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Abstract: Polymers from renewable resources are receiving tremendous 

attention due to the increasing concerns on the depletion of fossil oils and 

deteriorated environments. Cardanol, as an abundant and renewable chemical 

raw material, has been widely used for the production of renewable polymer 

materials via converting into various of chemical monomers with active 

functional groups. This comprehensive review deals with various aspects of 

cardanol as a starting material the preparing various polymer and polymer 

composites such as benzoxazine resins, phenolic resin, polyurethanes, epoxy 

resin, vinyl ester polymers, polyamide and cyanate ester resins. The assessment 

of the future prospects for the use of cardanol to synthesise novel and valuable 

renewable materials is presented. 
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1 Introduction 

Cardanol is one of the most important green industrial raw material refined from natural cashew nut 

shell oil (CNSL). CNSL is a kind of agricultural by-product produced by pyrolysis or supercritical carbon 

dioxide extraction of natural cashew shell. CNSL mainly contains cashew acid, cardanol, cardiac phenol 

and dimethyl cardiac acid, which was firstly reported by Stadeler in 1847 [1-4], as seen from Fig. 1.  

Cardanol has become a research hotspot in recent years and has been widely used in coatings, adhesives 

and plasticizers due to its low price, abundant sources, excellent performance and renewability [3-8]. 

Cardanol presents pale yellow oily liquid. It cannot dissolve in water, but easily dissolve in organic 

solvent such as ether, petroleum ether and chloroform. Chemical structure of cardanol was determined by 

Dowson and the results showed that cardanol is a kind of monophenol derivative [9]. Cardanol was 

identified as 3-alkylphenol via cryogenic fractional crystallization by Paul [10]. The characteristics of side 

chains in cardanol were investigated by Loev, it contains 0-3 of unsaturated bonds [11]. Based on the 

above studies, the chemical structure of cardanol is C21H32O and possess a phenol structure and three long 

carbon chains with double bonds. At the same time, the properties of phenolic compounds, hydroxyl 

groups and double bonds make it easy to be chemically modified. Cardanol has the characteristics of both 

aromatic compounds and aliphatic compounds. The special chemical structure makes it high temperature 

resistance, good flexibility, excellent hydrophobicity and low permeability [12]. Therefore, cardanol can 

potentially replace phenol in many applications with equivalent or better property. Some reviews have 

reported the composition, separation, purification chemical reactions and applications of cardanol [13-16]. 

This comprehensive review deals with various aspects of cardanol as a starting material for preparing 

various polymer and polymer composites such as benzoxazine resins, phenolic resin, polyurethanes (PUs), 
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epoxy resin, vinyl ester polymers, polyamide and cyanate ester resins. 

 

 
Figure 1: Components and products from CNSL 

2 Research Progress of Cardanol Based Polymer Materials 

2.1 Cardanol Based Benzoxazine Resins  

Benzoxazines are new type high-performance thermosetting resins synthesized from low-cost raw 

materials, such as phenols, formaldehyde and primary amines [17]. The benzoxazine monomer is a 

compound containing nitrogen and oxygen hexahydroxy heterocyclic structure generated by the Mannich-

like condensation either by employing solution or solventless methods [17-18]. The polymerization of 

benzoxazine monomers takes place through thermally accelerated ring-opening mechanism without 

adding initiator or catalyst, near-zero shrinkage, tractability and doesn’t release toxic by-products [16-26]. 

Compared with traditional phenolic resins, polybenzoxazines has drawn a lot attention due to its unique 

advantages: low dielectric constant, low water absorption, good thermal and chemical stability, high 

mechanical properties [19-20]. Another advantage for these polymers is the great molecular design 

flexibility of its monomer. Benzoxazine can be synthesized from a phenolic compound, a primary amine 

and aldehydes, enabling to vary other properties of the polymer [17-26]. In addition, benzoxazines offer 

many advantages and unique chemical structures, so they exhibit better flame-resistance and electrical 

properties than epoxies [21-22]. With these combination of properties, benzoxazines hold great promise 

for performing in applications such as coatings, adhesives, encapsulants, and others [23-26]. However, 

similarly to other thermosets, the major shortcomings of polybenzoxazines are their brittleness [27-28], 

high curing temperature, and low degree of polymerization. Brittle nature of the benzoxazine resin have 

limited their applicability especially when it was processed into thin films. Preparation of benzoxazine 

monomers with the constituents of cardanol is a way to enhance ductility and processability [29-30]. 

  Calò E and co-workers developed the first batch of cardanol-based benzoxazine and 

polybenzoxazine [18]. Since then, cardanol was used as a fine bio-chemical for synthesis of other novel 

polybenzoxazines, proving that the phenolic compound is promising for this class of polymers [30-33]. 

The types of benzoxazine monomer and their synthetic methods are summarized from the aspects of 

monofunctional, bifunctional and multifunctional. Fig. 2 shows some monofunctional cardanol based 

benzoxazine resins. A cardanol-based benzoxazine (CA-b-1 of Fig. 2) was synthesised from cardanol, 

ammonia, and formaldehyde, and successively polymerized to produce different polybenzoxazines 

depending on the polymerization method [18]. Polybenzoxazines (PBzs) may be low or high viscosity 
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liquids or solids. In the low viscosity resin, it is possible to achieve good wettability, processability and 

ease in applicability without the use of high temperature and pressure. In high viscosity resin, generally a 

reactive diluent is blended with neat base resins to reduce viscosity, extend pot life and improve cure. 

Minigher et al. [34] described a solvent-less process, based on a Mannich reaction involving a primary 

amine and an aldehyde, for the preparation of new benzoxazines deriving from cardanol. Three kinds of 

liquid benzoxazines named CA-b-1, CA-b-3, CA-b-4 are showed in Fig. 2 [34].  A monofunctional liquid 

cardanol-based benzoxazine (named CA-b-2; Fig. 2) was prepared and used as a reactive diluent and 

toughening agent for a bisphenol A-based benzoxazine [21,26,35].  Kotzebue et al. synthesized new 

cardanol-based benzoxazines (named C-a, C-ch, C-cy,C-thf; Fig. 2), described their complete 

polymerization under mild conditions using magnesium chloride as a catalyst, obtained soluble 

polybenzoxazines [23]. All the soluble polybenzoxazines can be used as solution-processed polymers, 

because they are completely soluble in toluene, chloroform, and dichloromethane, widening its 

application range [23]. 

