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Abstract: The algorithm based on combination learning usually is superior to a single 

classification algorithm on the task of protein secondary structure prediction. However, 

the assignment of the weight of the base classifier usually lacks decision-making 

evidence. In this paper, we propose a protein secondary structure prediction method with 

dynamic self-adaptation combination strategy based on entropy, where the weights are 

assigned according to the entropy of posterior probabilities outputted by base classifiers. 

The higher entropy value means a lower weight for the base classifier. The final structure 

prediction is decided by the weighted combination of posterior probabilities. Extensive 

experiments on CB513 dataset demonstrates that the proposed method outperforms the 

existing methods, which can effectively improve the prediction performance. 
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1 Introduction 

Protein secondary structure is the link between protein primary and tertiary structure. If 

the accuracy of protein secondary structure prediction reaches 0.8, the three-dimensional 

spatial structure of a protein molecule will be predicted accurately [Zhang, Tang, Zhang 

et al. (2003)]. Therefore, for a long time, protein secondary structure prediction has been 

an important method to study protein structure and function. Because it is a time-

consuming work to determine protein structure by physical and chemical experiments, 

machine learning methods for determining protein structure become popular and are 

favored by researchers. 

At present, the prediction of protein secondary structure mainly focuses on the following 

two aspects [Tang, Li, Zhang et al. (2013)]. One aspect is how to obtain the information 

of protein structure features effectively. There are a lot of physical and chemical 
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information, sequence information and other relevant information in proteins. Therefore, 

it is difficult to determine the correlation between a feature and structure. Moreover, if 

there are too many comprehensive feature information, redundant information will 

increase, leading to high dimension disaster, which will inevitably injure the prediction 

accuracy. The other aspect is how to select prediction algorithms and apply them to build 

pattern recognition classifier. These works usually adopts single classifier algorithm, 

lacking generalization ability. 

Aiming at the problems in existing methods, a protein secondary structure prediction with 

dynamic self-adaptation combination strategy based on entropy is proposed, which 

comprehensively considers the performance differences of the classifiers and the 

uncertainty of samples. The method introduces the weight parameter of overall 

performance of a classifier based on entropy and the weight parameter of self-confidence 

of a classifier on a sample, which are utilized to improve weighted voting method with 

instance dynamic self-adaptation [Lu, Wu, Jian et al. (2018)]. Extensive experiments on 

CB513 dataset demonstrates the superiority of the proposed method over the existing 

combination methods, which can effectively improve the accuracy of protein secondary 

structure prediction. 

The structure of this paper is as follows. We introduce the related work of some common 

methods for protein secondary structure prediction of multi-classifier combination in 

Section 2. Section 3 describes the implementation of protein secondary structure 

prediction method with dynamic self-adaptation combination strategy based on entropy. 

Empirical results are provided in Section 4. We conclude the work in Section 5. 

2 Related work 

In recent years, multi-classifier combination methods become popular in the field of 

machine learning [Bouziane, Messabih and Chouarfia (2015); Zheng and Li (2013); Ma, 

Liu, and Cheng (2018); Shi (2018); Yang, Tan and Zhang (2018); Yang, Chen, Chen et al. 

(2018); Xia, Yuan, Lv et al. (2018)], which has been applied on the prediction of protein 

secondary structure and has attracted more and more attention from researchers. The typical 

work on multi-classifier combination field can be roughly divided into two categories. 

One category is homogeneous combination, which utilizes the same kind of base 

classifiers with different parameters to classify instances many times and combines the 

results, whose representative works include Bagging algorithm, Boosting or AdaBoosting 

algorithm. Zheng et al. proposed a Ma-Ada multi-classifier combination algorithm, which 

used SVM as a base classifier to conduct experiments on four datasets and achieved a 

better performance [Zheng and Li (2013)]. As the base classifier selected by this method 

is the same kind of classifier, it generally does not have strong generalization ability. 

