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ABSTRACT

The paper presents a novel quantum method for addressing two fundamental routing problems: the Traveling
Salesman Problem (TSP) and the Vehicle Routing Problem (VRP), both central to routing challenges. The proposed
method, named the Indirect Quantum Approximate Optimization Algorithm (IQAOA), leverages an indirect
solution representation using ranking. Our contribution focuses on two main areas: 1) the indirect representation
of solutions, and 2) the integration of this representation into an extended version of QAOA, called IQAOA. This
approach offers an alternative to QAOA and includes the following components: 1) a quantum parameterized
circuit designed to simulate string vectors on a quantum processor, 2) a classical meta-optimization method
executed on a classical computer, and 3) the computation of the average cost for each string vector, achieved
through a well-established algorithm from the operations research community tailored to the specific problem.
IQAOA provides an efficient means to address quantum optimization problems by combining quantum and
classical computation methods. Its primary advantage lies in deriving a quantum circuit that requires significantly
fewer gates, making it suitable for execution on current noisy quantum computing platforms. Through numerical
experiments employing IQAOA, we successfully solved instances of the 10-customer Traveling Salesman Problem
(TSP) using the IBM simulator. To our knowledge, this is the largest application of a QAOA-based approach to
solving the TSP. Additionally, IQAOA enables the resolution of the Vehicle Routing Problem (VRP) by leveraging
the Split algorithm, which transforms a TSP permutation into a corresponding VRP solution.
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1 Introduction

Quantum optimization emerges as a promising and innovative discipline with substantial potential
implications in the domain of operations research. This burgeoning frontier affords the opportunity
to address minimization through quantum metaheuristics, presenting a notably efficacious approach
that circumvents the prevalent issue encountered by conventional local search algorithms—namely,
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the propensity to become trapped in local minima. The effectiveness of methods based on Simulated
Annealing, a common technique in the field of operations research, relies on gradually reducing
a parameter ‘t’ to zero, which aids in overcoming potential energy barriers. Different metaheuris-
tic approaches employ diverse strategies to prevent premature convergence to local minima while
maintaining robust capabilities for thorough exploration of the search space. Among these various
metaheuristic techniques, which encompass a wide range of methods like memetic algorithms, GRASP
(Greedy Randomized Adaptive Search Procedure), and VNS (Variable Neighborhood Search), the
Simulated Annealing method stands out. Together, these metaheuristic techniques expand the toolkit
available for addressing optimization challenges in the ever-evolving field of operations research.

Viewed through the lens of quantum mechanics, quantum fluctuations exhibit similarities to
thermal fluctuations. What distinguishes quantum mechanics from classical methodologies is the
capacity of waves to penetrate potential energy barriers—a concept elucidated by Martoňák et al. in
2004 [1]. In recent times, the quantum physics community has introduced several quantum metaheuris-
tics, culminating in a family of quantum approximate algorithms. Among these, the Adiabatic-based
Algorithms stand out, offering an approximate resolution to the Schrödinger equation formulated by
Schrödinger in 1926 [2]. Recently, Reference [3] introduced a new class of algorithms centered around
alternating between two distinct sets of operators: the Hamiltonian and the mixing Hamiltonian. This
alternating process gives rise to Quantum Approximate Optimization Algorithms, commonly known
as QAOA. These algorithms represent a hybrid approach wherein the classical computer explores
the search space to optimize a set of parameters, while a quantum device handles the evaluation of
probability distributions. It’s worth noting that QAOA doesn’t account for local search considerations
but offers a comprehensive exploration of the entire search space. This ground-breaking work was
further expanded upon in the notable publication by Hadfield in 2018 [4]. In their research, they
introduced a new ansatz specifically designed to facilitate the exploration of the feasible subspace,
ensuring inherent satisfaction of hard constraints. This approach bears resemblance to classical
methodologies in the Operations Research (OR) community, involving a meticulous definition of
classical operations, such as qubit permutations within the qubit-string used for solution modeling.

The TSP received a lot of attention for decades since it is the corner stone of all routing
problems since it is emblematic of a broad category of optimization problems in classical compu-
tation, specifically within the realm of combinatorial optimization. Analysis of recent publications
in quantum resolution of TSP permit to clarify the difference between the theoretical capabilities
of quantum computing and the practical realities of applying these technologies to classical TSP
optimization. Numerous quantum optimization algorithms have been investigated for the TSP: the
recent publication of [5] propose a state-of-the-art of all QAOA based approaches investigated in
gate-bases quantum computers. They provide numerical experiments with different QAOA mixer for
5 nodes TSP. Note that not only QAOA received attention, but also Grover since [6] introduces a
quantum algorithm for the Traveling Salesman Problem (TSP) based on the Grover Adaptive Search
(GAS). The method has been successfully applied to the resolution of one seven-node TSP using the
Qiskit library. Lately, in 2024, the last investigations permit to solving 6 nodes TSP. For example,
Reference [7] propose a two-step quantum search algorithm with two distinct operators for preparing
the initial state and solving TSP. The algorithm first amplifies an equal superposition state of all
feasible solutions of TSP and subsequently amplifies the optimal solution states among these feasible
solution states. Larger instances can be addressed only by decomposition methods due to the large
number of qubit required or due to the large number of gates. Reference [8] elaborate combination of
two decomposition methods, namely graph shrinking and circuit cutting. Graph shrinking reduces the
problem size before encoding into QAOA circuits, while circuit cutting decomposes quantum circuits
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into fragments for execution on medium-scale quantum computers. For a TSP with seven cities, the
algorithm retrieves the optimum solution by consecutively running two 7-qubit QAOA circuits.

