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Abstract: In this paper, focus has been given to design and implement
signed binary subtraction in quantum logic. Since the type of operand may
be positive or negative, therefore a novel algorithm has been developed to
detect the type of operand and as per the selection of the type of operands,
separate design techniques have been developed to make the circuit compact
and work very efficiently. Two separate methods have been shown in the paper
to perform the signed subtraction. The results show promising for the second
method in respect of ancillary input count and garbage output count but at
the cost of quantum cost.
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1 Introduction

From decades ago, computer system works in binary arithmetic. The binary arithmetic, in the
computing system, has been implemented using standard CMOS, Pass Transistor and Bi-CMOS
technologies. In case of standard CMOS based implementation, speed improvement can not be
achieved. After that FinFET has been introduced [1] for faster operation and it provides better sub-
threshold swing. FinFET also provides better gain for the amplifiers. But in VLSI technology, the
optimization of speed and power is a major challenge because to improve speed, power consumption
must be increased. Therefore, some alternate technology to solve this issue has been thought of by the
scientists. Reversible logic is considered to be a good solution to this issue because both speed and
power consumption can be optimized in reversible logic system [2–5].

In [2], Landauer has explained the heat generation in computational process. In [3–5], Bennett has
described the logical process of reversibility. In the year 1980, Toffoli [6] has proposed reversible gates
for computation using Boolean logic. In the year 1981, Fredkin et al. [7] described the conservative
logic in the reversible system. In 1985, Peres [8] has introduced a new reversible gate to synthesize
Boolean functions. After few years, Deutsch [9], in 1985, has described the basic principles of
quantum theory. In the year 2000, different quantum computing algorithms have been described by
Nielsen et al. [10]. After that, several synthesis techniques for implementing Boolean functions in
reversible logic have been reported in [11–18]. In [19], Moraga has described the use of double gates in
reversible logic. The works in [12–14] show the arithmetic circuits implementation. In [12], a quantum
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ripple carry adder design has been reported. In [13–15], Thapliyal have proposed binary subtraction
methods. But those methods are for unsigned binary number system.

In this paper, we propose another subtraction technique but the subtraction technique is for signed
number system. The technique is new to the best of the knowledge of the authors and thus beyond the
scope of comparison with other reported works.

2 Brief Overview of Basic Quantum Gates used for Arithmetic Operations

Basic quantum gates are associated with qubit operation. As defined in [9], Qubit is basically
quantum state which is analogous to bit in binary number system. In binary number system, bit has
two values logic 0 and logic 1 but in qubit, specific value may not be assigned since quantum states are
probabilistic. Qubit can be written as |Q >= a| 0 > +b|1 > where | > is called the Dirac notation and a
and b are complex numbers and |a|2 +|b|2 = 1 which means that |0 > may appear with the probability

|a|2 and |1 > may appear with the probability |b|2. In matrix form, |0 >=
[

1
0

]
and |1 >=

[
0
1

]
.

Therefore, |Q > can be written as |Q >= a| 0 > +b|1 >=
[

a
b

]
. The quantum gates which can process

the information must have some characteristics matrix. The characteristics matrix must be unitary [9]
by nature. A matrix (G) is called unitary if GG† = I where, G† is the conjugate transpose of the matrix G

[9]. For example, if a gate G has the characteristics matrix G =
[

a + ib c + id
e + if k + il

]
where, i = √−1, then

its conjugate transpose is G† =
[

a − ib e − if
c − id k − il

]
. Then, GG† =

[
a + ib c + id
e + if k + il

] [
a − ib e − if
c − id k − il

]
=

[
a2 + b2 + c2 + d2 (a + ib) (e − if ) + (c + id) (k − il)

(a − ib) (e + if ) + (c − id) (k + il) e2 + f 2 + k2 + l2

]
and if it is equal to the iden-

tity matrix I =
[

1 0
0 1

]
then, a2+b2+c2+d2 = 1, e2+f 2+k2+l2 = 1, (a + ib) (e − if )+(c + id) (k − il) =

0 and (a − ib) (e + if ) + (c − id) (k + il) = 0 which are the conditions for the matrix G to be unitary.

