04 3.27 62.87
Standard error 0.28 2.6 2.9 1.57 13.29 2.67 3.36 0.85 0.59 0.02 2.5
Median 9.5 54.01 45 0 0 0 0 35 75 3.35 49.6
Mode 8 0 45 0 0 0 0 40 75 3.35 43.87
Standard deviation 3.08 29.06 32.38 17.6 148.64 29.87 37.53 9.49 6.64 0.2 27.97
Kurtosis −0.6 −1.4 −1.45 5.21 −0.92 0.07 −0.2 −0.47 1.15 −1.02 3.48
Skewness 0.67 −0.54 −0.24 2.48 0.9 1.4 1.34 0.07 1.06 −0.11 1.99
Range 12 75 81 65 377 80 92 41 28 0.7 110.98
Minimum 6 0 0 0 0 0 0 20 62 3 39.42
Maximum 18 75 81 65 377 80 92 61 90 3.7 150.4
Count 125 125 125 125 125 125 125 125 125 125 125

Training database

Mean 10.54 41.14 43.66 8.48 101.87 15.58 19.71 34.8 75.28 3.27 62.77
Standard error 0.31 2.91 3.26 1.76 14.83 2.98 3.73 0.97 0.69 0.02 2.79
Median 9.5 53.67 45 0 0 0 0 35 75 3.35 49.57
Mode 8 0 0 0 0 0 0 40 75 3.35 66.5
Standard deviation 3.14 29.1 32.6 17.56 148.28 29.76 37.31 9.69 6.85 0.21 27.89
Kurtosis −0.66 −1.4 −1.46 5.23 −0.88 0.17 −0.11 −0.39 0.83 −0.97 3.51
Skewness 0.61 −0.55 −0.28 2.47 0.92 1.44 1.37 0.13 1 −0.07 1.99
Range 12 75 81 65 377 80 92 41 28 0.7 110.98
Minimum 6 0 0 0 0 0 0 20 62 3 39.42
Maximum 18 75 81 65 377 80 92 61 90 3.7 150.4
Count 100 100 100 100 100 100 100 100 100 100 100

Testing database

Mean 10.09 40.41 40.56 8.8 108.08 16.88 21.56 33.92 74.08 3.25 63.26
Standard error 0.57 5.91 6.4 3.62 30.61 6.18 7.83 1.76 1.15 0.04 5.76
Median 9.5 54.01 45 0 0 0 0 35 75 3.35 49.63
Mode 8 0 45 0 0 0 0 35 75 3.35 N/A
Standard deviation 2.85 29.53 31.99 18.11 153.03 30.91 39.16 8.8 5.77 0.19 28.82
Kurtosis −0.11 −1.48 −1.39 6.59 −1.01 −0.08 −0.35 −1.2 3.95 −1.58 4.39
Skewness 0.95 −0.56 −0.12 2.65 0.87 1.36 1.3 −0.33 1.36 −0.38 2.11
Range 9.9 75 81 65 377 80 92 29 28 0.5 107.33
Minimum 6 0 0 0 0 0 0 20 62 3 40.69
Maximum 15.9 75 81 65 377 80 92 49 90 3.5 148.02
Count 25 25 25 25 25 25 25 25 25 25 25
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Figure 5: (Continued)
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Figure 5: Frequency distribution

Moreover, the study explores the relationships between various variables, as shown in Fig. 6.
The results indicate that “GF%” has a positive correlation with “Bar Dia” and “E-GF” (correlation
coefficients of 0.301 and 0.311, respectively). This suggests that an increase in glass fiber percentage
or effective glass fiber is connected to a larger bar diameter. Additionally, the correlation coefficients
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reveal connections among resin properties. Specifically, “Resin%” exhibits a positive correlation
with “Resin Tensile Strength” (correlation coefficient: 0.0327) and “Resin Modulus” (correlation
coefficient: 0.0688). These correlations indicate that an increase in resin percentage is linked to higher
tensile strength and modulus.

Figure 6: Pearson correlation matrix of the dataset

5.2 Model Development

GeneXproTool 5.0, a flexible GEP data modeling software, was used to predict the HFRP
modulus of elasticity. This tool allows for the adjustment of various parameters, facilitating the
creation of diverse GEP models with different characteristics. Table 4 presents a comprehensive
GEP prediction model for HFRP elastic modulus, each configuration corresponds to a unique GEP
setup identified by a code. For instance, “C25-G1-Addition” shows 25 chromosomes, 1 gene per
chromosome, and addition as the linking function. The chromosome count remains consistent at 25,
50, 75, and 100 in each configuration. Additionally, all configurations have 8 genes per chromosome,
influencing the overall model behavior. The linking function determines gene combinations within
chromosomes, denoted by symbols such as “+”, “−”, “∗”, “/”, or “Average,” representing addition,
subtraction, multiplication, division, or averaging of input variables.