2 Indirect Quantum Approximate Optimization Algorithms (IQAOA)
2.1 Mapping Function in OR Field

A significant challenge in Operations Research (OR) lies in developing consistent models that
exclusively represent solutions. The focused exploration of feasible subspaces has garnered attention
within the Operations Research community for numerous years, proving successful in various research
domains and yielding highly efficient metaheuristics. For instance, in Job-Shop Scheduling, a prevalent
indirect representation relies on the Bierwith vector [9], which can be efficiently transformed (in O(n))
into an oriented disjunctive graph, thereby modeling a job-shop solution. Consequently, a Bierwith’s
vector serves as the model for a solution in this context. Regarding the Vehicle Routing Problem (VRP),
a widely recognized representation involves the giant trip, which, via the Split Algorithm [10,11], can be
transformed into a VRP solution. The Split algorithm delineates a mapping from the set of giant trips
within a Traveling Salesman Problem (TSP) to VRP solutions, with metaheuristic-based approaches
adeptly manipulating the set of giant trips exclusively and efficiently. The TSP (Traveling Salesman
Problem) received a lot of attention of the OR (Operational Research) community since it is the seminal
problem in routing introduced first by Danzig et al. in 1959 [12]. All classical OR methods are based
on partial search space enumeration, and the partial enumeration is due to the large search space.
Cheng et al. in 1996 [13] made a full analysis of non-string coding in the middle of 90s and defined
indirect approach and decoding mechanisms in the global context of constraint optimization. Different
mappings are represented on the Fig. 1.

Figure 1: Mapping from coding to solution space

In summary, it is pertinent to highlight that many Operations Research (OR) problems find
effective solutions through the utilization of indirect solution representations. The core concept
involves exploring not the entire array of solutions, but rather a set of representations (such as
the set of giant tours for VRP or the set of Bierwith’s vectors for Job-Shop, for instance). These
objects, employed for indirect solution representation, typically take the form of vectors, enabling
the formulation of mapping functions that operate within O(n) complexity. The primary advantage of
employing these indirect representations lies in the metaheuristic’s exploration of a smaller-sized set
of such representations (e.g., Bierwith’s vectors), in contrast to the larger set of solutions. This shift
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in focus redistributes the complexity of problem modeling away from the metaheuristic and onto the
mapping function, resulting in a more manageable computational load for the metaheuristic.

2.2 Indirect Representation of Solutions: Proposition for Permutations

Within combinatorics, the Lehmer code offers an alternate means of encoding every possible
permutation within a sequence composed of n numbers. This code serves as an exemplary system
for enumerating permutations and stands as a prime illustration of an inversion table. The term
“Lehmer code” honors Lehmer [14], although its existence traces back to at least 1888 [15]. Numerous
methods exist for establishing this direct mapping, with the Lehmer code, also known as the inversion
table, representing the most classical among them. An algorithmic depiction of this mapping was
initially introduced in [16]. Indirect representations can leverage the one-to-one relationship between
permutations and the so-called subexceedant functions, consequently associating a single integer
number with the rank of the permutation.

Assume f is a bijection that associate each permutation over the interval [n] = {0, 1, . . . , n − 1}:
f : [n] → [n] (1)

f is the subexceedant [15,17] function defined by:

f (i) is the number of indices j < i such that σj < σi

Obviously the following remarks holds (subexceedant function):

∀i = 1, . . . n, 0 ≤ f (i) ≤ i (2)

This property justifies the term ‘subsequent function’ a term that can be found, for example,
in [17].

Moreover we have: f (0) = 0

Let us note f denoted by:

f ∼ [f (n − 1) ; f (n − 2) ; . . . ; f (1) ; f (0)] (3)

Let us note Fn the set of functions satisfying the previous condition: Card (Fn) = n!. For example,
F2 = {00, 10} and F3 = {000, 100, 200, 010, 110, 210}. The subexceedant function f related to σ can
be obtained by iterative assignment of f [i] = σ [i]. The last elements of σ have to be decreased of one
unit, to ensure that at the position i + 1 to n the number are in the interval [0; n − i] as stressed on
Algorithm 1.

Algorithm 1: Compute_f ()
Input parameters:

σ : a permutation of n element
[n]: the interval

Output parameters:
f : the subexceedant function

Begin
For i = n − 1 to 1 do

f [i] = σ [i]
For j = i − 1 to 0 do

If (σ [j] > i) then
(Continued)
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Algorithm 1 (continued)
σ [j] = σ [j] − 1

Endif
EndFor

EndFor
Return f

End

Algorithm 1. Conversion of σ into a subexceedant function f .