Fig. 1 shows the basic quantum gates. The solid circle notation indicates control input and
the circled plus notation indicates the target input. The first gate is NOT or Feynman gate. It has

the characteristics matrix NOT =
[

0 1
1 0

]
. Here for each gate, the column index indicates input

combination and the row index indicates output combination. The second gate is CNOT or Controlled

NOT gate. It has the characteristics matrix CNOT =

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⎤
⎥⎥⎦. The third gate is Toffoli

gate. A Toffoli gate may have more number of inputs. Here in Fig. 1, the characteristics matrix
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for 3 input Toffoli gate is Toffoli =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. The fourth gate is Peres gate. To

compute its characteristics matrix, at first matrix representation at the output side must be done.
It is basically a CNOT gate combining with no operation Identity gate. So the matrix operation

at the output side is the Tensor product of the CNOT and Identity matrix i.e.,

⎡
⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⎤
⎥⎥⎦ ⊗

[
1 0
0 1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Next the matrix is multiplied with the Toffoli matrix i.e.,

Peres =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The next gate is double Peres gate which is the combination of two Peres gates. The next gate is the
Fredkin gate which is basically a controlled swap gate. The characteristics matrix of the Fredkin gate

is Fredkin =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. To compute output, gate matrices are multiplied from the

output side to the input side. Now few definitions related to reversible logic are important to mention
such as ancillary input, garbage output and quantum cost.
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Figure 1: Basic quantum gates

Ancillary Input: It is defined as the extra constant input other than the primary inputs to evaluate
the logic function.

Garbage Output: It is defined as the unused output other than the primary outputs to maintain
logical reversibility. Garbage outputs are redundant outputs but they must be generated. If pi is the
number of primary inputs, ci is the number of ancillary inputs and po is the number of primary outputs
then the number of garbage outputs go = pi + ci − po.

Quantum Cost: It is the estimation of computational complexity of the circuit. It is defined as the
number of quantum gates involved in the circuit implementation.

Fig. 2 shows a quantum circuit which represents logical OR operation. The first two gates combine
to form a single Peres gate. As per the Boolean logic, the output at the third line is equal to ab⊕a⊕b =
a ⊕ ab = ab + a

(
ab

)
= ab + a

(
a + b

)
= ab + a = a (1 + b) + ab = a + b (a + a) = a + b which

indicates an OR operation. Here an extra input (0) has been taken which is the ancillary input. The
number of garbage outputs is 2. The circuit shown in Fig. 2 can be decomposed into quantum gates
as shown in Fig. 3 using the decomposition technique described in [8].

Figure 2: A quantum circuit representing OR operation

Figure 3: Decomposition of OR gate into unitary quantum gates

In Fig. 3, basically single Peres gate has been decomposed into unitary quantum gates based on
the technique shown in [8]. Here few new quantum gates have been used V and V+ gates. V and V+
gates are represented as follows.

V = 1 + i
2

[
1 −i
−i 1

]
(1)
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V+ = 1 − i
2

[
1 i
i 1

]
(2)

where i = √−1. V and V+ gates are the square root NOT gate i.e., V 2 = V+2 = NOT . The proof is
given below.

Lemma-1: V2 = V+2 = NOT

Proof: Since, V = 1 + i
2

[
1 −i
−i 1

]
then V 2 =

(
1 + i

2

)2

×
[

1 −i
−i 1

]2

= i
2

×
[

1 −i
−i 1

]
×

[
1 −i
−i 1

]
= i

2
×

[
0 −2i

−2i 0

]
=

[
0 1
1 0

]
= NOT .

Similarly, Since, V+ = 1 − i
2

[
1 i
i 1

]
then V+2 =

(
1 − i

2

)2

×
[

1 i
i 1

]2

= − i
2

×
[

1 i
i 1

]
×

[
1 i
i 1

]
=

− i
2

×
[

0 2i
2i 0

]
=

[
0 1
1 0

]
= NOT . (Thus proved).

