A Technical Note for a Shor's Algorithm by Phase Estimation

Gérard Fleury and Philippe Lacomme*

Université Clermont-Auvergne, Clermont-Auvergne-INP, LIMOS - UMR CNRS 6158, 1 rue de la Chébarde, 63178, Aubière Cedex, France
*Corresponding Author: Philippe Lacomme. Email: philippe.lacomme@isima.fr Received: 03 June 2022; Accepted: 23 March 2023; Published: 15 May 2023

Abstract

The objective of this paper concerns at first the motivation and the method of Shor's algorithm including remarks on quantum computing introducing an algorithmic description of the method. The corner stone of the Shor's algorithm is the modular exponentiation that is the most computational component (in time and space). A linear depth unit based on phase estimation is introduced and a description of a generic version of a modular multiplier based on phases is introduced to build block of a gates to efficient modular exponentiation circuit. Our proposal includes numerical experiments achieved on both the IBM simulator using the Qiskit library and on quantum physical optimizers provided by IBM. The shor's algorithm based on phase estimation succeeds in factoring integer numbers with more than 35 digits using circuits with about 100 qubits.

Keywords: Shor's algorithm; phase

1 Introduction

The most famous quantum algorithm is the Shor's algorithms that is dedicated to integer factorization and that received a considerable amount of attention due to its possible application in the cryptanalysis field. The algorithm proposes a super-polynomial execution speedup as regards the classical resolution on classical computers. The RSA encryption method lies on the hypothesis that it is exponentially harder to factor large numbers that achieving a multiplication ensuring secure send of information online. Shor's factoring algorithm uses an efficient combination of regular and quantum computers, i.e., a hybrid computing approach where the regular computers and the quantum ones are paired into an iterative process [1]. Such approaches received a lot of attention leading to several variational algorithms including but not limited to QAOA [2,3].

Feynman has been the very first researcher considering that quantum mechanics could be more efficient computationally than a Turing machine considering that a computer based on quantum mechanics should avoid the expensive computation required for simulation on a classical computer. The question has been addressed first by [4] proving that some problems can be solved fast to optimality using quantum computers. In 1994 [5] introduced a circuit using an oracle to solve a problem (i.e., a black-box that can be checked) requiring a polynomial time since it requires an

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
exponential time on a classical non quantum computer. Shor [6] introduced a quantum computer algorithm for factoring a integer number N undirectly by computing the order of an element a in the multiplicative group $(\bmod N)$ considering the lower integer $l / a^{l} \equiv 1 \bmod N$. He defines a new promising approach to factor a number into a product of primes and his proposal resulted in a significant improvement of the factoring algorithms efficiency. The corner stone of the Shor's algorithm is the modular exponentiation that is the most computational component (in time and space) of Shor's algorithm [7].

