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Abstract: In this paper, hyperbolic geometry is used to constructing new
quantum color codes. We use hyperbolic tessellations and hyperbolic polygons
to obtain them by pairing the edges on compact surfaces. These codes have
minimum distance of at least 4 and the encoding rate near to 1, which are not
mentioned in other literature. Finally, a comparison table with quantum codes
recently proposed by the authors is provided.
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1 Introduction

Channel coding theory is one of the widely used branches of telecommunication, whose purpose
is to send information from the sender to the receiver through a physical channel with disturbance.
Since the foundation of this theory by Claude Shannon in [1], many efforts have been made to
achieve the desired codes and famous codes such as Hamming codes, Golay codes, Reed-Muller codes,
convolutional codes, BCH codes, Reed-Solomon codes, turbo codes, and finally Low Density Parity
Check (LDPC) codes were proposed. While researching and examining classical codes, researchers
also showed interest in quantum codes and in the last few decades, various types of quantum codes
have been presented with different methods in the literature. Since the introduction of the first quantum
error-correcting code by Shor in [2], Calderbank et al. [3] introduced a systematic way for constructing
the QECs from classical error-correcting code. The problem of constructing toric quantum codes has
motivated considerable interest in the literature. This problem was generalized within the context of
surface codes [4] and color codes [5]. The most popular toric code was proposed for the first time
by Kitaev’s [6]. This code defined on a square lattice of size m × m on the torus. Leslie proposed a
new type of sparse CSS quantum error correcting codes based on the homology of hypermaps defined

on an m × m square lattice [7]. The parameters of hypermap-homology codes are
[[(

3
2

)
m2, 2, m

]]
.

These codes are more efficient than Kitaev’s toric codes. This seemed suggests good quantum that is
constructed by using hypergraphs. But there are other surface codes with better parameters than the
[[2m2, 2, m]] toric code. There exist surface codes with parameters [[m2 + 1, 2, m]], called homological
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quantum codes. These codes were introduced by Bombin et al. [4]. Authors in [8] presented a new class
of toric quantum codes with parameters [[m2, 2, m]], where m = 2(l+1), l ≥ 1. In [9] Families of classes
of topological quantum codes from tessellations {4i + 2, 2i + 1}, {4i, 4i}, {8i − 4, 4} and {12i − 6, 3} on
surfaces with genus g ≥ 2 are presented based on hyperbolic tessellations with a specific property.
In [10], Yu et al. presented an explicit construction for all the optimal stabilizer codes [[n, k, 3]] of

distance 3 that saturates the bound n − k ≥ ⌈
log2(3n + 1)

⌉ + εn where εn = 1 if n = 8
4m − 1

3
+ {±1, 2}

or n = 4m+2 − 1
3

− {1, 2, 3} for some integer m ≥ 1 and εn = 0 otherwise. In [11] two new classes

of binary quantum codes with minimum distance of at least three presented by self-complementary
self-dual orientable embeddings of voltage graphs and Paley graphs. Recently, some research on the
construction of quantum color codes has been presented in the literature [12–17]. In these references,
various types of quantum color codes have been reported.

The aim of this paper is to present a systematic construction of families of quantum color codes on
compact surfaces from hyperbolic tessellations and hyperbolic polygons by pairing the edges. For these

quantum codes, the encoding rate is such that
k
n

→ 1 as n → ∞. Moreover, a table of quantum codes

which are different parameters in relation to the families previously presented in [9,12–17], among
others is presented.

This paper is organized as follows. Section 2 is dedicated to basic concepts on quantum bits and
hyperbolic geometry. Section 3 is related to present families of quantum color codes with minimum
distance of at least 4. In Section 4, a table of quantum codes comparison is presented. Finally, Section
5 is devoted to conclusion.

2 Reviews on Quantum Bits and Hyperbolic Geometry

In this section, we review some fundamental notions of quantum mechanics and hyperbolic
geometry used through the paper. See for detailed descriptions, refer to [18,19].

2.1 Quantum Bits
A quantum bit, qubit for short, is a two-level quantum system. Because there should not be any

danger of confusion, we also say that the two-dimensional Hilbert space H2 is a quantum bit. Space
H2 is equipped with a fixed basis B = {|0〉, |1〉} , a so-called computational basis. States |0〉 and |1〉
are also called basis states. A general state of a single quantum bit is a vector as:

|ψ〉 = c0 |0〉 + c1 |1〉, (2.1)

This vector has a unit length, i.e., |c0|2 + |c1|2 = 1. Numbers c0 and c1 are called amplitudes of |0〉
and |1〉, respectively.