Example

Let us consider σ = [2; 1; 0; 3]

At iteration 1 the number σ [1] = 2 is added to f
σ = [2; 1; 0; 2] f = [2, _, _, _, ]

At iteration 3 the number σ [3] = 0 is added to f
and the last digits 1 is decreased of one unit.
σ = [_; _; 0; 1] f = [2, 1, 0, _]

Since no remaining number of σ is larger than 2,
σ [2], σ [3] are not updated but σ [4] is decrease
of one unit. σ = [_; 1; 0; 2] f = [2_, _, _, ]

hence
σ = [_; _; _; 0] f = [2, 1, 0, _]

At iteration 2 the number σ [2] = 1 is added to f
and the two last digits 0 and 1 are iteratively
investigated: 2 which is greater to 1 is decreased
of one unit. σ = [_; 1; 0; 2] f = [2, _, _, _, ]

At iteration 4 the number σ [4] = 0 is added to f .
σ = [_; _; _; _] f = [2, 1, 0, 0]

hence
σ = [_; _; 0; 1] f = [2, 1, _, _]

To conclude, f = [2, 1, 0, 0] = [f (3) , f (2) , f (1) , f (0)] is the subexceedant function associated to
σ = [2; 1; 0; 3] .

�
Conversely, given a subexceedant function f , it is possible to calculate the associated permutation

using Algorithm 2.

Algorithm 2: Compute_Permutation()
Input parameters:

f : a subexceedant function
[n]: an interval

Output parameters:
σ : a permutation of n elements

Local parameters:
v: an ordered list of n elements beginning at 0

Begin
v = [n − 1, n − 2, . . . , 1, 0]
σ = []

(Continued)
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Algorithm 2 (continued)
For i = n − 1 to 0 do

x = f (i)
y = v (x)

σ [i] = y
v = v − {y}

EndFor
Return σ

End

Algorithm 2. Computation of σf .

Example

Let us σ = [5, 1, 4, 0, 2, 3] and f = [_, _, _, _, _, _]

At iteration 1 the number σ [1] = 5 is added to f

σ = [_, 1, 4, 0, 2, 3] and f = [5, _, _, _, _, _]

At iteration 2 the number σ [2] = 1 is added to f

σ = [_, _, 3, 0, 1, 2] and f = [5, 1, _, _, _, _]

At iteration 3 the number σ [3] = 3 is added to f

σ = [_, _, _, 0, 1, 2] and f = [5, 1, 3, _, _, _]

At iteration 4 the number σ [4] = 0 is added to f

σ = [_, _, _, _, 0, 1] and f = [5, 1, 3, 0, _, _]

At iteration 5 the number σ [5] = 0 is added to f

σ = [_, _, _, _, _, 0] and f = [5, 1, 3, 0, 0, _]

At iteration 6 the number σ [6] = 0 is added to f

σ = [_, _, _, _, _, _] and f = [5, 1, 3, 0, 0, 0]

To conclude, f = [5, 1, 3, 0, 0, 0] is the subexceedant function associated to σ = [5, 1, 4, 0, 2, 3] .

�
Reverse Example

Let us f = [5, 1, 3, 0, 0, 0] and v = [5, 4, 3, 2, 1, 0]

Iteration i =5.
x = f (5) = 5
y = v (5) = 5
σ [5] = 5 i.e., σ = [5, _, _, _, _, _]
v = v − {5} i.e., v = [4, 3, 2, 1, 0]

Iteration i =2.
x = f (2) = 0
y = v (0) = 0
σ [2] = 0 i.e., σ = [5, 1, 4, 0, _, _]
v = v − {0} i.e., v = [3, 2]

(Continued)
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(continued)

Iteration i =4.
x = f (4) = 1
y = v (1) = 1
σ [4] = 1 i.e., σ = [5, 1, _, _, _, _]
v = v − {1} i.e., v = [4, 3, 2, 0]

Iteration i = 1.
x = f (1) = 0
y = v (0) = 2
σ [1] = 2 i.e., σ = [5, 1, 4, 0, 2, _]
v = v − {2} i.e., v = [3]

Iteration i = 3.
x = f (3) = 3
y = v (3) = 4
σ [3] = 4 i.e., σ = [5, 1, 4, _, _, _]
v = v − {4} i.e., v = [3, 2, 0]

Iteration i = 0.
x = f (0) = 0
y = v (0) = 3
σ [0] = 3 i.e., σ = [5, 1, 4, 0, 2, 3]
v = v − {3} i.e., v = []

�

2.3 Indirect Representation of Solutions: Bijection with Permutation over Interval [n]

One-to-one correspondence with a permutation over the interval [n] and a function f : [n] →
{0, . . . , n − 1}.

Property

For any x ∈ N, we have:

x =
n−1∑
i=0

xi.(i! ) (4)

And f = (xn−1, xn−2 . . . x0) is subexceedant for xi ≤ i because, if not, then xi. (i! ) ≥ (i + 1). (i! ) =
(i + 1) !