2 Proposition

Finding a factor of N (N is an odd number) requires a method to compute the order l of a where a is a random integer number/a $a[2 ; N-1]$:
$a^{l} \equiv 1 \bmod N$
$a^{l}-1 \equiv 0 \bmod N$
If l is an even number we have: $\left(a^{1 / 2}-1\right) \cdot\left(a^{1 / 2}+1\right) \equiv 0 \bmod N$.
And the Euclidean algorithm of [8] can be used to compute the $\operatorname{gcd}\left(a^{\frac{1}{2}}-1 ; N\right)$ and $\operatorname{gcd}\left(a^{\frac{1}{2}}+1 ; N\right)$ giving the two dividers of N. If l is an odd number, it is possible to investigate both the even numbers $l-1$ and $l+1$. Our work propose an architecture where the computation of the order of an element a in the multiplicative group $(\bmod N)$ is replaced by the computation of the order of a in the phase additive group $(\bmod 2 \pi)$. The Quantum Circuit defines a probability phase distribution that aggregates probabilities on phases that indirectly model order of a. The measurement gates jointly gives a float value that defines the phase that will permit to find the order of a with a high probability through further classical post-processing. The sampling of the probability distribution permits to create a heap χ of set of phases (step 5 to 8 in algorithm 1). The post-processing consists in iteratively considering the phases registered in χ which may gives on order of $a: l_{i}=\chi_{i} \times N$.

```
Algorithm 1. Shor's algorithm based on phase
Input parameter
    \(N\) : a positive integer number
    \(n s\) : maximal number of measurement (sampling)
Output parameter:
    \(\chi\) : set of phases
    \(\wp:\) set of dividers of \(N\)
begin
    \(\chi=\varnothing ; \wp=\varnothing\)
repeat
    \(a:=\operatorname{random}(2 ; N-1)\)
    \(\left|\varphi_{l}\right\rangle:=\) Shor_quantum_circuit (a, N)
    repeat
        phase \(\varphi_{l}=\) Measurement of the circuit
        \(\chi=\chi \bigcup \varphi_{l}\)
        until (necessary) or (iterations exceed \(n s\) )
        while (i in 0 to \(\operatorname{card}(\chi)\) ) and (necessary) do
```

```
Algorithm 1. Continued
10. \(\quad l_{i}=\chi_{i} \times N\)
11. if \(l_{i} \equiv 0 \bmod 2\) then
12. Compute \(v_{1}=a^{\frac{1}{2}}+1\) and \(v_{2}=a^{\frac{1}{2}}-1\)
13. \(p_{1}=\operatorname{gcd}\left(v_{1} ; N\right) ; p_{2}=\operatorname{gcd}\left(v_{2} ; N\right)\)
14. \(\wp=\wp \cup\left\{p_{1}, p_{2}\right\}\)
15. end if
16. if \(l_{i} \equiv 1 \bmod 2\) then
17. Compute \(v_{1}=a^{\frac{l-1}{2}}+1\) and \(v_{2}=a^{\frac{l-1}{2}}-1\)
18. Compute \(v_{3}=a^{\frac{l+1}{2}}+1\) and \(v_{4}=a^{\frac{l+1}{2}}-1\)
19. \(\quad p_{1}=\operatorname{gcd}\left(v_{1} ; N\right) ; p_{2}=\operatorname{gcd}\left(v_{2} ; N\right)\)
20. \(\quad p_{3}=\operatorname{gcd}\left(v_{3} ; N\right) ; p_{4}=\operatorname{gcd}\left(v_{4} ; N\right)\)
21. \(\wp=\wp \cup\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\)
22. end if
23. end while
24. until (necessary)
end
```

If $l_{i} \equiv 0 \bmod 2$ the post-processing consists in computing both $\operatorname{gcd}\left(a^{l / 2}-1 ; N\right)$ and $\operatorname{gcd}\left(a^{l_{i / 2}}+1 ; N\right)$ which define two dividers of N and that are saved into the set of divider of N referred to as \wp. If l_{i} is an odd number, both the even number $l_{i}-1$ and the even number $l_{i}+1$ are investigated for giving factors of N.

Note that the "necessary" conditions at steps 8,9 and 24 have to be design over considerations of the objective function that could be, but not limited to: 1) computation of one divider only; 2) computation of a fixed number of dividers; 3) computation of all dividers.

2.1 Shor's Quantum Circuit Based on Phase

Given a, to find l such that $a^{l} \equiv 1 \bmod N$, the circuit Fig. 1 is based on the following considerations. First we find p the lowest power of 2 such that $2^{p}=q$ satisfy $2^{p}>N+1$ and we compute n the lowest power of 2 such that $2^{n}>a$.

Figure 1: Quantum circuit

The second step is easy since its entails is putting each qubit of the first register into the superposition $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and to compute $a^{l} \bmod N$ in the second register leaving the circuit in the state:
$|\psi\rangle=\frac{1}{\sqrt{q}} \cdot \sum_{j=0}^{q-1}|j\rangle \otimes|a\rangle$
The most computational quantum part of the classical Shor's algorithm is the modular exponentiation U_{N}^{a} that achieves the transformation to its quantum input:
$U_{N}^{a} \cdot|l\rangle \otimes|y\rangle=|l\rangle \otimes\left|y \oplus\left(a^{l} \bmod N\right)\right\rangle$
with $0 \leq l<q, 0 \leq y<2^{n}$
The Hadamard gates on the first q qubits creates a superposition of number l before application of the modular exponentiation.
$\left|\psi_{2}\right\rangle=U_{N}^{a} \cdot\left(\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}|j\rangle \otimes|0\rangle^{\otimes n}\right)$
$\left|\psi_{2}\right\rangle=U_{N}^{a} \cdot\left(\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}|j\rangle \otimes|0 \ldots 0\rangle\right)$
$\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}|j\rangle \otimes\left|\overrightarrow{0} \oplus a^{l} \bmod N\right\rangle$
Classical modular exponentiations are based on: 1) controlled multiplier/accumulator [9,10]; 2) quantum divider based on the algorithm introduced by [11].