2.2 CSS Codes
The idea of constructing CSS (Calderbank-Shor-Steane) codes from graphs embedded on surfaces

has been discussed in a number of papers. See for detailed descriptions e.g., [7,20]. Let X be a compact,
connected, oriented surface (i.e., 2-manifold) with genus g. A tiling of X is defined to be a cellular
embedding of an undirected (simple) graph G = (V , E) in a surface. This embedding defines a set of
faces F , whose each face in this surface, is described by the set of edges on its boundary. This tiling of
surface is denoted M = (V , E, F). Dual graph G is the graph G∗ = (V ∗, E∗) such that:
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(i) One vertex of G∗ inside each face of G,
(ii) For each edge e of G there is an edge e∗ of G∗ between the two vertices of G∗ corresponding to

the two faces of G adjacent to e.

It can easily see that, there is a bijection between the edges of G and the edges of G∗.

The surface code associated with a tiling M = (V , E, F) is the CSS code defined by the matrices HX

and HZ such that HX ∈ M|V |,|E| (Z2) is the vertex-edge incidence matrix of the tiling and HZ ∈ M|F |,|E|(Z2)

is the face-edge incidence matrix of the tiling. Therefore, from (X , G) is constructed a CSS code with
parameters [[n, k, d]]. In this code, n is the number of edges of G, k = 2g and d is the shortest non-
boundary cycle in G or G∗.

2.3 Color Codes
In this section, we recall the quantum color codes introduced by Bombin and Martin-Delgado in

[5,14]. A color code is the CSS code defined by the matrices HX = HZ = H ∈ M|F |,|V |(Z2) such that
Hij = 1 if the face fi includes the vertex vj. Note that V = {vi}|V |

i=1 and F = {fi}|F |
i=1 are the vertices and the

faces of the tiling G respectively. Here, assume that the tiling G = (V , E, F) is trivalent, that is every
vertex has third degree and the faces of the G can be 3-colored so that two faces that share a common
edge do not wear the same color. In the color codes, unlike in the surface codes the qubits are replaced
by vertices instead of the edges and the generators of the stabilizers are the face operators. Given a
face f ∈ F , the face operator Bσ

f is defined as the tensor product σi, i ∈ F with σ = X , Z. Equivalently,

Bσ

f = ⊗i∈Fσi σ = X , Z (2.2)

The color code contains the space defined by the operator Bσ

f as follows:

= {|ψ 〉 :BX
f

∣∣ψ〉 = |ψ 〉, BZ
f |ψ〉 = |ψ〉} (2.3)

The length of the color code associated with G is n = |V |, and its dimension is 4 − 2g. The g
denotes the Euler characteristic of the surface. When the tiling is orientable, the dimension of the color
code is k = 4g, where g is the genus of the surface. The minimum distance of the color code will be the
minimum weight of a vector x in C\C⊥. The code Ker H is denoted by C.

In this paper n is the code length, and dmin is the minimum distance of the code.

2.4 Hyperbolic Geometry
In order to calculate the parameters of quantum color codes, we present some basic concepts of

hyperbolic geometry. More information on hyperbolic geometry and shrunk lattices may be found in
Refs. [5,9,12,17,19].

A hyperbolic polygon P′ with p′ edges, or a p′-gon, is a convex closed set consisting of p′ hyperbolic
geodesic segments. A p′-gon whose edges have the same length and the internal angles are equal, is
called a regular p′-gon. A regular tessellation of the Euclidean or hyperbolic plane is a covering of the
whole plane by regular polygons, all with the same number of edges, without superposition of such
polygons, meeting completely only on edges or vertices. We denote a regular tessellation by {p, q},
where q regular polygons with p edges meet in each vertex. In particular, p = q the tessellation is said
to be self-dual.