  Compared to other thermosets, one of the main drawbacks of polybenzoxazine resins is their 

relatively low crosslink density, which can be improved by proper benzoxazine functionalization. Mono-

benzoxazine monomers based polybenzoxazines suffer from a lower crosslink density and char yield that 

especially is further diluted by the presence of longer alkylene chain in cardanol. In order to improve the 

crosslink density, char yield and to understand the role of higher aromatic content vs functionality, a 

series of cardanol-based benzoxazine monomers (C-a, C-ta and C-tapm of Fig. 2; Bnz-1 to Bnz-4 of Fig. 

3) were synthesized [17,24,36-37]. Ambrožič et al. synthesized a novel bio-based benzoxazine from 

epoxidized cardanol, polyether monoamine and paraformaldehyde, which contained epoxy groups and at 

the same time possessed surfactant [17]. It was found that the introduction of furan groups could enhance 

the char yield and thermal stability, the introduction of additional polymerizable groups (oxazine, epoxy 

or furan ring) into benzoxazine molecule increased the crosslink density, activation energy and reaction 

enthalpy of curing. The incorporation of higher aromatic ring in benzoxazine monomers is another route 

in enhancing the crosslink density besides higher functionality to modulate their properties [17,24,36-37].   

 

 

Figure 2: Some monofunctional Cardanol based benzoxazine resins 
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Figure 3: Structures of monofunctional Cardanol based benzoxazine resins 

 

 Monobenzoxazines are cured by ring-opening polymerization (ROP) to yield a linear polymer. In 

order to prepare cross-linked polymer and improve the crosslink density, it is desirable to have 

bifunctional monomer, i.e., bisbenzoxazine, which can be achieved by using either a difunctional phenol 

such as bisphenol-A or a diamine. The synthetic strategy of bisbenzoxazines includes reaction of 

aromatic/aliphatic diamines [25,33,38-39]. A solventless synthesis of bisbenzoxazine monomers 

(abbreviated as Bzc-HP, Bzc-HM, Bzc-DDS and Bzc-BA, showed in Fig. 4) based on cardanol  with 

diamines namely bis-(4-(4-aminophenoxy)phenyl)ether (HP), bis-(3-(4-aminophenoxy)phenyl)ether 

(HM), 4,4-diaminodiphenylsulphone(DDS) and 2,2-bis(4-(4-aminophenoxy)phenyl)propane(BA) was 

carried out [38]. Bisbenzoxazine monomers based on bisphenol-A (b) and aniline was abbreviated as 

Bzb-A. The decomposition temperature for 5% mass loss (T5%) of resins followed the order PBzb-A＜

PBzc-DDS＜PBzc-BA＜PBzc-HM≈PBzc-HP. Lap shear strength on steel plates followed the trend 

PBzc-DDS＜PBzc-HM＜PBzc-BA＜PBzc-HP. The materials showed their potential as adhesives. 

Adhesive strength was found to be higher for the polymers containing flexibilizing group (-O-) between 

the benzene ring than the rigid group (-SO2-). The higher adhesion of HP over HM polymer isomer could 

be accounted due to the difference in position of -O- linkage for probably better wettability of the 

adhering surfaces. Even though, DDS unit-based PBz resin had polar group but it showed poor adhesion, 

which might be outweighed by the structural rigidity. Introduction of functional groups into the oxazine 

ring can alter the properties of the resin appreciably [39]. Ambrožič et al. prepared a new type of bis-

benzoxazine using caproamine with cardanol (CBZ, Fig. 4), and made an attempt to develop hybrid 

composite materials with excellent thermo-mechanical and dielectric properties based on industrially 

potential and commercially competitive resin i.e., epoxy and benzoxazine with graphene reinforcement 

[17]. Sharma et al. synthesized a bis-benzoxazine monomer containing amide linkages (BZC-AOET, Fig. 

4), and the presence of amide linkages and the polar group formed during the ring opening of 

benzoxazines led to the improvement strength in adhesive [25].  
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Figure 4: Some difunctional cardanol based benzoxazine resins 

The Bnz coating is well known for having excellent mechanical, electrical, and thermal properties as 

well as lower water absorption [40]. However, Bnz resin is not favorable for coating applications due to 

the high curing temperature and brittleness. To overcome the negative aspects, the additional functional 

group such as amino, amine, cyano, and hydroxyl can be incorporated into the Bnz resin structure. The 

Mannich-like condensation reaction of a cardanol, paraformaldehyde, and N,N’-bis(2-aminoethyl)ethane-

1,2-diamine were carried out to synthesize the amine functional benzoxazine (Bnz, Fig. 5) resin [41-42]. 

To enhance the coating performance, amine functional Bnz resin was successfully copolymerized with 

various epoxy resins. Poly(Benzoxazine-co-Epoxy) coatings display  well corrosion resistance, high 

chemical and solvent resistance properties compared to the polybenzoxazinecoating and this could be due 

to the dual cross-linked network. Poly (Benzoxazine-co-Epoxy) coatings were observed to be suitable for 

high performance anticorrosive metal surface coating [41]. In order to improve the mechanical properties 

and anticorrosive performance, the Bnz resin structure was modified by glycidoxypropyltrimethoxysilane 

(GPTMS) in various proportions (Fig. 5) [42]. The highly crosslinked structure of the GPTMS-modified 

Bnz coatings enhanced the barrier protection to corrosive species and improved mechanical, chemical, 

and solvent resistance properties compared to the neat Bnz coating [42]. 

 

Figure 5: Synthesis reaction of Bnz and GPTMS-modified Bnz 
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    Thermosets prepared by main-chain benzoxazine polymers (MCBP) can address the brittleness, 

but their high viscosity and reactivity for preparation are drawbacks [43-45]. Main-chain benzoxazine 

oligomer (MCBO) has been purposed to overcome the challenges [46]. However, without using diluents, 

the viscosity of the resin remains large. To address the above difficulties, Zhang L et al reported the 

synthesis of three phenol-capped MCBO [29]. Among them, two oligomers completely or partially 

capped by cardanol show very large processing window as well as low viscosity. Attractively, without 

adding diluents, they can satisfy the viscosity requirement of resin transfer molding RTM. In sum, 

cardanol-based benzoxazine resins could be considered as very attractive thermoset resins to produce 

novel bio-composite materials. 

 

 

Figure 6: Synthesis of MCBO(BPA-ddm)C, MCBO(BPA-ddm)C-P and MCBO(BPA-ddm)P based on 

BPA, DDM,phenol and candanol 

2.2 Cardanol Based Phenolic Resin    

 Phenolic resin (PR) is the earliest synthetic resin to realize industrialization in the world and has 

been in existence for nearly a hundred years [47-49]. PR possesses excellent corrosion resistance, 

mechanical properties, electrical insulation, moulding processability, flame retardancy, dimensional 

stability and low toxic haze, moreover its low cost, simple production process and equipment [50-52]. 