We propose to replace the modular exponentiation U_{N}^{a} by $U_{N}^{\varphi a}$ that achieves the transformation to its quantum input in:
$U_{N}^{\varphi a} .|l\rangle \otimes|y\rangle=|l\rangle \otimes \mid y \otimes \varphi_{a} \bmod 2 \pi$
with $0 \leq l<q, 0 \leq y<2^{n}$
The Hadamard gates at the first q qubits have created a superposition of number l before application of the modular exponentiation.
$\left|\psi_{2}\right\rangle=U_{N}^{\varphi_{a}} \cdot\left(\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}|j\rangle \otimes|0\rangle^{\otimes_{n}}\right)$
$\left|\psi_{2}\right\rangle=U_{N}^{\varphi_{a}} \cdot\left(\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}|j\rangle \otimes|0 \ldots 0\rangle\right)$
$\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1}|j\rangle \otimes\left|\overrightarrow{0} \oplus \varphi_{a} \bmod 2 \pi\right\rangle$

The classical post-processing of the measurement in the computational basis after the Inverse Quantum Fourier Transform ($Q F T^{\dagger}$ block) is a sampling procedure that gives with high probability the period of the function $f(l)=\varphi_{a}^{1} \bmod 2 \pi$.

During post-processing, all the phases φ_{a} are saved into a pool χ of phases and all phases are iteratively investigated to check if the phase can permit to obtain one divider:

For all $l_{i}=\chi_{i} \times N / l_{i} \equiv 0 \bmod 2$, compute $v_{1}=a^{l_{i / 2}}-1$ and $v_{2}=a^{l / 2}+1$ and next $p_{1}=\operatorname{gcd}\left(v_{1} ; N\right)$ and $p_{2}=\operatorname{gcd}\left(v_{1} ; N\right) . p_{1}$ and p_{2} are both dividers of N.

For all $l_{i}=\chi_{i} \times N / l_{i} \equiv 1 \bmod 2$, compute $v_{1}=a^{\left(l_{i}+1\right) / 2}-1, v_{2}=a^{\left(l_{i}+1\right) / 2}+1, v_{3}=a^{\left(l_{i}-1\right) / 2}-1$, $v_{4}=a^{\left(l_{i}-1\right) / 2}+1$. Compute next $p_{1}=\operatorname{gcd}\left(v_{1} ; N\right), p_{2}=\operatorname{gcd}\left(v_{2} ; N\right), p_{3}=\operatorname{gcd}\left(v_{3} ; N\right)$ and $p_{4}=\operatorname{gcd}\left(v_{4} ; N\right)$ that are dividers of N.

2.2 Quantum Fourier Transformation

For p qubits, $q=2^{p}$ defines 2^{p} basis vectors and the Quantum Fourier Transformation is:
$F_{q}(|k\rangle)=X_{|k\rangle}=\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{2 \pi \pi \cdot i \cdot \frac{k^{2}}{2^{n}}} \cdot|l\rangle$
$F_{q}(|k\rangle)=X_{|k\rangle}=\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1} e^{2 \pi \cdot i \cdot i \frac{k_{j}}{2^{n}}} \cdot|l\rangle$
$F_{q}(|k\rangle)=X_{|k|}=\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1} \omega^{k . j} \cdot|j\rangle \operatorname{avecc}^{k, j}=e^{2 \pi \cdot \pi \cdot \frac{k_{j}}{2^{i}}}$
By consequence
$F_{q}^{\dagger}(|k\rangle)=\frac{1}{\sqrt{q}} \sum_{j=0}^{q-1} \omega^{-k . j} \cdot|j\rangle$

2.3 Modular Exponentiation of the Phase: $\boldsymbol{U}_{N}^{\varphi_{a}}$

The design uses $q=2^{p}$ qubits to represents l, a controlled qubit for the Inverse Fourier Transformation, n qubits to represents a and a controlled qubit required by $U_{N}^{\varphi_{a}}$ (Fig. 2).

Figure 2: Design of the exponentiation circuit using controlled modular phase

The design uses q controlled- $U(C U)$ block, and each block referred to as $U_{N}^{\varphi_{N} a^{j}}$ is a controlled modular $2 . \pi$ multiplier of its input (the lower quantum register) by constant φ_{a} by $\left(2^{j-1} \bmod N\right)$. Each block is controlled by the corresponding $\left|l_{j}\right\rangle$ qubit of the upper quantum register.