�
Example

For example, we have:

208 = 1 × 5! +3 × 4! +2 × 3! +2 × 2! +0 × 1! +0 × 0! (5)

And

f = (1; 3; 2; 2; 0; 0) is subexceedant

For example, we have 10 = 1 × 3! + 2 × 2! + 0 × 1! + 0 × 0! and f = (1; 2; 0; 0) is subexceedant.

For a set of n customers, we have n! permutations numbered from 0 to n! −1. Let us consider
x ∈ [0; n! −1], i.e., a rank in the list. For a rank x ∈ [0; n! −1], it is possible to defined f and by
consequence the permutation σ . To conclude for any rank x ∈ [0; n! −1] (Fig. 2):

• we can compute the subexceedant function by decomposing x in the factorial base;
• we can compute the permutation σf (x) associated to the subexceedant function f (x)

(Algorithm 2);
• we can compute the cost of any permutation σf (x) considering: cost = ∑n−2

i=0 dσi ,σi+1
+ dσn−1,σ0

,
assuming di,j is the distance from customer i to customer j.
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Figure 2: Mapping from coding to solution space

For convenience we denote:

m(x) as the cost of permutation σf (x) that is related to the rank x.

σx as the permutation associated with rank x whereas the correct notation should be σf (x).

This allows us to define the mapping function that associates a permutation with each rank x.
Cheng et al. [13] pointed out that the most interesting mapping functions are the 1−to−1 functions, as
they correspond to bijections between the two sets (the set of indirect encoding and the solutions). Note
that the mapping function just defined is indeed a 1 − to − 1 function, unlike the functions commonly
used in Operations Research, which are of the n−to−1 type (including for example the Split method in
the VRP that is clearly of the n−to−1 type). By consequence, the cardinality of the code space (number
of ranks) is equal to the number of permutations. For example, for n = 4, we have 4! = 24 permutations
numbered from 0 to 23. The full list of permutations is provided on Table 1. The rank 10 is associated
to the subexceedant function f = (1; 2; 0; 0) since 10 = 1 × 3! + 2 × 2! + 0 × 1! + 0 × 0!, and the
subexceedant function f is associated to σ = [1; 3; 0; 2]. The cost associated with σ is d1,3+d3,0+d0,2+d2,1,
i.e., the sum of the distance from customer 1 to 3, plus the distance from customer 3 to 0, plus the
distance from customer 0 to 2 plus distance from customer 2 to 1.

2.4 IQAOA Based Approach

Quantum Approximate Optimization Algorithms [18] take advantage of alternations between
the cost function investigation which is modeled by a Hamiltonian HP from one side and a driver
Hamiltonian operator HD. The Quantum Alternating Operator Ansatz [4] takes into consideration a
general parameterized family of unitary operators and create an efficient alternative to the Adiabatic
Optimization. As introduced by [2], the wave function evolution of a quantum-mechanical system is
given by

∂.
∂t

|ψ (x, t)〉 = − i
�

.H (t) . |ψ (x, t)〉

where the energy is defined by H(t), � is derived from Plank constant and |ψ (x, t)〉 are states vectors.
If H is time independent the solution is |ψt〉 = e− i

�
.t.H . |ψ0〉. Note that the solution is |ψT〉 =

e− i
�

.
∫ T
o H(u).du. |ψ0〉 in the general time dependent situation. Describing a problem with a Hamiltonian
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H and an initial state |ψ0〉 allows to compute the ground state. The time-dependent Schrödinger’s
equation can be explicitly solved in very specific situation (see [19], for one example).

Table 1: Full list of permutations for n = 4

Rank Permutation Rank Permutation

0 0 1 2 3 12 2 1 0 3
1 0 1 3 2 13 . . .

2 0 2 1 3 14 . . .

3 0 2 3 1 15 2 1 3 0
4 0 3 1 2 16 . . .

5 0 3 2 1 17 . . .

6 1 0 2 3 18 . . .

7 . . . 19 . . .

8 . . . 20 . . .

9 . . . 21 3 1 2 0
10 1 3 0 2 22 . . .

11 . . . 23 . . .

2.5 Modelling Rank and Search Space Investigation

IQAOA seeks to solve a hard optimization problem i.e., minimizing or maximizing one objective
function m(x) that is assumed to act on n−bits strings that model only the rank of one solution. IQAOA
is based on p consecutive iterations of one Hamiltonian HP cumulated with a driver Hamiltonian HD,
where this weighted sum of Hamiltonian terms varies in time. The Hamiltonian H maps the function
the rank x with 2n eigenvalues that model the 2n values of the rank. The Hamiltonian is implemented
into a quantum circuit by deriving UH(t) = e−i.H.t with t ∈ [0; 2π ] and using only and Z-rotations and
t refers to the weight in the iterative search process of QAOA. This permits to model all the rank of
the TSP.