Every possible tiling {p, q} of the polygon P′ satisfies the following equation:

μ(P′) = nf μ(P) (2.4)
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where the hyperbolic tessellations must satisfy the constraint (p−2)(q−2) > 4. In (2.4), μ(P′) denotes
the area of the polygon P′ associated with the fundamental region of the tessellation {p′, q′}, μ(P)

denotes the area of the polygon associated with the fundamental region of the tessellation {p, q}, and
nf is a positive integer which denotes the number of faces of the tessellation {p, q}. From the Gauss-
Bonnet theorem, the area of a hyperbolic polygon is given by, [9,13],

μ(P′) = 4π(g − 1) (2.5)

where g is the genus of the surface.

From Eq. (2.5) and the Gauss-Bonnet theorem, Eq. (2.4) may be written as:

4π (g − 1) = nf

[
(p − 2) π − 2pπ

q

]
. (2.6)

Hence, the number of faces, nf , associated with the tessellation {p, q} of P′ is given by

nf = 4q(g − 1)

pq − 2p − 2q
(2.7)

For these quantum color codes, the length of the code is n = |V | = nf

p
q

edges, or qubits.

For a fundamental polygon of {4g, 4g}, the hyperbolic distance dh between paired sides is calculated
as follows, [9],

dh = 2a = 2 arccos h
[

cos(π/4g)

sin(π/4g)

]
, (2.8)

and the edge-length of the tessellation {p, q} is given by, [9],

l (p, q) = arccos h
[

cos2 (π/q) + cos (2π/p)

sin2
(π/q)

]
, (2.9)

Given a regular polygon of {p, q}, the diameter of its circumscribed circle and an upper bound for
an edge of the shrunk lattice are written, respectively as, [12],

D (p, q) = 2 arccos h

⎡
⎣cos

(
π

p

)
cos

(
π

q

)
sin

(
π

p

)
sin

(
π

q

)
⎤
⎦ , (2.10)

and

L (p, q) = l(p, q) + D (p, q) (2.11)

Also, a lower bound for the number of the reduced network edges in a non-trivial homology cycle
belonging to a shrunk lattice is given as follows, [12],

ne >
dh

L (p, q)
, (2.12)

Then, the minimum distance of the code is calculated as follows, [12],

dmin = 2
⌈

dh

L (p, q)

⌉
. (2.13)

In fact, dmin represents the minimum length between paths with non-trivial homology, considering
the shrunk lattice.
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Using Fig. 1 and by tiling the fundamental polygon P′ of the {8, 8} tessellation with the funda-
mental polygon P of the {8, 3} tessellation, the [[16, 8, 4]] code is obtained. In this tessellation the value
of nf is equal to 6.

Figure 1: [[16, 8, 4]] code defined by {8, 3} tessellation on 8-gon (g = 2) surface

3 New Families of Quantum Color Codes

In this section, we obtain new families of quantum color codes based on the identification of
compact surfaces by hyperbolic tessellations.

3.1 Quantum Color Codes from the Tessellation {9 + 3m, 3}
Our goal here is to constructing quantum color codes resulting from the method described in

Section 2. Taking q = 3 and putting this value in (2.7) for 41 − torus, we have:

nf = 480
p − 6

, p > 6 (3.1)

By tiling the fundamental polygon P′ of the {164, 164} tessellation with the fundamental polygon
P of the {18, 3} tessellation, using (2.9) and (2.10), we have

l (18, 3) = arccos h
[

cos2 (π/3) + cos (2π/18)

sin2
(π/3)

]
≈ 1.04,

and

D (18, 3) = 2 arccos h

[
cos

(
π

18

)
cos

(
π

3

)
sin

(
π

18

)
sin

(
π

3

)
]

≈ 3.71,

Then, by (2.11),

L (18, 3) = l(18, 3) + D (18, 3) ≈ 4.75,
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Also, by using (2.13) we have:

dmin = 2
⌈

9.29
4.75

⌉
≈ 4,

Therefore, the quantum color code with parameters [[240, 164, 4]] is obtained.

Now by tiling the fundamental polygon P′ of the {4g, 4g} tessellation with the corresponding edge-
pairings, the quantum color codes will be constructed as follows.

According to the color code above, for the minimum distance dmin = 4 there were 40 faces of the
tessellation. Therefore, by (2.7) with nf = 40 and q = 3 we have:

nf = 12(g − 1)

p − 6
, p > 6 (3.2)

On the other hand, because the length of the code is equal to nf (p/q). Hence, the quantum color
codes with parameters [[40m + 120, 40m + 44, 4]] for m = 3, 5, . . . , 230 − 1 are obtained.