Definition of $\varphi_{a^{j}}$
Let us note $\varphi_{a}=\frac{2 . \pi}{N} \cdot a$
The phase of a is: $\varphi_{a^{j}}=\left(2^{j-1} \bmod N\right) \cdot \frac{2 \cdot \pi}{N} \cdot a$
The modular exponentiation $U_{N}^{\varphi_{\alpha} k}$ requires the iterative computation of
$\varphi_{a^{1}}, \varphi_{a^{2}}, \varphi_{a^{4}}, \varphi_{a^{8}}, \ldots, \varphi_{a^{k}}, \ldots$
i.e., the computation of $\varphi_{a^{2}}, \varphi_{a^{1}}, \varphi_{a^{2}}, \varphi_{a^{2}}, \ldots, \varphi_{a^{2 p-1}}, \varphi_{a^{2}}, \ldots$

We note
$\varphi_{a^{2 p}}=\varphi_{a^{2 p-1}}+\sum_{k=1}^{2 p^{p-1}} \varphi_{a}=\varphi_{a^{2 p-1}}+2^{p-1} \cdot \varphi_{a}$
For example with $a=3$, we have $\varphi_{a}=\frac{2 . \pi}{N} \cdot 3, \varphi_{a^{2}}=\frac{2 \cdot \pi}{N} \cdot 3+\frac{2 . \pi}{N} .3$ and
$\varphi_{a^{4}}=\frac{2 . \pi}{N} \cdot 3+\frac{2 . \pi}{N} \cdot 3+\frac{2 . \pi}{N} \cdot 3+\frac{2 . \pi}{N} .3$
$\varphi_{a^{4}}=\varphi_{a^{2}}+2^{2-1} \cdot \varphi_{a}=\varphi_{a^{2}}+2 \cdot \varphi_{a}$
We have next:
$\varphi_{a^{8}}=\varphi_{a^{4}}+2^{2} \cdot \varphi_{a}=\varphi_{a^{4}}+4 . \varphi_{a}=8 \cdot \varphi_{a}$
$\varphi_{a}{ }^{16}=\varphi_{a^{8}}+2^{3} \cdot \varphi_{a}=\varphi_{a^{8}}+8 \cdot \varphi_{a}=16 \cdot \varphi_{a}$
Definition of $U_{N}^{\varphi_{\alpha} k}$
A controlled $U_{N}^{\varphi_{\mu} k}$ block is based on the application of $C P(\alpha)$ conditional phase rotation gates that need to be repeated a logarithmic number of times regarding to N and next on the application of the Inverse Fourier Transformation (Fig. 3). The diagonal symmetric controlled gate CP(α) is used to induce a phase on the state of the target qubit number n depending on the control qubit state.

Figure 3: Design of $U_{N}^{\varphi_{N}{ }^{k}}$

Matrix representation of $C P(\alpha)$ for two qubits
$C P(\alpha)=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{\alpha}\end{array}\right)$
n consecutive applications of $C P(\alpha)$ gates are required for defining a n-qubit quantum number

$$
\begin{equation*}
|b\rangle=\left|b_{n-1}\right\rangle\left|b_{n-2}\right\rangle \ldots\left|b_{1}\right\rangle\left|b_{0}\right\rangle \tag{15}
\end{equation*}
$$

that is transformed by a simple uncontrolled Inverse Quantum Fourier Transformation into a quantum state

$$
\begin{equation*}
\left|\varphi_{a^{k}}\right\rangle=\left|\varphi_{a^{k}}^{n-1}\right\rangle\left|\varphi_{a^{k}}^{n-2}\right\rangle\left|\varphi_{a^{k}}^{n-3}\right\rangle \ldots\left|\varphi_{a^{k}}^{0}\right\rangle \tag{16}
\end{equation*}
$$

We have:
$F_{n}(|b\rangle)=\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{2 \pi \pi \cdot \frac{b \cdot 2^{n}}{2^{n}}} \cdot|j\rangle$
and the individual $j^{\text {th }}$ qubit $\left|\varphi_{a^{k}}^{j}\right\rangle$ of $\left|\varphi_{a^{k}}\right\rangle$:
$\left|\varphi_{d^{k}}^{j}\right\rangle=\frac{1}{2}\left(|0\rangle+e^{2 \pi \cdot i \cdot \frac{b}{\partial j}}|1\rangle\right)$

3 Experimentation

With the following examples, the objective is to illustrate the performances of this phase based Shor's algorithm on both simulator and physical quantum optimizer. Experiments are achieved considering 5 large numbers (introduced in Table 1) with a number of dividers that varies from 4 to 24.