2.6 Search Space Investigation

The 	β and 	γ parametrized a quantum state |ϕ( 	β, 	γ )〉 which defines a solution rank x related

to probability
∣∣∣〈x|ϕ( 	β, 	γ )〉

∣∣∣
2

and related to the expectation value 〈ϕ( 	β, 	γ )|Cp|ϕ( 	β, 	γ )〉 estimated by

sampling. Each sampling gives a measure that is a rank in the list of TSP solution that can be evaluated
using the 1 − to − 1 function into the associated subexceedant function first, into the permutation σf (x)

second and next the m(x) cost of the permutation. This sampling permit to estimate the average cost

of the problem P: Cp
( 	β, 	γ

)
taking advantage of the mapping function.

The quantum computer is used to construct the state:

|ϕ( 	β, 	γ )
〉
= e−i. 	β.HD .e−i. 	γ .HP (6)
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For a fixed 	β, 	γ , the quantum computer is used to make the stage |ϕ( 	β, 	γ )
〉

and the measure in

the computational basis is achieved to get a string x and evaluated 〈ϕ( 	β, 	γ )|Cp|ϕ( 	β, 	γ )〉.
The binary representation of rank

rank =
n∑

j=0

xj.2j with xj ∈ {0; 1} (7)

and the

HP = 1
2

n∑
j=0

(Id − Zj).2j (8)

Then the circuit is:

e− 1
2

∑n
j=0 Zj .2j = Rz

(
20

) ⊗ Rz
(
21

)
. . . Rz(2n) (9)

And to conclude:

e−i. 	γ .HP = Rz
(
20.γ

) ⊗ Rz
(
21.γ

)
. . . Rz(2n.γ ) (10)

The algorithm description is illustrated in Fig. 3 that is included in a main loop iterative method
introduced in the next section.

Figure 3: Partial representation of IQAOA principle

IQAOA efficiency strongly relies on some key-points:

• The capacity to provide a significant ratio between the estimation of Cp
( 	β, 	γ

)
as regards as the

number of shot.
• the last distribution |ψ( 	β∗, 	γ ∗)

〉
must be collected on a small subset of solutions as regards

avoiding a inefficient enumerations: it is suitable that the algorithm converged to high quality
of solutions.

• The availability of one dedicated methods to compute the
( 	β∗, 	γ ∗

)
.
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• The number of qubits p such that 2p ≥ n! and the number of gates is very small as regards the
number of qubits and gates.

Let us note that the expectation value 〈ϕ( 	β, 	γ )|Cp|ϕ( 	β, 	γ )〉 estimated by sampling that is the
common criteria with QAOA can be replaced by more specific criteria including median, quartile
or any convenient combination of this criteria depending on the objective we expect on the final
distribution of probabilities. Contrary to the classical OR approaches, on a quantum computer,
all the solution are simultaneously investigated giving a potential advantage as regards the partial
enumeration technics.

2.7 C_GRASP × ELS for
( �β∗, �γ ∗

)
Computation

Investigation of the optimal parameters required powerful local search, or meta-heuristic based
approaches including but not limited to Cobyla, Genetic Algorithm, GRASP × ELS . . . with
performances that are related to the problem under consideration. In the OR (Operationnal Research)
community the GRASP × ELS has been proved to be the more adequate for a large class of problems.
The GRASP × ELS is a fusion of two powerful algorithms: GRASP (Greedy Randomized Adaptive
Search Procedure) [20] and ELS (Evolutionary Local Search) [11,21]. This combination joins the
strengths of both methods. The multi-start strategy of GRASP relies on a greedy randomized heuristic
that generates the set of initial solutions (np solutions). These solutions are then refined through a local
search procedure (Fig. 4).

The second component is ELS, an extension of ILS (Iterated Local Search) introduced by [22].
In each iteration (ne), a duplicate of the current solution is created, and this copy generates nd child
solutions. The best-performing solution among these offspring becomes the new current solution. The
overarching goal of GRASP is to enhance diversity during the exploration of the global solution space,
while ELS’s purpose is to intensify the search within the vicinity of the current local optimum. Let us
note that the method lies on local search and not on gradient and that suppose an ad hoc neighborhood
definition. To summarize, the proposed model unites the mapping of the circuit encoding of the string
into the solution space (Fig. 5) with the variational parameters optimization (GRASP×ELS) into a
classical way that meet the QAOA requirement as stressed in [23] for example. Note the special role
of measurement that permits to evaluate one estimation of the average cost for example [24] or any
relevant criteria [25].

Remark 1.

An efficient implementation of C_GRASP × ELS for Continuous GRASP × ELS required a
neighbouring system that consists in a proper definition of Δ 	β and Δ 	γ .( 	β, 	γ

)
→ ( 	β + Δ 	β; 	γ + Δ 	γ ) (11)

Remark 2.

For efficiency reason C_GRASP × ELS can be used to optimize simultaneously 	β and 	γ first and
to minimize second 	γ only.

Remark 3.

Depending on the desired probability distribution, it is necessary to choose the right criteria or
criteria to minimize. Among all these criteria, we can mention, without aiming to be exhaustive:
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• Minimization of the expectation value of the distribution that provides insight into the central
tendency;

• Minimization of the decile, i.e., minimization of the data set part that contain 10% of the data;
• Minimization of the expectation value of the decile, i.e., expectation value of the data that

contain 10% of the data;
• Minimization of the quartile, i.e., minimization of the data set part that contain 25% of the data.
• Minimization of the expectation value of the quartile, i.e., expectation value of the data that

contain 25% of the data.