Table 4: GEP model development details

Model details
GEP model Chromosomes Head size Genes Linking function

C25-G1-Addition 25 8 1 +
C25-G1-Average 25 8 1 Average

(Continued)
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Table 4 (continued)

Model details
GEP model Chromosomes Head size Genes Linking function

C25-G1-Division 25 8 1 /
C25-G1-Multiplication 25 8 1 ∗
C25-G1-Subtraction 25 8 1 –
C50-G1-Addition 50 8 1 +
C50-G1-Average 50 8 1 Average
C50-G1-Division 50 8 1 /
C50-G1-Multiplication 50 8 1 ∗
C50-G1-Subtraction 50 8 1 –
C75-G1-Addition 75 8 1 +
C75-G1-Average 75 8 1 Average
C75-G1-Division 75 8 1 /
C75-G1-Multiplication 75 8 1 ∗
C75-G1-Subtraction 75 8 1 –
C100-G1-Addition 100 8 1 +
C100-G1-Average 100 8 1 Average
C100-G1-Division 100 8 1 /
C100-G1-Multiplication 100 8 1 ∗
C100-G1-Subtraction 100 8 1 –

6 Model Evaluation Criteria
6.1 Statistical Metrics

The statistical performance of the proposed GEP models to predict MOE was measured using
four analytical standard measures including the coefficient of determination (R2), root relative squared
error (RRSE), Root mean squared error (RMSE) and mean absolute error (MAE) [96–98] The
equation of each fitness measure is shown in Table 5. The best-fitted predictive model is usually based
on the parameters. R2 represents the proportion of the variance in the dependent variable (predicted
from the independent variables). Therefore, the fitness of a regression model measures how well the
model fits the observed data points [99,100]. RRSE measures the standard deviation of the errors
in a prediction model, relative to the range of the target variable. Therefore, the average difference
between the predicted and actual values is normalized by the range of the target variable [96].
RMSE measures the average magnitude of the errors in a prediction model. It represents the squared
differences between the predicted and actual values [101–103]. MAE measures the average magnitude
of the errors in a prediction model. It represents the absolute differences between the predicted and
actual values [104].

Table 5: Models evaluation

Equation Preferred fitness Range

RRSE =
√∑m

i=1 (Pi − Ti)
2∑m

i=1

(
Pi − T̄

)2 A lower value indicates better accuracy 0–∞

(Continued)
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Table 5 (continued)

Equation Preferred fitness Range

RMSE =
√∑m

i=1 (Pi − Ti)

m
A lower value indicates better accuracy 0–∞

MAE = 1
m

∑m

i=1
|Pi − Ti| A lower value indicates better accuracy 0–∞

R2 = 1 −
∑n

i=1 (Pi − Ti)
2∑n

i=1 (Pi − Ti)
A higher value indicates a better fit 0–1

Note: Pi is the predictive value and Ti is the targeting value.

6.2 K-Fold Cross-Validation

To assess the machine learning model’s flexibility and performance, the Cross-Validation (CV)
technique is used. Various CV techniques, such as the Monte Carlo test, Jack Knife test, bootstrapping,
three-way split cross-validation, and disjoint sets test, are utilized [105]. However, among these
techniques, K-fold cross-validation (CV) is the most unbiased approach to address sampling and
overfitting concerns.

The dataset is divided into “K” equal subsets to assess the model’s accuracy. The K-fold CV
methodology creates K-1 subsets for training and one subset for testing to validate the training
dataset [106]. This process is repeated K times with different data samples for training and testing.
The best model is chosen based on approximation statistics for other errors from all the datasets. K-
fold CV ensures complete dataset validation to obtain the most optimal model. The following steps
are followed in K-fold validation: The dataset is divided into “K” equal subsets, where K-1 subsets are
used for training, and one subset is reserved for testing and validation. The best model is developed
from the K-1 subsets and validated on the remaining subset, considering all training subsets. The
complete flow diagram of the K-fold CV algorithm is shown in Fig. 7.

Figure 7: K-fold cross-validation flow diagram
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7 Results and Discussion

Table 6 shows the different GEP models using various evaluation metrics for training and testing.
The R2, RMSE, MAE, and RRSE values for each model are used for accuracy. The “C100-G1-
Addition” model demonstrates better performance than models with an R2 value of 0.96 in training
and 0.96 in testing. Therefore a strong correlation exists between predicted and actual values. The
model shows the lowest RMSE of 5.59, indicating accurate predictions with minimal error. The MAE
value of 3.87 also supports the models accuracy (average magnitude of errors). Finally, the RRSE
value of 0.19 shows that the models performance is better than others, reflecting the normalized error
relative to the target variables.