Another category is heterogeneous combination, which utilizes different kinds of base 

classifiers to build ensemble classifier, such as, probability-based methods, voting-based 

methods, result weighted voting and probability weighted voting. These methods utilize 

different classifier as base classifiers. How to precisely assign a suitable weight for each 

classifier is a key problem. Hafida et al. selected the BP neural network and support 

vector machine (SVM) as base classifier, and combined their results with nine methods, 

e.g., product, sum rules, which is experimented on RS126 and CB513 dataset [Bouziane, 
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Messabih and Chouarfia (2015)]. Homayouni et al. proposed a density-based learning 

framework to build a multi-classifier combination model to predict protein secondary 

structure [Homayouni and Mansoori (2017)]. Ma et al. proposed a protein secondary 

structure prediction method based on data segmentation and semi-random subspace, 

which trained base classifiers on the subspace data generated by the semi-random 

subspace method, and combined base classifiers by majority vote rule into ensemble 

classifiers on each subset. Multiple classifiers were trained on different subsets [Ma, Liu 

and Cheng (2018)]. These different classifiers were used to predict the secondary 

structures of different proteins according to the protein sequence length. 

Lots of practical applications, experimental and theoretical achievements of some specific 

cases show that multi-classifier combination method is successful, which can achieve a 

better performance than a single classifier. For protein secondary structure prediction 

problem, multi-classifier combination methods also demonstrate its powerful ability. 

3 Protein secondary structure prediction with dynamic self-adaptation combination 

strategy based on entropy 

3.1 Multi-classifier combination framework 

In multi-classifier combination, each base classifier is regarded as an expert in the entire 

feature space, which outputs its judgment on each instance. With combination strategies 

or rules, the outputs of each base classifier are integrated. The general framework of 

multi-classifier combination is shown in Fig. 1. First, each base classifier classifies the 

instances and outputs posterior probability information, i.e., the Decision Profile (DP) 

[Kuncheva, Bezdek and Duin (2001)]. Then, with the combination strategy, the DP 

matrix is handled to combine the outputs of all base classifiers. Last, the label with 

maximum combined probability is returned as the final classification result. 
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Decision 
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Fusion 
Algorithm
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Results

 

Figure 1: Framework of multi-classifier combination 

3.2 Base classifier 

The base classifiers should have a high accuracy and be differentiated each other, so that 

they can generate complementary information. We investigate random forest classifier, 

RBF classifier and multi-classification SVM classifier. These methods are representative, 

whose principles are highly complementary. We respectively utilize these models to 

predict protein secondary structure. In the combination experiments, random forest 

classifier, RBF classifier and multi-classification SVM classifier are selected as the base 

classifiers of the combination algorithm. 
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3.3 Prediction with dynamic self-adaptation combination strategy based on entropy 

In this paper, a prediction with dynamic self-adaptive strategy based on entropy is 

proposed, which introduces two weight coefficients: (1) self-confidence of base classifier, 

(2) information entropy of instances uncertainty [Xia and Xu (2012)]. The model is 

described as: 
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where j  is the average value of the posterior probabilities on all possible structures 

given by the j-th classifier. If the j-th base classifier outputs a posterior probability, which 

is greater than or equal to the average value i , it means that the classifier is self 

confident to make a right judgment. Therefore, In Eq. (2), we assign a higher weight to 

the classifier, i.e., 0.95. Otherwise, a lower weight is assigned, i.e., 0.05. 

In order to avoid only considering the individual differences of the instances in the 

combination strategy, we further introduce the uncertainty measurement of the j-th 

classifier, i.e., information entropy, as shown in Eq. (4).  
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In other words, )(xH j  is the uncertainty of the base classifier jf . If the value of 

)(xH j is larger, it means that the classifier is more uncertain on the classification of the 

instance, indicating that the classifier has a worse classification ability on it, and the 

combination weight j  of the classifier for the instance x  is smaller, as shown in Eq. (5). 
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The proposed prediction with dynamic self-adaptation combination strategy based on 
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entropy, which considers both self-confidence of base classifier and information entropy 

of uncertainty. The comprehensive consideration provides the potential to achieve a 

better combination performance on protein secondary structure prediction. 

4 Experiments 

4.1 Dataset 

In order to verify the performance of our proposed combination strategy, the popular 

CB513 is chosen as the benchmark dataset, which is a widely used low-homology dataset 

[Cuff and Barton (1999)]. CB513 dataset contains 513 non-homologous protein 

sequences, whose sequence similarity is less than 0.25. 

4.2 Classification criteria of secondary structures 

Protein secondary structures are usually divided into eight categories: G (310-helix), 

H(α-helix), I (π-helix), B (isolated β-bridge), E (β-stand), S (bend), T (hydrogen 

bonded turn) and the rest (apparently random conformations). The mainstream ideology 

of protein secondary structure prediction usually map the eight labels into three ones, i.e., 

H, E and C. In this paper, DSSP method is adopted, and eight structures are clearly 

classified into three ones, with the principle: H and G are Helices, denoted as H; E and B 

belong to Sheets, denoted as E; G, S, T, C and I belong to Coils, denoted as C. 