Figure 4: C_GRASP × ELS algorithm

Figure 5: Classical QAOA optimization principles

The quartile and the decile are used for summarizing the central tendency and spread of a
dataset. Both quartile and decile provide a way to assess the distribution and variability of data
while also identifying potential outliers and extreme values. To obtain a probability distribution that
concentrates probabilities on low-cost solutions and avoids having a large number of values with
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residual probabilities, one can consider combinations of both the mean and a criterion related to
the mean trend (e.g., decile or quartile, for instance). The numerical tests conducted and presented
below demonstrate that it is possible to obtain a probability distribution that concentrates on high-
quality solutions close to the optimal solution and even on the optimal solution itself. These tests are
performed on instances ranging from 6 to 10 clients with different types of objectives to minimize
and various parameters. It is worth noting that the parameters used were determined after a brief
numerical study but were not subject to a specific investigation, which would be beyond the scope
of this publication. The indirect QAOA we introduce permit to define very compact quantum circuit
with a very small number of gates favoring the execution on real quantum computing however, in the
NISQ era simulator with no noise is the common way to perform experimentation. All the experiments
have been achieved using Qiskit (IBM) using the simulator. The quality of quantum gates strongly
influences of all quantum algorithm.

3 Numerical Experiments
3.1 Resolution of a TSP with 6 Customers

The total number of permutations is 720 but there is only 53 different costs and the distance
between customers are introduced in Table 2. A sampling of permutations permits to show that the
high quality solutions have a very low probability (Fig. 6). Note that the higher probabilities are related
to very low quality solutions: some solution with a cost about 800 and 900 have a probability greater
than 15%.

Table 2: Distances

0 1 2 3 4 5

0 0 31 2 23 14 50
1 31 0 110 152 213 14
2 2 110 0 21 221 23
3 23 152 21 0 311 32
4 14 213 221 311 0 41
5 50 14 23 32 41 0

The instance has 12 optimal solutions listed in Table 3 that shows the correspondence between
rank, permutation and cost.

C_GRASP × ELS is executed with the following parameters:

• Minimization of the expectation value of the decile plus the expectation value of the
distribution.

• The sampling of |ϕ( 	β, 	γ )
〉

is achieved with 50 shots.

• The parameters np = 20, ne = 5, nd = 3 for the first C_GRASP × ELS execution to optimize
	β and 	γ .

• The parameters np = 20, ne = 5, nd = 5 for the second C_GRASP × ELS execution to
optimize 	γ .

• Both Δ 	β and Δ 	γ (in the local search) vary from 0.1 to 0.001 first at the beginning of the ELS.
The value 0.001 is slowly decreased (divided by 10) at each iteration neighborhood generation.
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• The quantum circuit is parametrized with p = 2.
• 40 shots are used during the optimization process to obtain a suitable evaluation of the

probability distribution.
• 1000 shots are used at the end of the optimization to obtain an accurate evaluation of the

probability distribution.

Figure 6: Initial distribution of solutions

Table 3: Optimal solutions for instance with 6 customers

Rank Permutation Cost

55 1 4 3 2 6 5 223
90 1 5 6 2 3 4 223
150 2 3 4 1 5 6 223
235 2 6 5 1 4 3 223
286 3 2 6 5 1 4 223
291 3 4 1 5 6 2 223
376 4 1 5 6 2 3 223
419 4 3 2 6 5 1 223
494 5 1 4 3 2 6 223
585 5 6 2 3 4 1 223
632 6 2 3 4 1 5 223
701 6 5 1 4 3 2 223



JQC, 2024, vol.6 39

The landscape of the function, with ranks represented on the x-axis, is not a smooth landscape
that facilitates the search for local minima (Fig. 7). However, the C_GRASP x ELS method easily,
with a relatively low number of iterations, finds a minimum of the function. Likewise, it seems evident
that gradient-based methods will face significant challenges with this type of problem.

Figure 7: Function landscape

The sampling with 1000 shots gives 1010111101 with 283 shots (Fig. 8) meaning that about 28%
of the probabilities is now on 1010111101 that model the rank 701 and the rank number 701 is mapped
into the permutation σ = [6, 5, 1, 4, 3, 2].

Figure 8: Final distribution of solutions
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The details provided in Table 4 confirm what the visual representation suggests, namely very high
probabilities concentrated on low-cost solutions, thus demonstrating the effectiveness of the IQAOA
method in solving this 6-customers TSP problem.

Table 4: Optimal solutions for instance with 6 customers

Cost Probability %

223 28.4
244 3.6
249 12.7
282 23.7
333 2.2
340 1.2
351 1.4
352 3.0
363 11.5
414 0.3
. . . . . .

3.2 Resolution of a TSP with 8 Customers

The total number of permutations is 40,320 but there are only 833 different costs and the distance
between customers are introduced in Table 5.