Table 1: Integer numbers used for experimentations

N	\# of dividers	Dividers
844821	24	$1 ; 3 ; 9 ; 37 ; 43 ; 59 ; 111 ; 129 ; 177 ; 333 ; 387 ; 531 ; 1591 ; 2183 ; 2537 ;$
1414583	4	$4773 ; 6549 ; 7611 ; 14319 ; 19647 ; 22833 ; 93869 ; 281607 ; 844821$
1660759	4	$1 ; 821 ; 1723 ; 1414583$
3131759	4	$1 ; 1129 ; 1471 ; 1660759$
5131763	8	$1 ; 1471 ; 2129 ; 3131759$
5131769	4	$1 ; 7 ; 13 ; 91 ; 56393 ; 394751 ; 733109 ; 5131763$
7131763	4	$1 ; 103 ; 49823 ; 5131769$
7131769	4	$1 ; 223 ; 31981 ; 7131763$
17131761	6	$1 ; 113 ; 63113 ; 7131769$
327131761	16	$1 ; 3 ; 9 ; 1903529 ; 5710587 ; 17131761$
		$1 ; 11 ; 73 ; 263 ; 803 ; 1549 ; 2893 ; 17039 ; 19199 ; 113077 ; 211189 ;$
327131767	8	$407387 ; 1243847 ; 4481257 ; 29739251 ; 327131761$
1593389361	8	$1 ; 229 ; 233 ; 6131 ; 53357 ; 140399 ; 1428523 ; 327131767$
1593389363	4	$1 ; 3 ; 21121 ; 25147 ; 63363 ; 75441 ; 531129787 ; 1593389361$
298500156599	4	$1 ; 31981 ; 49823 ; 1593389363$

The number of qubits required depends on both N and a : the experiments on the simulator are limited to 32 qubits and the experiments on quantum optimizer are limited to 124 qubits that is the largest IBM physical quantum optimizer available. A number with many dividers should be easier to factor in the sense that one circuit execution should permit to obtain several dividers in one sampling run. Note that for a theoretical point of view, the value of a should be defined at random but from a practical point of view, an efficient implementation should investigate small values first to obtain smaller circuits.

Experiments have been achieved on the Brooklyn Quantum Physical Optimizers introduced in Table 2 and has been chosen taking into account the individual optimizers availabilities and the total pending jobs involved in experiments with the potential to lead the results in acceptable delays at the particular moment. Note that preliminary experiments achieved on Auckland, Montreal and Washington quantum optimizers push us into considering that very similar results should be obtained. Let us note that the Brooklyn physical quantum optimizer is not the best one in term of number of qubits and it is not the more efficient as regards the quantum volume.

Table 2: Examples of physical quantum optimizers

Physical quantum optimizer	\# of qubits	QV
Auckland	27	64
Montreal	27	128
Brooklyn	65	32
Washington	127	64

3.1 Numerical Experiments with 1591

For the small $N=1591$ the probability distribution of l are plotted on Fig. 4. The values $l=37$, $l=43$ could occurred when factoring 1591 if a were chosen to be 2 for example. The graphic concerns small N and small a values to make the plot distinguishable but very similar structures of probabilities can be observed for every N and a values. Note that the probabilities plotted on Fig. 4 are related to an execution on the Brooklyn Physical Quantum Optimizer are based on 1500 samplings.

The phases in χ define possible values of l for a^{l} such that l should be the order of a. Table 3 gives the observed value of both the phase and of l obtained when factoring 1591 with $a=2$: the post-processing enables us to obtain the two non-trivial dividers of 1541 namely 43 and 37. Execution on the Brooklyn gives quite different probabilities but the observed phase value permits to obtain the dividers 43 and 37.

3.2 Numerical Experiments on Simulator when Factoring 3131759

Execution of the simulator for $N=3131759$ has been achieved for several values of a and permits to retrieve several dividers depending on the run. With $a=2$ the runs are unsuccessful and the run 3 with $a=3$ succeeds retrieving 1471 and 2129 (Table 4). Note that the number of measurements (150 here) should be increased to obtain more consistent results between runs.