Table 6: GEP model results

GEP Model Training Testing

R2 RMSE MAE RRSE R2 RMSE MAE RRSE

C25-G1-Addition 0.8978 8.872 6.304 0.3197 0.9604 5.684 4.142 0.2013
C25-G1-Average 0.8778 9.796 6.581 0.3529 0.9332 7.455 4.898 0.264
C25-G1-Division 0.8837 9.466 6.647 0.3411 0.9445 6.731 4.791 0.2384
C25-G1-Multiplication 0.8999 8.783 6.256 0.3164 0.9548 6.039 4.403 0.2138
C25-G1-Subtraction 0.8921 9.117 6.826 0.3285 0.9404 7.101 5.267 0.2514
C50-G1-Addition 0.8977 8.877 6.346 0.3198 0.9665 5.315 3.988 0.1882
C50-G1-Average 0.9003 8.764 6.309 0.3158 0.9585 5.846 4.373 0.2071
C50-G1-Division 0.8782 9.801 6.478 0.3531 0.937 7.273 4.731 0.2575
C50-G1-Multiplication 0.8884 9.272 6.982 0.3341 0.9456 6.655 5.423 0.2356
C50-G1-Subtraction 0.8899 9.211 6.443 0.3319 0.9527 6.193 4.336 0.2193
C75-G1-Addition 0.9053 8.539 6.016 0.3077 0.9605 5.722 4.206 0.2026
C75-G1-Average 0.8922 9.113 6.487 0.3283 0.9683 5.176 3.989 0.1833
C75-G1-Division 0.8954 8.977 6.403 0.3234 0.9511 6.282 4.866 0.2225
C75-G1-Multiplication 0.8803 9.601 6.899 0.3459 0.9371 7.217 5.618 0.2556
C75-G1-Subtraction 0.8977 8.879 6.299 0.3199 0.9443 6.725 4.451 0.2405
C100-G1-Addition 0.9627 5.625 3.874 0.1934 0.9683 5.126 4.017 0.1961
C100-G1-Average 0.8726 9.906 6.786 0.3569 0.9428 6.868 4.801 0.2432
C100-G1-Division 0.8849 9.454 6.247 0.3405 0.9339 7.414 4.853 0.2625
C100-G1-Multiplication 0.8934 9.062 6.221 0.3265 0.9627 5.537 3.855 0.1815
C100-G1-Subtraction 0.8864 9.362 6.636 0.3373 0.9371 7.284 4.837 0.2579

7.1 Proposed GEP Model

Numerous models were generated by adjusting various parameters in GeneXprotool such as the
number of chromosomes, genes, and functions. Statistical parameters such as R2, MAE, RMSE, and
RRSE were employed to evaluate the performance of the developed GEP models. The optimal fitness
model, “C100-G1-Addition” shows better performance with R2 values of 0.96 during training and 0.96
during testing. Additionally, the GEP regression plot and error distribution diagram are illustrated in
Figs. 8 and 9, respectively. The solid lines represent the predicted value, while the markers (e.g., circles
and squares) indicate the observed data points. The different colors distinguish between training and
testing datasets. In Fig. 9a, the comparison of experimental and predicted values of the modulus of
elasticity is illustrated. The blue markers represent the experimental data, while the orange markers
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denote the predicted values from the GEP model. Each data point corresponds to a specific dataset,
and the lines connecting the markers help visualize the trend and correlation between the experimental
and predicted values. Fig. 9b represents the error value (difference between experimental and predicted
values) for each dataset.

Figure 8: Regression plot

Figure 9: (a) Experimental vs. Predicted values (b) Error
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The expression tree generated by GEP is from the best model “C100-G1-Addition” utilized to
formulate the mathematical equation for the predictive model as shown in Fig. 10 and Eq. (2). This
equation is for the utilization of a model generated by machine-learning techniques in the real world.
By decoding the expression tree, a concise mathematical relationship between various input variables
and mathematical operations (e.g., addition, subtraction, multiplication, division) is established. This
simplified equation enables the calculation of the modulus of elasticity for HFRP bars.