Therefore, PR is not only widely used in high-end aerospace, military equipment, etc., but also in wood 

bonding, friction materials, construction, coatings, inks, moldings, castings, insulation products and 

microelectronics [53-54]. The aromatic nucleus of the PR is only connected by a methylene group, and 

under the action of an external force, the methylene group is easily broken, resulting in embrittlement of 

the PR. Meanwhile, the methylene group of the PR is also broken due to easily oxidation at the high 

temperature, which limits its application [55-56]. Hence, it is an important research direction to improve 

the toughness and heat resistance of the PR. Cardanol is the main component of CNSL that is byproduct 

of the cashew agribusiness. Two types of active group that phenol and polyunsaturated flexible long chain 

(15 carbon atoms) were emerged in cardanol [57]. Therefore, cardanol not only has the reaction 

characteristics of a phenolic compound, but also has the chemical properties of an unsaturated olefin. The 

novolac prepared with cardanol has excellent gloss and fullness, high hardness and good mechanical 

properties [54]. The overall thermal stability of cardanol modified phenolic resin was better than that of 

pure phenolic resin by Liu Y et al. [58]. 

 An irreversible non-spontaneous second-order reaction using cardanol with formaldehyde in the 

presence of organic weak acids such as p-toluenesulfonic acid, ethanedioic acid, amber acid and 

citiricacid acid as the catalyst was carried out [59-61]. In all the systems, the value of step rate constant k1 
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were found to be lower than k2, thus the condensation reaction may be considered as the rate-determining 

stage of the whole reaction. The results showed that increasing temperature and mole ratios of 

formaldehyde-to-cardanol was beneficial to the reaction. Cardona et al observed that CPR and PR could 

be completely miscibility to form a homogeneous system by mixing CPR/PR in different proportions [62]. 

The flexural strength and fracture toughness of cured CPR/PR resin proportionally increased with the 

increase of cardanol content, while the flexural modulus decreased. This is attributed to the plasticization 

and toughening effect of CPR imparted by the “internal plasticization” of C15 side chain [63], which was 

further proved via the blending of CPR with propanediol. Recently, a novel fully bio-sourced flexible 

phenolic thermosets was synthesized from cardanol and nonyl aldehyde. The material possessed tunable 

mechanical properties due to the plasticizing effect of the alkyl chains [64]. Novolac resin based on 

cardanol and furfural has also been prepared under the catalysis of oxalic acid. Compared with PR, the 

cured cardanol-furfural based films exhibit better mechanical properties, heat resistance and chemical 

stability (alkali solution, organic solvent and water) [65]. 

    Due to the steric hindrance and plasticizing effect of C15 side chains, the CPR often exhibits lower 

crosslinking density than that of PR, which caused that tensile strength of CPR was inferior to that of PR. 

Composites made of the intensive CPR via adding exogenous substances (natural fibers and reactive 

small molecules, etc.) is an effective method [54]. Green coconut shell particles (CSP)/CPR composites 

were prepared by doping different quality CSP as fillers. The micro-morphology of the composite showed 

that the fine CSP (75 m) particles were closely bound to the CPR, thus improved the tensile strength, 

water absorption, the rigidity and hardness of the composite [66]. It is noteworthy that the composites 

with 5% NaOH processed CSP particles had better thermal stability, because the processed particles 

existed better interfacial adhesion, and thereby assisted to disperse evenly in the matrix. Similarly, the 

smaller CPS particles (25 m) exhibit higher thermal stability regardless of whether they had been 

processed or not [67]. From the perspectives of sustainability and environmental protection, the 

combination of CPR matrix composites with biodegradable biomass is a good alternative. Natural fibers 

have remarkable physical properties, and alkaline or organosilicon treatment can further optimize the 

physical properties of fibers. The effect of different concentrations of NaOH and silane treated kenaf 

single fiber on the interfacial shear strength of CPR was investigated. The results showed that the kenaf 

single fiber treated with 2% NaOH for 4 hours can significantly increase the tensile strength of the 

composite, while the high concentration of chemical treatment would damage the fiber by removing 

impurities and lignin [68]. Long fibers are capable of effectively transferring large loads such that the 

composite has enhanced mechanical properties. Dashtizadeh Z et al. used untreated kenaf fibers to obtain 

composites with tensile strength and impact strength that were 91.9% and 43.4% stronger than CPR [69]. 

The research displayed that the treated kenaf fiber showed a negative effect on the toughness of 

composite materials due to short kenaf fiber allow stress concentration and high temperatures damage 

fiber. However, the compatibility of natural fibers with resins is slightly insufficient, agglomeration and 

sedimentation, thus the increase in strength is limited. The reinforcing mechanism of boric acid 

compounds in phenolic resins has been fully demonstrated [70]. The residual carbon content of the 

modified CPR was as high as 69% even if a small amount of boric acid (1.27 wt%) was added, indicating 

that the modified CPR had excellent thermal stability [71]. Other researchers have studied the 

enhancement effect of Mo salt on phenolic resin [72]. The Tg of Mo-modified CPR increased by 72°C, 

probably due to the condensation reaction of hydroxyl groups in the CPR with Mo salts to form -Mo-O 

bonds with higher bond energies. Under this action, the tensile strength and limiting oxygen index of Mo-

modified CPR increased from 123.7 MPa and 19.2 to 167.7 MPa and 23.0, respectively. Recently, a 

functional polymer based on in-situ mixing of CPR with polyaniline (PAni) has been reported [73]. 

Because of the presence of PAni, the conductivity of the polymer was imparted and the conductivity was 

sensitive to pressure changes. Only a small amount of PAni allowed the polymer to show a conductivity 

variation of ~340%. The result of increasing the PAni concentration cause a decrease in conductivity 

variation due to an increase in the number of contact points between the PAni chains. The polymer was 

potential pressure sensing material. Sang et al. synthesized a carbon fiber paper-based composite (GCPR) 
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by impregnation using graphene and CPR as a solution [74]. The incorporation of CPR optimized the 

porosity and mechanical properties of the GCPR. When the CPR content is 20%, the tensile strength was 

up to 38.17 MPa from the 30.13 MPa of the pure carbon fiber composite. 

2.3 Cardanol Based Curing Agent and Epoxy Resin  

  Cardonal is a naturally occurring substituted phenol which can take part in a variety of reactions for 

fine chemical products and polymer preparation. It is a cheap and renewable substance and can replace 

phenol in many applications with equivalent or better results. As a commercial epoxy curing agent, 

cashew phenolic amine is a mannich base which was obtained by the reaction of cashew phenol, 

aldehydes and polyamine. Cashew phenol amine is a good curing agent for epoxy resin at room 

temperature or low temperature. And due to cashew phenol amine’s low temperature and rapid curing 

properties, which allows it to solidify on wet or even water surfaces. However, its application range is 

limited, because the phenolic hydroxyl of cashew phenol is easy to be oxidized and the color of curing 

agent is generally deeper [75]. 