Figure 4: The probability P to observe values giving $N=1591$ and $a=2$ (execution on Brooklyn physical quantum optimizer)

Table 3: Dividers found when factoring $\mathbf{1 5 9 1}$ with $\boldsymbol{a}=\mathbf{2}$ (execution on the simulator)

Phase	\boldsymbol{l}	Divider D1	Divider D1	$\frac{N}{D 1}$	$\frac{N}{D 2}$
0.03515625	56	43	1	37	1591
0.16801170509565028	267	1	43	1591	37
0.4531679550956503	721	37	1	43	1591
0.3788632949043497	603	1	43	1591	37
0.6249570449043498	994	1	43	1591	37
0.0703125	112	43	1	37	1591
0.5898007949043498	938	1	43	1591	37
0.9336367050956502	1485	43	1	37	1591
0.17582420509565028	280	43	1	37	1591
0.16792579490434972	267	1	43	1591	37
0.6601132949043498	1050	1	43	1591	37
0.4296875	684	1	37	1591	43
0.4843320449043497	771	1	43	1591	37
0.2265625	360	37	1	43	1591
0.3789492050956503	603	1	43	1591	37

Table 4: Shor's algorithm on IBM's simulator for $N=3131759$

N	Quantum optimizer	Sampling value	Run	a	Phases	First divider D1	Second divider D2	$\frac{N}{D 1}$	$\frac{N}{D 2}$
3131759	Simulator	150	3	3	0.9023457562799555	1471	1	2129	3131759
			2	4	0.3945292437200445	1	2129	3131759	1471
			3	4	0.007814506279955507	2129	1	1471	3131759
			1	5	0.3945292437200445	1	2129	3131759	1471
			2	5	0.7988261187200445	1	2129	3131759	1471
			1	6	0.5214863812799555	1	1471	3131759	2129
			2	6	0.5214863812799555	1	1471	3131759	2129
			3	6	0.5214863812799555	1	1471	3131759	2129
				6	0.404296875	1	2129	3131759	1471

3.3 Numerical Experiments for 3 Numbers: Dividers Obtained for 3 Small Numbers

Table 5 gives the observed values of the phase and the dividers obtained when factoring 844821 with $a=2$ during a single run. The results are compliant with the results provided by the simulator and the algorithm succeeds in computing a large part of the dividers. Experiments for 1414583 have been achieved with one run for value of a varying from 2 to 5 and the two dividers are identified with $a=5$.

Table 5: Shor's algorithm on IBM's physical quantum optimizer (one run for $\boldsymbol{a} \in\{\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}$): example of results)

N	Physical quantum optimizer	Sampling value	Run	a	Phases	First divider D1	Second divider D2	$\frac{N}{D 1}$	$\frac{N}{D 2}$
844821	Brooklyn	150	1	2	0.00390625	9	1	93869	844821
					0.0634765625	1	3	844821	281607
					0.09765625	1	129	844821	6549
					0.0004808439522680786	1	7611	844821	111
					0.1259765625	387	1	2183	844821
					0.14843006270226808	177	1	4773	844821
					0.0007249845772680786	9	37	93869	22833
					0.283203125	333	1	2537	844821
				3	0.06249256270226808	1	1591	844821	531
					0.0039213166922631715	37	1	22833	844821
					0.0039272308349609375	1	43	844821	19647
					0.021556854248046875	59	1	14319	844821
					0.06250743729773192	129	1	6549	844821
									ontinued)

Table 5: Continued

N									
	Physical quantum optimizer	Sampling value	Run	a	Phases	First divider D1	Second divider D2	$\frac{N}{D 1}$	$\frac{N}{D 2}$
					0.06249256270226808	387	37	2183	22833
1414583	Brooklyn	150	1	5	0.7558975219726562	821	1	1723	1414583
1660759	Brooklyn	150	1	3	0.5012550354003906	1129	1	1471	1660759
				3	0.5949859619140625	1129	1	1471	1660759
				3	0.000339508056640625	1	1129	1660759	1471
			1	4	0.6427001953125	1	1129	1660759	1471
			1	5	0.0626573876379268	1	1129	1660759	1471

The last number 1660759 has two non-trivial dividers only (1471 and 1129) that are found for $a=3,4,5$ by the algorithm in one single run as stressed in Table 5.

3.4 Numerical Experiments on IBM Programmable Noisy Quantum Optimizer for Large Number

An attempt for 3131759 factorization is achieved with 5 run and $a=2$ and it succeeds leading to non-trivial dividers i.e., 1471 and 2129 (Table 6). Note that 5131763 can be factorized on the Physical Quantum Optimizer and that a single run with $a=2$ gives several dividers including 1, 7, 13, 91, 56393, 733109, 394751 and 5131 763. The algorithm succeeds in factoring 5131769 with $a=2$. Computation of the dividers of both 7131763 and 7131769 succeed for small value of a as stressed in Table 6.