4.3 Preprocessing of base classifier output 

The posterior probability outputted by the base classifier need to be preprocessed before 

the combination. The original value with large difference should be normalized. We use 

mapminmax function in MATLAB to normalize the posterior probability outputted by 

the base classifier. 

4.4 Evaluation measures 

There are many evaluation measures for the prediction of protein secondary structure. 

Currently, the following measures are used. 

4.4.1 Overall prediction accuracy Q3 

At present, the most widely used accuracy rate refers to the total percentage of three 

secondary structures (residues) which be correctly predicted, which can be calculated 

from Eq. (6): 
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where NH, NE and NC respectively represent the total number of residues whose 

secondary structure is H, E and C in the sequence, and PH, PE and PC respectively 

represent the number of residues which is correctly predicted as H, E and C structures. 
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4.4.2 Three-state prediction accuracy Qi 

We use iQ  to represent the prediction accuracy rate of each secondary structure which is 

correctly predicted as H, E or C structure. It can be calculated with Eq. (7):  
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N

P
Q
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0 =   ,                                                                                    (7) 

where iP  is the residue of structure i that is correctly predicted in the sequence, iN  is the 

residue of structure i in the sequence. Structure i may be structure H, structure E or 

structure C. 

4.4.3 Matthews correlation coefficient MCC 

We use it to measure the quality of classifier classification, as shown in Eq. (8). 
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where iTP  represents the residue base of the structure i that is correctly predicted. 

iTN represents the residue base of the i  structure (not i) that is correctly predicted. iFP  

represents the residue base of the structure i that is actually i , but is predicted as i. 

iFN represents the residue base of the structure i that is actually i, but is predicted as i . i 

may be H structure, E structure or C structure. 

4.5 Result and analysis 

In the experiment, PSSM matrix of CB513 dataset is calculated by PSI-BLAST program. 

In order to ensure the reliability of the experimental results, the dataset uses seven-fold 

cross validation in the base classifier experiment stage. The performances of single 

classifier and our models are compared in Tab. 1. 

Table 1: Experimental Results on CB513 

Methods QH(%) QE(%) QC(%) Q3(%) MccH MccE MccC 

M-SVMCS 79.01 62.74 79.20 75.50 0.675 0.576 0.562 

M-SVMLLW 77.95 52.46 83.67 74.62 0.657 0.548 0.553 

M-SVMWW 77.69 62.73 80.62 75.54 0.675 0.576 0.558 
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M-SVMMSVM2 78.74 60.60 80.50 75.39 0.668 0.574 0.559 

RBFNN 78.38 58.25 80.74 74.83 0.656 0.560 0.553 

RF 71.35 49.93 81.62 71.32 0.594 0.541 0.516 

Our model 78.79 59.83 81.79 75.76 0.675 0.578 0.576 

The overall prediction accuracy (Q3) range obtained by each base classifier on the 

CB513 dataset is 71.32%-75.50%. Among them, Random Forest classifier (RF) is the 

worst, 71.32%, while M-SVMCS classifier is the best, 75.50%. Compared on the 

prediction accuracy of H structure, E structure and C structure, all the base classifiers 

output better prediction results for C structure, with the prediction accuracy range of 

79.20%-81.62%. While the prediction accuracy of E structure was relatively worse, with 

the range of 49.93%-62.74%.  

As shown in Tab. 1, our proposed protein secondary structure prediction with dynamic 

self-adaptation combination strategy based on entropy achieves the best performance, i.e., 

75.76%. Besides, the results obtained by calculating the Matthews correlation coefficient 

MccH, MccE and MccC are better than those obtained by the base classifier. This 

demonstrates that our models have a better classification quality. 

5 Conclusion 

In this paper, we propose a protein secondary structure prediction with dynamic self-

adaptation combination strategy based on entropy, which assigns combination weights 

according to the entropy of posterior probabilities outputted by base classifiers. Extensive 

experiments on CB513 dataset demonstrates that the proposed method can effectively 

improve the prediction performance. Our future work is to verify the performance on 

more dataset and try to apply the combination strategy on other applications. 
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