  Cardanol-based curing agent with light color (MBCBE) was synthesized and used to compare with 

phenalkamine, as seen from Fig. 7, MBCBE showed relatively lower reactivity than phenalkamine. 

Epoxy resin materials modified with MBCBE consisted of cavities dispersed within a continuous epoxy 

matrix due to a decrease in solubility of MBCBE, the addition of MBCBE did not change the storage 

modulus and Tg of epoxy resin materials. However, the toughness and shear strength of epoxy resin 

materials modified with MBCBE were obviously improved [76]. 

 

 

Figure 7: Synthesis of MBCBE 

 Cardanol based curing agents not only improve the physical properties but also modify the chemical 

resistance. Aggarwal et al. produced cardanol based epoxy resin materials using cardanol based curing 

agents from epichlorohydrin, bisphenol-A and cardanol. The chemical resistance behaviour of the 

obtained epoxy resin materials was carried out by an immersion test and humidity cabinet test. And the 

epoxy-cardanol resin based paints showed superior to that of paints formulated using the unmodified 

epoxy resin, irrespective of the pigments, fillers and the additives used. The further research shows that 

the anticorrosive behaviour of the paints has some relation to their strength and permeability properties 

[77]. Epoxidized cardanol is a kind of commercial curing agent deriving from phenolation of aliphatic 

chain and reaction of phenol hydroxyl groups with epichlorohydrin. Biobased aromatic epoxy materials 

from epoxidized cardanol NC-514 were synthesized by Caillol et al. A likely chemical structure of 

commercial NC-514 cardanol supplied by Cardolite was proposed. The results showed that thermal 

stability of synthesized NC-514 cardanol based epoxy resin materials was slightly lower than DGEBA 

modified epoxy resin materials due to the likely presence of noncross-linked chains [78]. 

Kanehashi et al. synthesized the cardanol-based epoxy coating by the thermal polymerization 

reaction between amine compounds and epoxy cardanol prepolymer (ECP).ECP coating required less 
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time (about 2.5 h) than that of the commercial cashew coating (8 h) to harden dry, and it was rubbery state 

at room temperature owing to the flexible side chains of ECP. Moreover, the color indices of ECP 

coatings immersed in H2SO4 and NaOH solution were almost the same, which indicated that it has better 

chemical stability [79]. 

The effects of diepoxidized cardanol (DEC) as diluent, epoxy fortifier, and anhydride as curing agent 

on the curing behavior of DGEBA were investigated by Patel et al. Compared with their 1988’s work, 

mono epoxidized cardanol (MEC) was used as diluent in the curing reaction, and the Ea was 80-115 

kJ/mol, which was lower than DEC. Three different ratios of DGEBA/DEC such as 90/10, 80/20, and 

70/30, respectively were used to investigate the effects of diluent, and when the diluent content increased, 

the onset temperature of the exotherm increased accordingly [80]. 

Two amines, isophorone diamine (IPDA) and Jeffamine T403, were used to formulate epoxy-amine 

resins by Darroman et al. The gel time with BADGE, as seen from Fig. 8, was 3.5 h and 15 h respectively, 

which indicates an improved reactivity. Two kinds of sucrose epoxy derivative compounds, sorbitol 

(cardanol/sorbitol = 50/50) and isosorbide (cardanol/isosorbide = 25/75), in place of bisphenol A, was 

used to enhance the properties of cardanol epoxy resins. With the increase of epoxy sorbitol or isosorbide 

content, the degradation temperature decreased, and Tg values increased. The brightness, hardness, and 

the stability of polymer regarding ethyl acetate treatment also showed a slightly increase. In 2015’s work, 

their team worked on the blends of epoxy cardanol with three different epoxy reactants: either diglycidyl 

ether of resorcinol, hBADGE and triglycidyl ether of TMP. The epoxy cardanol blended with either the 

incorporation of resorcinol or hBADGE leaded to higher Tg (105oC at 75% of epoxidized resorcinol and 

64oC at 75% of hBADGE) and hardness (from 86 at 0% to 98 and 96 at 75% respectively). With the 

incorporation of TMP, the thermal stability of poly-epoxide blends was improved [81]. 

 

 

Figure 8: Chemical structure of epoxidized cardonal based curing agents 

 

Based on mannich reaction, three novel cardanol-based phenalkamines: phenalkamine 1 (PAA1), 

phenalkamine 2 (PAA2) and phenalkamine 3 (PAA3), were synthesized using poly-condensing phenolic 

compounds with paraformaldehyde and hexamethylenediamine (HDA) by Liu et al. Two different chemical 

structure was inferred in associated with the mechanism of this reaction and different ratios of materials. 

The results showed that the reactivity of three phenalkamines decreased from DGEBA/PAA3, 

DGEBA/PAA2 to DGEBA/PAA1. There is an increase about the toughness of the cured epoxy resins. The 

impact strength of the composite DGEBA/PAA1 increased by 81% due to the long alkylside chains [82]. 

Cardanol was mixed with epichlorohydrin under the catalysis of caustic soda to synthesize mono 

functional cardanol-based epoxy resin systems, which was performed by Unnikrishnan et al. The epoxide 

equivalent reached the maximum at 61% in 9 h, which was lower than that of phenol due to its 

incapability of forming a cure network. However, these epoxy compounds blended with commercial 

DGEBA were effective in synthesizing flexible system with less brittleness. Co-epoxides of bisphenol A 
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and 20 mol% cardanol leaded to a less viscous, tensile and compressive strength and a remarkable 

increase of elongation at break [83]. 

Wang et al. performed a control-experiment of cardanol-BS modified layered double hydroxide (m-

LDH) incorporated into epoxy resins (EP), namely m-LDH/ EP, and LDH/EP by combining three-roll 

mill and ultra-sonication technique. Among which the cardanol-BS was synthesized by the effect of 1, 4-

butane sultone (BS) ring-opening reaction on cardanol. According to the results, m-LDH/ EP was well- 

dispersed. With the loading of 6 wt% m-LDH, LOI of the blends reached 29.2%, UL-94 V0 rating. 

Therefore, homogeneous-dispersed m-LDH nanofillers can improve flame retardant of epoxy resins [84]. 

The use of polyepoxide cardanol glycidyl ether (PECGE) as diluent to synthesize epoxy resin 

showed better characteristic. The viscosity of epoxy resin reduced with the increasing content of PECGA. 