EHFRP = 3BF%BFE + GF%GFE

(10.6 − d − BF%BFE) (CF%CFE + GF%GFE − 34.77)
+ 0.68CF%CFE − d + 0.5

M%MtME

+ 57.81

(2)

Figure 10: Expression tree of model “C100-G1-Addition”

7.2 K-Fold Cross-Validation

In this study, a 10-fold cross-validation technique was utilized to assess the performance of a
predictive model. Cross-validation is a widely employed method in machine learning and statistical
analysis to evaluate a model’s generalization capability. Fig. 11 illustrates the performance of the
predictive model across the 10-fold cross-validation iterations.
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Figure 11: GEP model K-fold cross-validation results, R2

8 Parametric Analysis

Fig. 12 illustrates the correlations between the elastic modulus of hybrid fiber-reinforced polymer
(HFRP) bars and each variable such as bar diameter, carbon fiber percentages, the elastic modulus
of carbon fibers, the elastic modulus of basalt fibers, basalt fibers percentages, the elastic modulus
of glass fibers, glass fibers percentages, resin matrix percentages, resin modulus, and tensile strength.
It can be observed that all the variables positively influence the elastic modulus of HFRP bars. The
discovered beneficial impacts of each variable on the elastic modulus of HFRP bars indicate that
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changes in each parameter lead to an increase in the elastic modulus of the HFRP bars. Furthermore,
the tensile strength more effectively increased the elastic modulus of HFRP bars than the other
variables. These findings indicate that increasing the tensile capacity of concrete is a very effective
approach to increasing its elastic modulus. Therefore, the study recommends that special attention
should be given to the tensile strength to ensure better elastic modulus of HFRP bars. Also, it can
be observed that each variable (other than tensile strength) has a significant role in increasing the
elastic modulus of HFRP bars. Therefore, optimizing all the considered variables leads to an increase
in the elastic modulus of the HFRP bars. These results have implications for carrying out efficient
parametric studies and improving the design and manufacturing processes of HFRP bars to fulfill
precise structural criteria.

Figure 12: (Continued)
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Figure 12: Parametric analysis

9 SHAP Analysis

The Shapley additive explanation (SHAP) framework provides internal and external explanations
for investigating a critical variable. It is particularly suitable for collective machine learning techniques
due to its robustness and ability to offer qualitative and quantitative insights, comparable to widely
used feature significance metrics. In Fig. 13, prominent attributes significant contributions to the
model’s output, notably tensile strength, CF%, GF%, bar diameter, elastic modulus GF, resin%,
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BF% and elastic modulus CF, resin modulus and elastic modulus BF influencing the prediction of
elastic modulus. These influential parameters display distinct thresholds dictating their effects on
the model’s output. The intensity of each variable is judged through different colors. The red color
indicates a highly sensitive variable that significantly impacts the elastic modulus. The SHAP analysis
indicates that tensile strength is the most sensitive variable which significantly impacts the elastic
modulus. Therefore, the study suggests that special attention should be given to the tensile strength
while designing hybrid fiber-reinforced polymer (HFRP) bars.

Figure 13: SHAP analysis

10 Comparative Analysis of GEP and Traditional Prediction Formula

Fig. 14 shows the comparison between the developed models of the GEP and the traditional
prediction formula (ROM) available for elastic modulus. The alignment between the GEP model
and experimental values is comparable. However considerable variation was noted between the
experimental results and ROM value. Therefore, the findings indicate that the developed GEP model
captures the patterns and relationships more accurately than the ROM model.

Figure 14: Comparison between results
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11 Conclusion

The application of machine learning was applied to develop a predictive model for the elastic
modulus of HFRP bars. A dataset containing 125 experimental results of HFRP bars was collected
from the literature and used for model development and validation. The detailed conclusions are:

• The developed GEP model performance is better than the traditional available formula for
predicting the elastic modulus of HFRP bars.

• A more accurate model (optimal predictive model) was identified with 100 chromosomes, 1 gene
and an addition linking function.

• The statistical parameters such as R2, RMSE, MAE, and RRSE values are 0.96, 5.62, 3.87, and
0.1934, respectively, for training, and 0.96, 5.12, 4.01, and 0.196 for testing, respectively.

• A simplified mathematical equation for predicting the elastic modulus of HFRP bars is
developed which offers a more straightforward approach for practical applications.

• Parametric and SHAP analyses identify tensile strength, carbon fiber, and glass fiber were the
most significant contributing factors.

• Validation was performed through K-fold cross-validation (CV), demonstrating satisfactory
performance across all models and further confirming the accuracy and reliability.

12 Limitations and Recommendations

Although the study provides promising results. However, the study has certain limitations and
recommends future work to improve performance and accuracy.

• The study focused primarily on the prediction of the elastic modulus of HFRP bars. However,
it might be possible that HFRP other properties like tensile strength and flexural behaviour
influence overall performance. The study recommends future studies to explore different
properties.

• Gene expression programming (GEP) was employed for predictive modelling and accuracy
could be increased with the use of advanced algorithms. Therefore, the study recommends some
advanced algorithms such as random forest or XGBoost to improve accuracy.

• Although the dataset used in this study is compressive, the variation in testing conditions,
material properties, and fabrication methods may still have limitations. Therefore, the study
recommends detailed controlled and standardized studies.
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