Table 6: Shor's algorithm on IBM's physical quantum optimizer: large numbers

Number	Physical quantum optimizer	Sam-pling value	Run	a	Phase	$1^{\text {th }}$ divider D1	$2^{\text {nd }}$ divider D2	$\frac{N}{D 1}$	$\frac{N}{D 2}$
3131759	Brooklyn	150	1	2	0.44544659017277777	1471	1	2129	3131759
			5	2	0.003911873114575743	1471	1	2129	3131759
5131763	Brooklyn	150	1	2	$3.17419498091911 \mathrm{e}-05$	7	1	733109	5131763
				2	$2.9293206440808898 \mathrm{e}-05$	7	1	733109	5131763
				2	0.0078125	7	13	733109	394751
				2	0.5001835823059082	91	1	56393	5131763
5131769	Brooklyn		1	2	0.12597545733903687	103	1	49823	5131769
			1	2	0.010017633438110352	103	1	49823	5131769
7131763	Brooklyn		1	2	0.5019550323486328	223	1	31981	7131763
				2	0.50445556640625	223	1	31981	7131763
7131769	Brooklyn		1	2	... 6.2831845453753	1	113	7131769	63113
				2	0.12499911898642438	113	1	63113	7131769
17131761	Brooklyn	150	1	2	... 0.00012243706903525517	1	3	17131761	5710587
				2	0.00012170355596474483	3	1	5710587	17131761
				2	0.5000158937664992	9	1	1903529	17131761
				2	0.5000151602534287	9	1	1903529	17131761
327131761	Brooklyn	150	1	2	... 0.001953650846375354	11	1	29739251	327131761
									(Continued)

JQC, 2022, vol.4, no. 2

Table 6: Continued

| Number | Physical
 quantum
 optimizer | Sam-pling
 value | | Run | \boldsymbol{a} | Phase | $1^{\text {th }}$
 divider
 D1 | $2^{\text {nd }}$
 divider
 D2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $\frac{N}{D 1}$ |
| :--- |

The algorithm succeeds in factoring the large number 327131761 and using several run (5 runs are used in the experiments) several dividers are computed including large dividers. Note that the sampling parameters could have to be tune considering a balance between runs and number of sampling efforts.

Half of the dividers of 327131767 are computing on a single run for $a=2$ including the nontrivial dividers 229, 233, 1403999 and 1428523 . For number greater that 1.10^{9}, the algorithm succeeds as stressed on Table 6 where the two dividers of 1593389363 are obtained for $a=4$ with a single run.

3.5 Extra Experiments with Very Large Numbers

Experiments have been carried out with the following numbers 298500156599, 23750433609940 4000,237504336099404013 , and 237504336099404017 that require more than 60 qubits.

To conclude, a set of experiments have been achieved on the Washington physical quantum optimizer using
$N=157858237504336099404013$
$N=237515785823750433609940401323457$
$N=23751578582375043360994040132345711$
$N=237515785823750433609940401323451157$
$N=237515785823750433609940401323451151$
$N=2375157858237504336099404013234511517$
All the results are introduced in Table 7 and confirm the approach efficiency.

N	Run	a	Phases	1th divider D1	2nd divider D2	$\frac{N}{D 1}$	$\frac{N}{D 2}$
237504336099404000	1	2	0.25000000838190406	275	1	863652131270560	237504336099404000
Brooklyn optimizer		2	$2.384190338489134 \mathrm{e}-07$	1	5	237504336099404000	47500867219880800
63 qubits		2	$2.384190338892462 \mathrm{e}-07$	1	5	237504336099404000	47500867219880800
		2	$2.3841903383633616 \mathrm{e}-07$	5	1	47500867219880800	237504336099404000
		2	0.25000047869980335	5	1	47500867219880800	237504336099404000
		2	0.25000190832361124	5	1	47500867219880800	237504336099404000
		2	0.000978469877739363	5	1	47500867219880800	237504336099404000
		2	0.0009786505252709077	1375	1	172730426254112	237504336099404000
237504336099404013	1	3	0.0157480323687232	29	1	8189804693082897	237504336099404013
Brooklyn optimizer		3	0.2581787109393368	2059	1	115349361874407	237504336099404013
>60 qubits		3	0.0012207180270707176	1	29	237504336099404013	8189804693082897
		3	0.3129888037256024	29	1	8189804693082897	237504336099404013
		3	0.031251909334969276	1	29	237504336099404013	8189804693082897
		3	0.5178222657414153	2059	1	115349361874407	237504336099404013
		3	0.0023498535156321345	71	29	3345131494357803	8189804693082897
		3	0.6562500151630974	29	1	8189804693082897	237504336099404013
		3	0.0498657245188987	29	1	8189804693082897	237504336099404013
		3	0.00025177095085385107	71	29	3345131494357803	8189804693082897
		3	0.06483697937801486	29	1	8189804693082897	237504336099404013
237504336099404017	1	2	0.015625037253130372	7	1	33929190871343431	237504336099404017
Brooklyn optimizer >60 qubits	1	3	0.2500038146977204	7	1	33929190871343431	237504336099404017
1578582375043360	1	2	0.2500458658905702	193	1	8179183290380108	1578582375043360
99404013						77741	99404013
Washington optimizer			0.01564037799835205	193	1	817918329038010	1578582375043360
						877741	99404013
>80 qubits							
23751578582375043360	1	2	0.0625000298032461	3	1	7917192860791681120	23751578582375043360
9940401323457						3313467107819	9940401323457
Washington optimizer				261	1	91002216790708978	23751578582375043360
						3946131805837	9940401323457