When adding no more than 20 wt% of PECGE reactive diluent, the mechanical properties including 

tensile strength, elongation at break, and heat-resistant property of cured resins enhanced more than that 

cardanol glycidyl ether [85]. The lignin and cardanol based novolac epoxy resin, triglycidyl cardanol resin 

(TGC) and NC-514 based epoxy resin were also investigated. The obtained epoxy resins showed 

excellent mechanical, thermal and flame retardant performances [86-92]. 

2.4 Cardanol Based Polyols and Polyurethanes   

 Polyurethane (PU) is a new synthetic material, which has the advantages of wear resistance, 

corrosion resistance and impact resistance, and good shock absorption effects. It has been widely used in 

automotive, electronics, machinery and medical fields [93-94]. However, the urethane structure contains a 

large amount of hydrogen bonds leads to the poor compatibility of resin with a certain degree of 

microphase separation phenomenon. The compatibility can be improved by changing the soft segment. 

Recently, bio-based PUs has been became the research hotspots. These bio-based PUs are derived from 

vegetable oil based polyols. The vegetable oil mainly includes palm oil, castor oil, linseed oil, rapeseed 

oil and so on [95-97].  

 Rigid PU foams are usually with excellent physical and mechanical properties. Shrestha M L et al 

prepared new cardanol-based polyols through thermally initiated thiolene reaction. It is a known fact that 

the phenolic group possesses a strong inhibitory effect on thiol-ene radical reaction. And in this study, 

alkoxylation with propylene oxide is used to block it. Then rigid PU foams are synthesized with a mixture 

of cardanol polyols (50%) and a sucrose polyol Voranol 490 (50%). However, the rigid PU foams derived 

from cardanol polyols have the same appearance and cellular structure as the foams prepared from 

petrochemical polyols. Indeed, such rigid PU foams possess great physical-mechanical properties and 

modulus retention, which may result from the presence of aromatic rings in their structure [98]. While in 

Huo’s work, these green cardanol-based PU foams show better performance than petroleum-based (PEG) 

PU foams. Different from Shrestha’s team, the ring opening reaction of epoxy group with diethanolamine 

(DEA) was choosed to synthesize PU foams. The cardanol-based polyols were synthesized through ring-

opened reaction by diethanolamine (DEA) and epoxidized cardanols. Even though the viscosity of the 

obtained cardanol-based polyols exceeds that of cardanols, it is still lower than the commonly accepted 

upper limit. When it comes to mechanical property, cardanol-based PU foams show better performance 

due to the presence of C15 side chain, which helps avoid the situation of being too rigid. Besides, higher 

crosslinking matrix along with the higher hydroxyl value are the reasons for higher decomposition 

temperature [99]. Cardanol-based mannich polyols could be prepared by reaction with N-(2-

hydroxyethyl)-1,3-oxazolidine, then used in obtaining rigid PU foams with good physico-mechanical and 

fire retardant properties [100-101]. In Zhang’s study, melamine added into mannich polyols could 

increase the flame retardancy. In fact, compare with no-filled cases, such rigid PU foams show better 

compressive strength, thermal stabilities, char residue, heat release and smoke emission [102]. 

Actually, differences exist in various kinds of cardanol-based PUs. For example, PUs based on diol 

(PUD) and glycard (PUG) were stable above 300°C except the triol-based one (PUT) [103]. Even the 

rigid PU is proved to have higher hardness than the tough PU, which shows the higher applicability in 
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chemical reagents [104]. P-Containing cardanol polyol (PCP) and S-Containing cardanol polyol show 

higher mass residual and superior corrosion resistance than their counterparts respectively [105-106]. 

 

Figure 9: Synthesis of polyols from photochemical thiol-ene reactions of cardanol based derivatives 

 

Other than rigid PU foams, there are still various kinds of cardanol derivatives with potential 

application. Free PU films prepared by cardanol derivatives show better flexibility, thermal stability, 

hydrophobicity, and film-forming tendency with excellent elongation, and moderate hardness [107]. The 

cross-linking in the film also improve the film properties such as hardness, solvent resistance and water 

resistance [108]. Additionally, the crosslink density relies on the content of cardanol during the process, and 

enhances the flexibility, the tensile strength and the glass transition temperature [109].  PUs prepared from 

linear hydroxyalkylated cardanol formaldehyde and hydroxyalkylated dimerised cardanol formaldehyde 

resins have better thermal stability and mechanical properties than that from branched hydroxyalkylated 

resins [110]. Moreover, PU elastomers can be applied on biomedical field [111]. PU coatings is available for 

metal substrates, protective wood coatings and 2K aqueous PU coatings [112-114]. 

    Shrestha et al. reported that a series of cardanol based polyols containing polyhydroxyl functional 

groups were prepared from cardanol by the thiol-ene addition reactions of thiol groups and the C=C 

bonds, as seen from Fig. 9 and Fig. 10. Then these products were used as raw material to prepare PU with 

improved physical and chemical properties, such as mechanical, chemical, optical, anticorrosive and 

thermal properties. These phenomena were caused by the presence of cardanol with aromatic ring, 

sulphur atom in the structure, hydrophobic long aliphatic chain and the urethane linkages in the coatings. 

This provides a technical method for chemical modification of PU with cardanol [115].  
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Figure 10: Synthesis of cardanol-based polyols by using thiol-ene reaction 

2.5 Cardanol Based Vinyl Ester Polymers 

 Vinyl ester resin is a kind of denatured epoxy resin obtained by reacting bisphenol or novolac epoxy 

resin with methacrylic acid, commonly known as vinyl ester resin (VE), alias epoxy acrylic resin, 

thermosetting resin. Vinyl ester resins possess the excellent properties of epoxy resins, excellent in 

curability and formability, soluble in styrene and acrylic monomers. Due to the advantages of both epoxy 

and unsaturated, its application field is expanding [116]. 

Cardanol-based vinyl ester resin (CVER) is synthesized from cardanolbased epoxidized novolac 

resin (CENR) and methacrylic acid (MA). GMA decreased the tensile strength and enhanced the 

elongation-at-break and impact strength of CVER. Moreover, the cured films of vinyl ester resin (VER) 

possess good impact and acids resistance [117]. The VER from cardanol would be a better choice and 

may be used for the development of reinforced plastics, eco-friendly coating systems [118]. Researches 

about kinetic models show that the esterification of CENR with MA follow first-order reaction kinetics 

and is spontaneous as well as irreversible [119]. Based on such model, the esterification reaction was 

optimized through adjusting the molar ratio of CENR and MA to 1:0.9, which results in the maximum 

extent of conversion (95.3%) [120]. Besides, CVER could also mix with carboxyl terminated butadiene 

acrylonitrile (CTBN) to prepare cured films. These products also show better acids, deionised water and 

synthetic water resistance [121]. Aside from mixtures above, VE mixed with acrylic acid and NC514, a 

biobased product coming from CNSL), can both enhance the elongation at break and gloss [122-123]. 