Table 5: Distances

0 1 2 3 4 5 6 7

0 0 10 21 23 40 115 66 17
1 10 0 11 47 88 29 55 161
2 21 11 0 12 22 123 24 25
3 23 47 12 0 13 32 66 34
4 40 88 22 13 0 14 42 33
5 115 29 123 32 14 0 15 52
6 66 55 24 66 42 15 0 16
7 17 161 25 34 33 52 16 0

The optimal solution is 108 avec the related family permutation is: σ = [1, 2, 3, 4, 5, 6, 7, 8].

The experiments were carried out with:

• The parameters np = 20, ne = 5, nd = 3 for the first C_GRASP × ELS execution to optimize
simultaneously 	β and 	γ .

• The parameters np = 20, ne = 5, nd = 5 for the second C_GRASP × ELS execution to
optimize 	γ .
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The instance encompasses 16 optimal solutions that value 108 meaning that uniform sampling
gives a probability about 0.039% to find one optimal solution (Fig. 9).

Figure 9: Initial distribution of solutions for the instance with 8 customers

The representations of the distributions in Figs. 9 and 10 show that the probability distribution
has been significantly altered to concentrate on high-quality solutions. It should be noted that the
median is 306, which means that 50% of the data corresponds to solutions with costs lower than 306.
The final sampling achieved at the end of the optimization gives probability of 4.2% associated with
108. The fact that the probability distribution only marks certain solutions, and that this distribution
is very different from a uniform distribution, is clearly visible in the diagram of Fig. 11, where the
various possible ranks are represented on the x-axis.

Figure 10: Final distribution of solutions for the instance with 8 customers



42 JQC, 2024, vol.6

Figure 11: Final distribution of solutions for the instance with 8 customers—Qiskit vizualisation

It is difficult to give a representation of the function to minimize. However, Fig. 12 gives a partial
representation of 	β with the cost, that pushes us into considering that the function encompasses
numerous local minima.

Figure 12: Partial representation of the solution landscape just around the best solution found

3.3 Resolution of a TSP with 9 Customers

The experiments were carried out with:

• The parameters np = 10, ne = 10, nd = 3 for the first C_GRASP × ELS execution to optimize
simultaneously 	β and 	γ .
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• The parameters np = 10, ne = 10, nd = 5 for the second C_GRASP × ELS execution to
optimize 	γ .

The distances used are introduced in Table 6. The optimal solution is 137 avec the related family
permutation is: σ = [1, 3, 7, 2, 6, 4, 5, 9, 8]. The total number of solutions is 362,880 permutations and
310 different costs. The final sampling achieved at the end of the optimization gives probability of 0.6%
associated with 108 (Fig. 13) which is 40 times better that the probability to find 108 by one uniform
random sample that is only of 0.014% (there is only 54 permutations that gives 108).

Table 6: Distances for the 9-customer instance

0 1 2 3 4 5 6 7 8

0 0 11 2 27 4 88 66 7 81
1 11 0 45 42 13 1 15 45 17
2 2 45 0 21 22 23 24 25 26
3 27 42 21 0 31 32 59 34 35
4 4 13 22 31 0 41 42 13 14
5 88 1 23 32 41 0 51 52 53
6 66 15 24 59 42 51 0 61 62
7 7 45 25 34 13 52 61 0 11
8 81 17 26 35 14 53 62 11 0

Figure 13: Final distribution of solutions for the instance with 9 customers

3.4 Resolution of a TSP with 10 Customers

A 10-customer instance is introduced in Appendix A and B results meet the results obtained with
smaller instances.

3.5 VRP Resolution

The vehicle routing problem (VRP) extends the TSP by including a demand di on nodes that
has to be serviced, and a fleet of vehicles of capacity W . Reference [10] introduced an algorithm to
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transform optimally any permutation σ into a solution of the VRP by execution on one shortest path
into an auxiliary graph. Such decomposition has been intensively used in routing problem thanks
to the publication of [11] which defines a metaheuristic based method that takes advantages of such
decomposition. Using the Split algorithm, it is possible to transform a rank into a VRP solution.
The IQAOA capability in VRP solving is evaluated on the 7 customers VRP instances introduced in
Tables 7 and 8 with vehicles of capacity 10.

Table 7: Distances for the 7 customer instance

0 1 2 3 4 5 6

0 0 31 2 23 14 50 14
1 31 0 110 152 213 14 58
2 2 110 0 21 221 23 60
3 23 152 21 0 311 32 10
4 14 213 221 311 0 41 21
5 50 14 23 32 41 0 13
6 14 58 60 10 21 13 0

Table 8: Demand per customer

Demand

0 0
1 2
2 3
3 4
4 3
5 2
6 4

The final sampling achieved at the end of the optimization gives probability of 13% to have a
solution lower than 151 (Fig. 14) which is 6 times better that the probability to find 108 by one uniform
random sample (Fig. 15).