Table 7: Continued

4 Concluding Remarks

Considering the factorization of a large constant is a challenging problem that can be addressed using a modular multiplier based on phases to build block of a modular exponentiation circuit. Such approach is theoretically accurate taking advantages of the well-known phase definition $\left(\varphi_{\mathrm{a}^{j}}=\left(2^{j-1} \bmod N\right) \cdot \frac{2 \cdot \pi}{\mathrm{~N}} \cdot \mathrm{a}\right)$ and particularly useful.

Because of the effectiveness of our models for modular computation that defines compact circuit in both number of qubits and number of gates, our model has permit successful experimentations on physical quantum optimizer for very large integer numbers requiring circuit with more than 100 qubits. The promise of quantum physical optimizers with more than 1000 qubits in 2023 offers interesting perspectives. However, the tests carried out in many fields do not yet conclude about quantum supremacy.

Acknowledgement: Thanks to E. Bourreau for constant support and help in quantum computing research activities.

Funding Statement: The authors received no specific funding for this study.
Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

References

[1] S. Sahoo, A. Kumar Mandal, P. Kanti Samanta, I. Basu and P. Roy, "A critical overview on quantum computing," Journal of Quantum Computing, vol. 2, no. 4, pp. 181-192, 2020.
[2] E. Farhi and J. Goldstone, A Quantum Approximate Optimization Algorithm. Report MIT-CTP/4610. arXiv:1411.4028v1. 2014.
[3] M. Medvidović and G. Carleo, "Classical variational simulation of the quantum approximate optimization algorithm," npj Quantum Inf., vol. 7, no. 1, pp. 101, 2021. https://doi.org/10.1038/s41534-021-00440-z
[4] D. Deutsch and R. Jozsa, "Rapid solutions of problems by quantum computation," in Proc. of the Royal Society of London A, vol. 439, pp. 553-558, 1992. https://doi.org/10.1098/rspa.1992.0167
[5] D. R. Simon, "On the power of quantum computation," in Proc. of the 35th Annual Symp. on Foundations of Computer Science, Santa Fe, pp. 116-123, 1994. https://doi.org/10.1109/SFCS. 1994.365701
[6] P. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," in Proc. of the 35th Annual Symp. on Foundations of Computer Science, Santa Fe, NM, 1994. https://arXiv:quant-ph/9508027
[7] A. Pavlidis and D. Gizopulous, "Fast quantum modular exponentiation architecture for shor's factoring algorithm," Quantum Information and Computation, vol. 14, no. 7-8, pp. 649-682, 2014.
[8] D. E. Knuth, The Art of Computer Programming, Second Edition ed., vol. 2: Semi-numerical Algorithms. Addison-Wesley, 1981. https://www-cs-faculty.stanford.edu/~knuth/taocp.html
[9] T. G. Draper, "Addition on a quantum computer," arXiv preprint quant-ph/0008033. 2000.
[10] S. Beauregard, "Circuit for Shor's algorithm using $2 \mathrm{n}+3$ qubits," Quantum Information and Computation, vol. 3, pp. 175-185, 2003.
[11] T. Granlund and P. L. Montgomery, "Division by invariant integers using multiplication," in Proc. of the ACM SIGPLAN, Conf. on Programming Language Design and Implementation (PLDI), Orlando Florida USA, vol. 29, pp. 61-72, 1994.