2.6 Cardanol Based Polyamide    

Due to its excellent mechanical properties, heat resistance and oxidation resistance, polyamide resin 

has been widely used in many fields such as industry and home appliances. However, its molecular 

arrangement is orderly, interaction force is strong and it has some disadvantages like being difficult to 

dissolve in organic solvents or insufficient toughness. Modification of the polyamide resin through 

cardanol could improve the miscibility. 

        Cardanol is usually functionalized by maleic anhydride and then condensed with diethylenetriamine 

(DETA). Polyamides with different molecular weights were prepared by varying the mole ratios of acid and 

amine components in the formulation. Some are used as crosslinker in conventional epoxy zinc-rich primer 

and then compared with commercial polyamide. The cumulative effect of increased crosslinking densities 

resulted from sacrificial protection due to galvanic action of zinc pigments. These will lead to enhanced 



 

JRM, 2019, vol.7, no.7                                                                                                                                                                     613 

 

chemical, solvent and corrosive resistance [124]. Moreover, the optimum balance arise from aliphatic 

moieties also show that the coatings is suitable for conventional epoxy resin and metal substrates [125]. 

2.7 Cardanol Based Cyanate Ester Resins   

 Cyanate ester resin is a new type of thermosetting resin with two or more cyanate functional groups 

(-OCN) in the molecular structure developed in the 1960s. Its molecular structure is: NCO-R-OCN, 

cyanate ester resin is also called Triazine A resin or TA resin, abbreviated as CE. There are many types of 

cyanate ester resins, and different structures have different properties. However, they are net-like 

polymers mainly composed of triazine ring structures after curing polymerization. So they have common 

characteristics: the average molecular weight of CE is 2000. It is solid or semi-solid at normal 

temperature, and some varieties are liquid and it can be softened in the temperature range of 50-60°C. The 

most common type of cyanate ester resin is bisphenol A type cyanate ester resin with a simple synthesis 

process and cheap raw materials. However, since the triazine ring structure in the molecule is highly 

symmetrical, the crystallinity is high, the brittleness of the resin cured product is large, lead to poor 

paving property of the prepared composite. And the crosslinking density of the monomer after 

polymerization is large, so toughening modification is necessary. Copolymerization is a good way for 

cardanol to enter phenol-formaldehyde resin, which then gets transformed into cyanate esters resin. While 

the increase of content of cardanol and decrease the thermal stability of cured polymers, it may lead to 

better toughening modification [126]. 

3 Conclusions  

With the rising price of petrochemical raw materials and the gradual decrease of natural mineral 

resources, cardanol, as a cheap, abundant and renewable resource, has become a hot spot in polymer 

materials. However, the application of cardanol is limited to a few industries such as coatings. The main 

reasons are: (1) The composition of cardanol is complex, and the separation and purification methods are 

not suitable for large-scale industrial production. (2) The mixture of 1-3 unsaturated olefins in the side 

chain of cardanol is more active, unsuitable for storage and difficult to control the reaction. The side-

chain hydrogenation product m-pentadecyl phenol has low reaction activity, so the substitution and 

condensation of cardanol and its hydrogenation products are difficult to break through, which restricts its 

industrialization process. How to make full use of the long chain molecular structure of cardanol side 

chain to improve the compatibility and flexibility of polymer materials will be the focus of research in 

this field. It is believed that with the deepening of research and the emergence of advanced methods, the 

research and application of cardanol based polymer materials will be deeper and extensive. 

Acknowledgement: This work was supported by the Open Fund Project of Jiangsu Key Laboratory of 

Biomass Energy and Materials (Grants No. JSBEM201907), the National Natural Science Foundation of 

China (No. 31570563) and the fund project of Yele Science and Technology Innovation (Grants No. 

YL201807). 

References 

1. Furtado, L. B., Nascimento, R. C., Seidl, P. R., Guimarães, M. J. O., Costa, L. M. et al. (2019). Eco-friendly 

corrosion inhibitors based on cashew nut shell liquid (CNSL) for acidizing fluids. Journal of Molecular 

Liquids, 285, 393-404. 

2. Su, W. C., Lin, Y. F., Yu, X. P., Wang, Y. X., Lin, X. D. et al. (2017). Mitochondria-associated apoptosis in 

human melanoma cells induced by cardanol monoene from cashew nut shell liquid. Journal of Agricultural 

and Food Chemistry, 65(28), 5620-5631.  

3. Voirin, C., Caillol, S., Sadavarte, N. V., Tawade, B. V., Boutevin, B. et al. (2014). Functionalization of 

cardanol: Towards biobased polymers and additives. Polymer Chemistry, 5 (9), 3142-3162. 

4. Mgaya, J., Shombe, G. B., Masikane, S. C., Mlowe, S., Mubofu, E. B. et al. (2019). Cashew nut shell: a 

potential bio-resource for the production of bio-sourced chemicals, materials and fuels. Green Chemistry, 21(6), 

1186-1201. 



 

614                                                                                                                                                                     JRM, 2019, vol.7, no.7 

5. Jia, P. Y., Zheng, M. R., Ma, Y. F., Feng, G. D., Xia, H. Y. et al. (2019). Clean synthesis of epoxy plasticizer 

with quaternary ammonium phosphotungstate as catalyst from a byproduct of cashew nut processing. Journal 

of Cleaner Production, 206, 838-849. 

6. Jia, P. Y., Hu, L. H., Shang, Q. Q., Wang, R., Zhang, M. et al. (2017). Self-Plasticization of PVC materials via 

chemical modification of mannich base of cardanol butyl ether. ACS Sustainable Chemistry & Engineering, 

5(8), 6665-6673. 

7. Jia, P. Y., Zhang, M., Hu, L. H., Wang, R., Sun, C. et al. (2017). Cardanol groups grafted on poly (vinyl 

chloride)-synthesis, performance and plasticization mechanism. Polymers, 9(11).  

8. Bo, C. Y., Wei, S. K., Hu, L. H., Jia, P. Y., Liang, B. C. et al. (2016). Synthesis of cardanol-based phosphorus-

containing polyurethane prepolymer and its application in phenolic foams. RSC Advances, 6(67), 62999-63005. 

9. Wasserman, D., Dawson, C. R. (1948). Cashew nut shell liquid. III. The cardol component of Indian cashew 

nut shell liquid with reference to the liquid's vesicant activity1. Journal of the American Chemical Society, 70 

(11), 3675-3679. 