3.2 Quantum Color Codes from the Tessellation {6 + 34m, 3}
In this section, another class of quantum color codes is presented using the approach proposed in

Section 2. For this purpose, taking q = 3 for 18 − torus, we have:

nf = 204
p − 6

, p > 6 (3.3)

By tiling the fundamental polygon P′ of the {72, 72} tessellation with the fundamental polygon P
of the {40, 3} tessellation, using (2.9) and (2.10), we have

l (40, 3) = arccos h
[

cos2 (π/3) + cos (2π/40)

sin2
(π/3)

]
≈ 1.19,

and

D (40, 3) = 2 arccos h

[
cos

(
π

40

)
cos

(
π

3

)
sin

(
π

40

)
sin

(
π

3

)
]

≈ 5.37,

Then, by (2.11),

L (40, 3) = l(40, 3) + D (40, 3) ≈ 6.56,

Therefore, the minimum distance of the code according to (2.13) will be as follows

dmin = 2
⌈

7.61
6.65

⌉
≈ 4,

Hence, the quantum color code with parameters [[80, 72, 4]] is obtained.

Now by tiling the fundamental polygon P′ of the {4g, 4g} tessellation with the corresponding edge-
pairings, for the minimum distance dmin = 4 there were 6 faces of the tessellation. By using (2.7) with
nf = 6 and q = 3 we have

nf = 12(g − 1)

p − 6
, p > 6 (3.4)

Thus, the quantum color codes with parameters [[68m + 12, 68m + 4, 4]] for m ≥ 1 are obtained.
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3.3 Quantum Color Codes from the Tessellation {40, 3}
In this section, new quantum color codes with minimum distances dmin = 4, 6, 8 from the

tessellation {40, 3} using the approach proposed in Section 2 are presented. These quantum color codes
by considering nf = 6m and g = 17m+1 for m = 1, 2, . . . , 20000 are constructed, which are as follows

• [[80m, 68m + 4, 4]] for m = 1, 2, . . . , 16
• [[80m, 68m + 4, 6]] for m = 17, 18, . . . , 437
• [[80m, 68m + 4, 8]] for m = 438, 439, . . . , 20000

From this class, the quantum color codes with minimum distance dmin ≥ 10 are also constructed.

4 Table of Quantum Codes Comparison

In Table 1, the quantum color codes constructed in this paper are compared with the quantum
codes constructed in other references. In this table, the first column shows the value of the length
of quantum code. The second column shows the value of k. The third column shows the minimum
distance of code. The fourth column shows a list of the quantum codes. All the new quantum color

codes are labeled with l. The length of quantum codes having the highest rate
k
n

is labeled with u.

Table 1: Comparison of constructed codes with known codes

n k dmin [[n, k, dmin]]

2r2

(3/2) r2

r2

r2 + 1
u8 + 4r
u120 + 40r
u12 + 68r
u80r
u80r
u80r

2
2
2
2
4r
44 + 40r
4 + 68r
4 + 68r
4 + 68r
4 + 68r

r
r
r
r
4
4
4
4
6
8

[[2r2, 2, r]], r ≥ 3 [\![6]\!]
[[(3/2) r2, 2, r]], r = 2m (m ≥ 3) [\![7]\!]
[[r2, 2, r]], r = 2m (m ≥ 2) [\![8]\!]
[[r2 + 1, 2, r]], r = 2m + 1 (m ≥ 1) [\![4]\!]
[[8 + 4r, 4r, 4]], r ≥ 2 [\![12]\!]
l[[120 + 40r, 44 + 40r, 4]], r = 3, 5, . . . , 230 − 1
l[[12 + 68r, 4 + 68r, 4]], r ≥ 1
l[[80r, 4 + 68r, 4]], r = 1, 2, . . . , 16
l[[80r, 4 + 68r, 6]], r = 17, 18, . . . , 437
l[[80r, 4 + 68r, 8]], r = 438, 439, . . . , 20000

5 Conclusion

In this paper we have presented a hyperbolic geometry approach to constructing new quantum
color codes, based on the identification of compact surfaces by hyperbolic tessellations. We obtained
some families of quantum color codes with minimum distances 4, 6 and 8 by new tessellations. For

these quantum color codes the encoding rate is such that
k
n

→ 1 as n → ∞. For future study, it would

be interesting to investigate the algebraic structure of quantum color codes and their relation to other
quantum codes.
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