Similar proof can be done for controlled V and V+ gates i.e., CV 2 = CV+2 = CNOT . The
controlled V+ gate and the adjacent CNOT gate forms another quantum gate and so the combination
is considered to be a single quantum gate as indicated in Fig. 3. This statement can also be proved as
shown below.

Lemma-2: One V or V+ gate and one NOT gate can be combined to generate a single quantum gate

Proof: We know that V = 1 + i
2

[
1 −i
−i 1

]
and NOT =

[
0 1
1 0

]
. Thus, NOT × V =

[
0 1
1 0

]
×

1 + i
2

[
1 −i
−i 1

]
=

[
0 1
1 0

]
×

⎡
⎢⎣

1 + i
2

1 − i
2

1 − i
2

1 + i
2

⎤
⎥⎦ =

⎡
⎢⎣

1 − i
2

1 + i
2

1 + i
2

1 − i
2

⎤
⎥⎦. Clearly, it is a unitary matrix and

hence represents a quantum gate.

Similarly, V+ = 1 − i
2

[
1 i
i 1

]
. Thus, NOT × V+ =

[
0 1
1 0

]
× 1 − i

2

[
1 i
i 1

]
=

[
0 1
1 0

]
×

⎡
⎢⎣

1 − i
2

1 + i
2

1 + i
2

1 − i
2

⎤
⎥⎦ =

⎡
⎢⎣

1 + i
2

1 − i
2

1 − i
2

1 + i
2

⎤
⎥⎦. Now let G =

⎡
⎢⎣

1 + i
2

1 − i
2

1 − i
2

1 + i
2

⎤
⎥⎦ .Thus, G† =

⎡
⎢⎣

1 − i
2

1 + i
2

1 + i
2

1 − i
2

⎤
⎥⎦.

Therefore, GG† =
⎡
⎢⎣

1 + i
2

1 − i
2

1 − i
2

1 + i
2

⎤
⎥⎦

⎡
⎢⎣

1 − i
2

1 + i
2

1 + i
2

1 − i
2

⎤
⎥⎦ =

[
1 0
0 1

]
= I . Hence the gate represents a

quantum gate. (Thus proved).

Therefore there are 4 unitary gates and so the quantum cost is 4.
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3 Mathematical Description of Signed Subtraction

Consider numbers A and B with extra sign bits (SignA and SignB). A and B can be represented
as follows.

A =
∑n−1

i=0
ai2i (3)

B =
∑n−1

i=0
bi2i (4)

Similarly, (−A) and (−B) can be represented in 2’s complement form as follows.

− A = 2n − A (5)

− B = 2n − B (6)

The following table (Table 1) shows the subtraction operation with sign bits. Here SignA and
SignB are the sign bits of the operand A and B.

Table 1: Signed binary operation

SignA (0 indicates positive and
1 indicates negative)

SignB (0 indicates positive and 1
indicates negative)

Operation

0 0 A − B
0 1 A−(2n − B) = (A + B)−2n,

(A+B) and discard carry
1 0 (2n −A)−B = 2n − (A+B),

2’s complement of (A + B)
1 1 (2n − A)−(2n − B) = B−A,

2’s complement of (A − B)

4 Reversible Circuit Implementation for Signed Binary Subtraction

The signed subtraction technique shown in Table 1 has been verified using VHDL programming.
The detailed code is shown in Fig. 4 and the verified output is shown in Fig. 5. The first two lines
of the code are basically library declaration. Next part is the entity declaration which declares the
input and the output signals. In the architecture part, there are two processes as shown in Fig. 4;
one for addition or subtraction based on the signals (SignA and SignB); and the second for the 2’s
complement operation based on the sign signals (SignA and SignB). In the first process of the code
shown in Fig. 4, addition or subtraction has been performed based on the signs of the two operands
(SignA and SignB). In the second process, the 2’s complement operation has been performed. It is a
mixed style of the VHDL code because both dataflow and behavioral approaches have been used. For
addition or 2’s complement operation, Boolean expressions, for half and full adder, have been used.
As shown in Table 1, the 2’s complement operation has been performed based on the signal (SignA).
Though the circuit has been implemented using reversible logic still VHDL implementation has been
shown here to confirm the correctness of the procedure so that accurate circuit can be implemented in
reversible logic.
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Figure 4: Detailed VHDL code for binary subtraction (for 4 bit)
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Figure 5: Waveform using Modelsim simulator for verification of the binary subtraction algorithm
(for 4 bits)