10. Paul, V. J., Yeddanapalli, L. M. (1956). On the olefinic nature of anacardic acid from Indian cashew nut shell 

liquid. Journal of the American Chemical Society, 78(21), 5675-5678. 

11. Loev, B., Dawson, C. R. (1958). Cashew nut shell liquid. x. an investigation of the geometrical configurations 

of the olefinic components of cardanol and some observations concerning ginkgol1. Journal of the American 

Chemical Society, 80(3), 643-645. 

12. Balachandran, V. S., Jadhav, S. R., Vemula, P. K., John, G. (2013). Recent advances in cardanol chemistry in a 

nutshell: from a nut to nanomaterials. Chemical Society Reviews, 42(2), 427-438. 

13. Caillol, S. (2018). Cardanol: a promising building block for biobased polymers and additives. Current Opinion 

in Green and Sustainable Chemistry, 14, 26-32.  

14. Raquez, J. M., Deléglise, M., Lacrampe, M. F., Krawczak, P. (2010). Thermosetting (bio) materials derived 

from renewable resources: a critical review. Progress in Polymer Science, 35(4), 487-509. 

15. Vasapollo, G., Mele, G., Del Sole, R. (2011). Cardanol-based materials as natural precursors for olefin 

metathesis. Molecules, 16(8), 6871-6882. 

16. Jaillet, F., Darroman, E., Ratsimihety, A., Boutevin, B., Caillol, S. (2015). Synthesis of cardanol oil building 

blocks for polymer synthesis. Green Materials, 3, 59-70. 

17. Ambrožič, R., Šebenik, U., Krajnc, M. (2016). Epoxy emulsions stabilized with reactive bio-benzoxazine 

surfactant from epoxidized cardanol for coatings. European Polymer Journal, 81, 138-151. 

18. Calò, E., Maffezzoli, A., Mele, G., Martina, F., Mazzetto, S. E. et al. (2007). Synthesis of a novel cardanol-

based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. 

Green Chemistry, 9(7), 754-759. 

19. Rimdusit, S., Ishida, H. (2000). Development of new class of electronic packaging materials based on ternary 

systems of benzoxazine, epoxy, and phenolic resins. Polymer, 41(22), 7941-7949. 

20. Ishida, H., Lee, Y. H. (2001). Synergism observed in polybenzoxazine and poly (epsilon-caprolactone) blends 

by dynamic mechanical and thermogravimetric analysis. Polymer, 42(16), 6971-6979. 

21. Campaner, P., D'Amico, D., Longo, L., Stifani, C., Tarzia, A. et al. (2011). Study of a cardanol-based 

benzoxazine as reactive diluent and toughening agent of conventional benzoxazines. Handbook of Benzoxazine 

Resins, pp. 365-375. 

22. Kimura, H., Matsumoto, A., Hasegawa, K., Ohtsuka, K., Fukuda, A. (1998). Epoxy resin cured by bisphenol A 

based benzoxazine. Journal of Applied Polymer Science, 68, 1903-1910. 

23. Kotzebue, L. R. V., Ribeiro, F. W. M., Sombra, V. G., Feitosa, J. P. A., Mele, G. et al. (2016). Spectral and 

thermal studies on the synthesis and catalyzed oligomerization of novel cardanol-based benzoxazines. Polymer, 

92, 189-200. 

24. Shukla, S., Lochab, B. (2016). Role of higher aromatic content in modulating properties of cardanol based 

benzoxazines. Polymer, 99, 684-694. 

25. Sharma, P., Lochab, B., Kumar, D., Roy, P. K. (2015). Sustainable bis-benzoxazines from cardanol and PET-

derived terephthalamides. ACS Sustainable Chemistry & Engineering, 4(3), 1085-1093. 



 

JRM, 2019, vol.7, no.7                                                                                                                                                                     615 

 

26. Lochab, B., Varma, I. K., Bijwe, J. (2010). Thermal behaviour of cardanol-based benzoxazines: monomers and 

polymers. Journal of Thermal Analysis and Calorimetry, 102(2), 769-774. 

27. Liu, Y. L., Chang, C. Y., Hsu, C. Y., Tseng, M. C., Chou, C. I. (2010). Preparation, characterization, and 

properties of fluorene-containing benzoxazine and its corresponding cross-linked polymer. Journal of Polymer 

Science Part A: Polymer Chemistry, 48(18), 4020-4026. 

28. Liu, Y. L., Chou, C. I. (2005). High performance benzoxazine monomers and polymers containing furan 

groups. Journal of Polymer Science Part A: Polymer Chemistry, 43(21), 5267-5282. 

29. Zhang, L., Yang, Y., Chen, Y. X., Lu, H. W. (2017). Cardanol-capped main-chain benzoxazine oligomers for 

resin transfer molding. European Polymer Journal, 93, 284-293. 

30. Attanasi, O. A., Behalo, M. S., Favi, G., Lomonaco, D., Mazzetto, S. E. et al. (2012). Solvent free synthesis of 

novel mono-and bis-benzoxazines from cashew nut shell liquid components. Current Organic Chemistry, 16 

(21), 2613-2621. 

31. Li, X. D., Luo, X. Y., Gu, Y. (2015). A novel benzoxazine/cyanate ester blend with sea-island phase structures. 

Physical Chemistry Chemical Physics, 17(29), 19255-19260. 

32. Sethuraman, K., Alagar, M. (2015). Thermo-mechanical and dielectric properties of graphene reinforced 

caprolactam cardanol based benzoxazine–epoxy nanocomposites. RSC Advances, 5(13), 9607-9617. 

33. Zhang, C. X., Luo, X. X., Zhu, R. Q., Ling, H., Gu, Y. (2015). Thermal and dielectric properties of 

epoxy/DDS/CTBN adhesive modified by cardanol-based benzoxazine. Journal of Adhesion Science and 

Technology, 29(8), 767-777. 

34. Minigher, A., Benedetti, E., De Giacomo, O., Campaner, P., Aroulmoji, V. (2009). Synthesis and 

characterization of novel cardanol based benzoxazines. Natural product communications, 4(4), 521-528. 

35. Rao, B. S., Palanisamy, A. (2011). Monofunctional benzoxazine from cardanol for bio-composite applications. 

Reactive and Functional Polymers, 71(2), 148-154. 

36. Li, S. F., Yan, S. L., Yu, J. Y., Yu, B. (2011). Synthesis and characterization of new benzoxazine-based 

phenolic resins from renewable resources and the properties of their polymers. Journal of Applied Polymer 

Science, 122(5), 2843-2848. 

37. Šebenik, U., Krajnc, M. (2015). Synthesis, curing kinetics, thermal and mechanical behavior of novel cardanol-

based benzoxazines. Polymer, 76, 203-212. 