The optimal solution is σ = [0, 1, 5, 2, 3, 6, 4, 0] which is splitted into 3 trips described in the Fig. 15
and that models a solution of cost 145. The solution is composed of 3 trips introduced in Figs. 16
and 17.
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Figure 14: Final distribution of solutions for the VRP instance

Figure 15: Initial distribution of solutions for the VRP instance
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Figure 16: Optimal solution found

Figure 17: Split execution on the permutation σ = [0, 1, 5, 2, 3, 6, 4, 0]

4 Conclusions

We have introduced the IQAOA approach, which utilizes an indirect representation of permuta-
tions. Our findings provide valuable insights into the performance of IQAOA and propose promising
strategies for its practical implementation on near-term quantum devices. This is a new approach in
quantum and one of the first inclusion of indirect solution modelisation into a quantum process. To
the best of our knowledge, this is the first quantum solution for the 10-customer TSP. The inclusion
of indirect coding within the QAOA framework gives rise to the IQAOA approach, requiring a highly
specialized technique for angle optimization and the ability to leverage the potential of well-established
meta-heuristics within the OR community.
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Appendix A. Resolution of one 10-Customer Instance

The experiments were carried out with:

• The parameters np = 20, ne = 5, nd = 3 for the first C_GRASP × ELS execution to optimize
simultaneously 	β and 	γ .

• The parameters np = 20, ne = 5, nd = 5 for the second C_GRASP × ELS execution to
optimize 	γ .

The distances used are introduced in Table A1 and they define a asymmetric TSP with 10 cus-
tomers. The optimal solution is 102 avec the related family permutation is: σ = [1, 6, 2, 8, 9, 5, 3, 10, 7, 4].
The total number of solutions is 3, 628, 800 permutations and 471 different costs and a uniform
sampling (Fig. A1) gives a probability to find the optimal value 102 about 0.0005511% since we have
20 optimal permutations. The probability to have a quality solution with a cost lower than 200 is about
4.068% as stressed in Fig. A1. The cumulative final distribution introduced in Fig. A2 shows that the
probability to have a solution with a cost lower than 200 is about 22.2%, i.e., 5 times higher than the
initial probability.

Figure A1: Cumulative final/initial distribution of solutions for the instance with 10 customers

https://doi.org/10.32604/cmc.2020.010001
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Table A1: Distances for the 10-customer instance

0 1 2 3 4 5 6 7 8 9

0 0 11 12 13 14 15 16 17 18 2
1 8 0 21 22 23 24 25 26 27 78
2 7 21 0 31 32 33 34 35 36 4
3 13 12 31 0 41 42 43 44 45 7
4 14 23 1 41 0 51 52 53 54 21
5 15 14 3 42 51 0 61 62 63 25
6 16 25 134 3 22 61 0 71 72 10
7 17 111 35 44 53 16 71 0 1 2
8 18 27 36 4 15 63 72 31 0 1
9 2 78 4 7 21 25 10 22 14 0

It is worth noting that defining the number of samples based on the number of iterations makes
sense. This is particularly relevant for high-quality solutions that are close to the optimal one, where the
probability of making incorrect comparisons (given that we only have estimates of both quartile energy
and average value) should be lower compared to situations where the solutions under consideration
have lower quality. The following parameters are used:

• The parameters np = 10, ne = 5, nd = 3 for the first C_GRASP × ELS execution to optimize
simultaneously 	β and 	γ .

• The parameters np = 10, ne = 5, nd = 5 for the second C_GRASP × ELS execution to
optimize 	γ .

At each ELS iterations the number of sampling is increased of 10 units starting with 40 samplings.
The results are those of Fig. A2 and are relevant even if the process of convergence should require more
iterations.

Figure A2: Final distribution of solutions for the instance with 10 customers (number of sampling
varying from iterations)
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Appendix B. Example of Circuits

The Fig. A3 gives the general circuit representation for rank encoding that is composed on
successive application of HD (Fig. A4) and HP (Fig. A5).

It could be possible to investigate difference expression for HD including but not limited to

H1
D (β) = [⊗n−1

j=0 RYj (β)
]

.
[⊗n−2

j=0 CXj,j+1

]

or

H2
D (β) = [⊗n−1

j=0 RXj (β)
]

.
[⊗n−2

j=0 CXj,j+1

]

or

H3
D (β) = [⊗n−1

j=0 RYj (β) . RXj (β)
]

.
[⊗n−2

j=0 CXj,j+1

]

or

H4
D (β) = [⊗n−2

j=0 CXj,j+1

]
.
[⊗n−1

j=0 RYj (β)
]

which are inspired by the usual VQE proposals. Depending on the instances, depending on the
problems and considering the previous published works on VQE, it seems reasonable that HD mixer
to claim that HD should have significant impact on the convergence rate of the method.

Figure A3: Example of IQAOA circuit for a 2 depth circuit (2 times the sequence of HD, HP)
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Figure A4: Exemple of HD
Figure A5: HP definition


	IQAOA for Two Routing Problems: A Methodological Contribution with Application to TSP and VRP
	1 Introduction
	2 Indirect Quantum Approximate Optimization Algorithms IQAOA
	3 Numerical Experiments
	4 Conclusions
	References