The implementation scheme has two major parts: (i) addition or subtraction part and (ii) 2’s
complement part. The first part (addition or subtraction) has been implemented using two types of
addition methods. Figs. 6 and 7 show the two methods. Both the methods are generic and can be
extended for any bit length. Like Fig. 5, “signa” and “signb” are the two signals which indicate the
sign bits for the two operands as shown in Figs. 6 and 7. The outputs “Dif0” to “Dif3” are the results
(here 4 bit operation has been shown). The signal “Sign” is the sign bit for the output. For the reversible
circuit implementation, shown in Fig. 6, double Peres gates have been used for addition. For the circuit,
shown in Fig. 7, the addition technique, as shown in [12], has been used.

Figure 6: Reversible circuit for signed binary subtraction (4 bit) (First Method)
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Figure 7: Reversible circuit for signed binary subtraction (4 bit) (Second Method)

5 Result Analysis

Ancillary Input Count:

First Method: Using Fig. 6, a generalized circuit for n-bit subtraction can be designed. The first
part of the circuit is the addition or subtraction part. For n-bit operation, n number of ancillary inputs
is required for addition or subtraction. The second part is for 2’s complement operation. It also requires
n number of ancillary inputs. Therefore total (n + n) = 2n number of ancillary inputs is required.

Second Method: In the second method, the first part (addition or subtraction) is replaced by a new
adder circuit proposed in [12]. The adder circuit drastically reduces the number of ancillary inputs.
Only 1 ancillary input is required for the addition. Therefore total (n + 1) number of ancillary inputs
is required.

Garbage Output Count:

First Method: Number of ancillary inputs is 2n. Number of primary inputs is 2n + 2. Number of
primary outputs is n + 1. Therefore, the number of garbage outputs is 2n + 2 + 2n − (n + 1) = 3n + 1.

Second Method: In the second method, 2n + 2 + (n + 1) − (n + 1) = 2n + 2 number of garbage
outputs is required.

Quantum Cost Count:

First Method: For arithmetic operation, here, single Peres and double Peres gates have been used.
Decomposition of Peres gate and double Peres gate into quantum gates is shown in Figs. 8 and 9. The
decomposition technique of double Peres gate, shown in Fig. 9, follows the technique in [19] proposed
by Moraga. For single Peres gate, the quantum cost is 4 and for double Peres gate, the quantum cost
is 6 as shown in Figs. 8 and 9. For the design of half adder, single Peres gates are used which can
be decomposed into quantum gates as shown in Fig. 8. For the full adder circuit implementation,
double Peres gates are used as shown in Fig. 9. At first, the double Peres gate can be decomposed into
quantum gates as shown in the upper part of Fig. 9. The circuit can be further optimized by eliminating
redundant gates as shown in the lower part of Fig. 9. In Fig. 9, the combination of one V gate and one
V+ gate, indicated by a box, is an identity gate and thus the combination is a redundant gate. This can
be proved as given below.
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Figure 8: Decomposition of Peres gate into quantum gates

Lemma-3: One V gate and one V+ gate can be combined to generate an identity gate

Proof: We know that V = 1 + i
2

[
1 −i
−i 1

]
and V+ = 1 − i

2

[
1 i
i 1

]
. Identity gate, I =

[
1 0
0 1

]
.

Thus, V × V+ = 1 + i
2

[
1 −i
−i 1

]
× 1 − i

2

[
1 i
i 1

]
= 1

2
×

[
2 0
0 2

]
=

[
1 0
0 1

]
= I . (Thus proved).

Similarly, it can be proved that, CV × CV+ = I . Since an identity gate has zero quantum cost so
the two gates indicated in the box in Fig. 9 can be eliminated.

In the circuit shown in Fig. 6, in general 2n CNOT gates have been used for control operation.
Total n number of double Peres gates has been used for addition or subtraction purpose. Total n
number of single Peres gates has been used for 2’s complement operation. Therefore, the quantum
cost is 2 + 2n + 6n + 4n = 12n + 2. For 4 bit operation, the quantum cost is 12 × 4 + 2 = 50.

Second Method: For the second method, the adder proposed in [12] has been used. The single
bit adder circuit can be decomposed into several quantum gates shown in Fig. 10. The two circuits
indicated in square boxes in Fig. 10 are two quantum gates because they are unitary matrices. It can
be proved in the following Lemma.

Figure 9: Decomposition of double Peres gate into quantum gates
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Figure 10: Decomposition of the new adder circuit into quantum gates

Lemma-4: The combination of one NOT and one V gate forms a unitary gate

Proof: As we know that V = 1 + i
2

[
1 −i
−i 1

]
and NOT =

[
0 1
1 0

]
. Therefore, V × NOT =

1 + i
2

[
1 −i
−i 1

]
×

[
0 1
1 0

]
=

⎡
⎢⎣

1 + i
2

1 − i
2

1 − i
2

1 + i
2

⎤
⎥⎦ ×

[
0 1
1 0

]
=

⎡
⎢⎣

1 − i
2

1 + i
2

1 + i
2

1 − i
2

⎤
⎥⎦ which can be proved to

be a unitary gate. Similarly, NOT × V =
[

0 1
1 0

]
× 1 + i

2

[
1 −i
−i 1

]
=

[
0 1
1 0

]
×

⎡
⎢⎣

1 + i
2

1 − i
2

1 − i
2

1 + i
2

⎤
⎥⎦ =

⎡
⎢⎣

1 − i
2

1 + i
2

1 + i
2

1 − i
2

⎤
⎥⎦ = V × NOT . It can be proved that the output matrix is a unitary matrix, thus, it is a

quantum gate. (Thus proved).

One single bit adder circuit has the quantum cost 13 as counted from Fig. 9. Thus for n-bit
operation, the total quantum cost is 2 + 2n + 13n + 4n = 19n + 2. For 4 bit operation, the quantum
cost is 19 × 4 + 2 = 78.

As shown in Table 2, for the second method, the ancillary input count is reduced by almost
n − 1

2n
×

100 ∼= 50%, the garbage output count is reduced by almost
n − 1
3n + 1

×100 ∼= 33% and the quantum cost

is increased by almost
7n

19n + 2
× 100 ∼= 36%. In [13–15], subtractor design schemes have been shown

but the designs are for unsigned numbers whereas in this paper, the designs for signed numbers have
been focused. Therefore, the results in [13–15] are beyond the scope of comparison with the achieved
results of this paper.
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Table 2: Parametric comparison of two signed subtraction methods

Parameters First method Second method

Ancillary input count 2n n + 1
Garbage output count 3n + 1 2n + 2
Quantum cost count 12n + 2 19n + 2

6 Conclusion

A novel signed subtraction technique was shown in the paper. The technique is unique in the sense
it used four types of operands (positive–positive, positive–negative, negative–positive and negative–
negative) and for the four types of operands, the algorithm worked efficiently. The algorithm was
verified using HDL programming and then it was implemented in reversible logic. Here two different
addition techniques were shown for the subtraction. Finally the reversible circuit was implemented
using the quantum gates. It could be concluded that the second method was better in respect of
fabrication cost whereas the first method was better in respect of the computational complexity.

7 Future Scope of the Research

In future, the work can be extended to the design optimization of other arithmetic circuits like,
signed multiplier, squarer, exponential computation etc. using quantum gates.
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