38. Lochab, B., Varma, I. K., Bijwe, J. (2012). Cardanol based Bisbenzoxazines: effect of structure on thermal 

behaviour. Journal of Thermal Analysis & Calorimetry, 107(2), 661-668. 

39. Kawaguchi, A. W., Sudo, A., Endo, T. (2012). Synthesis of highly polymerizable 1, 3-benzoxazine assisted by 

phenyl thio ether and hydroxyl moieties. Journal of Polymer Science Part A: Polymer Chemistry, 50(8), 1457-1461. 

40. Taşdelen-Yücedağ, Ç., Erciyes, A. T. (2013). Preparation of oil-modified polycaprolactone and its further 

modification with benzoxazine for coating purposes. Progress in Organic Coatings, 76(1), 137-146. 

41. Patil, D. M., Phalak, G. A., Mhaske, S. T. (2017). Enhancement of anti-corrosive performances of cardanol 

based amine functional benzoxazine resin by copolymerizing with epoxy resins. Progress in Organic Coatings, 

105, 18-28. 

42. Patil, D. M., Phalak, G. A., Mhaske, S. T. (2017). Synthesis and characterization of bio-based benzoxazine 

oligomer from cardanol for corrosion resistance application. Journal of Coatings Technology and Research, 

14(3), 517-530. 

43. Takeichi, T., Kano, T., Agag, T. (2005). Synthesis and thermal cure of high molecular weight polybenzoxazine 

precursors and the properties of the thermosets. Polymer, 46(26), 12172-12180. 

44. Lin, C. H., Chang, S. L., Hsieh, C. W., Lee, H. H. (2008). Aromatic diamine-based benzoxazines and their high 

performance thermosets. Polymer, 49(5), 1220-1229. 

45. Lin, C. H., Chang, S. L., Shen, T. Y., Shih, Y. S., Lin, H. T. et al. (2012). Flexible polybenzoxazine thermosets 

with high glass transition temperatures and low surface free energies. Polymer Chemistry, (4), 935-945. 

46. Liu, J., Agag, T., Ishida, H. (2010). Main-chain benzoxazine oligomers: a new approach for resin transfer 

moldable neat benzoxazines for high performance applications. Polymer, 51(24), 5688-5694. 



 

616                                                                                                                                                                     JRM, 2019, vol.7, no.7 

47. Zhang, Z., Song, M., Hao, J., Wu, K., Li, C. et al. (2018). Visible light laser-induced graphene from phenolic 

resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. 

Carbon, 127, 287-296. 

48. Pilato, L. (2013). Phenolic resins: 100 years and still going strong. Reactive & Functional Polymers, 73(2), 

270-277. 

49. Foyer, G., Chanfi, B. H., Boutevin, B., Caillol, S., David, G. (2016). New method for the synthesis of 

formaldehyde-free phenolic resins from lignin-based aldehyde precursors. European Polymer Journal, 74, 296-309. 

50. Moeller, M., Matyjaszewski, K. (2012). Polymer science: a comprehensive reference. Newnes. 

51. Pizzi, A., Ibeh, C. C. (2014). Phenol-formaldehydes. Handbook of thermoset plastics, 3rd edition, pp. 13-44. 

Elsevie. 

52. Li, S., Chen, F. H., Zhang, B. X., Luo, Z. H., Li, H. et al. (2016). Structure and improved thermal stability of 

phenolic resin containing silicon and boron elements. Polymer Degradation and Stability, 133, 321-329. 

53. Asim, M., Saba, N., Jawaid, M., Nasir, M., Pervaiz, M. et al. (2018). A review on phenolic resin and its 

composites. Current Analytical Chemistry, 14(3), 185-197. 

54. Deng, P., Shi, Y., Liu, Y., Liu, Y., Wang, Q. (2018). Solidifying process and flame retardancy of epoxy resin 

cured with boron-containing phenolic resin. Applied Surface Science, 427, 894-904. 

55. Bo, C. Y., Wei, S. K., Hu, L. H., Jia, P. Y., Liang, B. C. et al. (2016). Synthesis of a cardanol-based 

phosphorus-containing polyurethane prepolymer and its application in phenolic foams. RSC Advances, 6(67), 

62999-63005. 

56. Bo, C. Y., Hu, L. H., Chen, Y., Yang, X. H., Zhang, M. et al. (2018). Synthesis of a novel cardanol-based 

compound and environmentally sustainable production of phenolic foam. Journal of Materials Science, 53(15), 

10784-10797. 

57. Suresh, K. I., Kishanprasad, V. S. (2005). Synthesis, structure, and properties of novel polyols from cardanol 

and developed polyurethanes. Industrial & Engineering Chemistry Research, 44(13), 4504-4512. 

58. Liu, Y., Du, J., Luo, J., Feng, X. Q., Cai, Z. B. et al. (2015). Thermal stability of cardanol modified phenolic 

resin. Journal of Polymer Materials, 32(2), 165-177. 

59. Devi, A., Srivastava, D. (2006). Cardanol-based novolac-type phenolic resins. I. A kinetic approach. Journal of 

Applied Polymer Science, 102(3), 2730-2737. 

60. Yadav, R., Srivastava, D. (2007). Kinetics of the acid-catalyzed cardanol-formaldehyde reactions. Materials 

Chemistry and Physics, 106(1), 74-81. 

61. Sultania, M., Rai, J. S. P., Srivastava, D. (2009). A study on the kinetics of condensation reaction of cardanol 

and formaldehyde, part I. International Journal of Chemical Kinetics, 41(9), 559-572. 

62. Cardona, F., Aravinthan, T., Moscou, C. (2010). Modified PF resins for composite structures with improved 

mechanical properties. Polymers and Polymer Composites, 18(6), 235-244. 

63. Cardona, F., Kin-Tak, A. L., Fedrigo, J. (2012). Novel phenolic resins with improved mechanical and 

toughness properties. Journal of Applied Polymer Science, 123(4), 2131-2139. 

64. Briou, B., Caillol, S., Robin, J. J., Lapinte, V. (2018). Cardanol-based and formaldehyde-free flexible phenolic 

networks. European Journal of Lipid Science and Technology, 120(7).  

65. Srivastava, R., Srivastava, D. (2015). Mechanical, chemical, and curing characteristics of cardanol-furfural-

based novolac resin for application in green coatings. Journal of Coatings Technology and Research, 12(2), 

303-311. 

66. Sankar, R. U., Karthikeyan, B. (2017). Synthesis of phenolic bio-resin for advanced biocomposites reinforced 

with coconut shell particle: mechanical and thermal properties. Advances in Natural and Applied Sciences, 11, 

96-105. 

67. Udhayasankar, R., Karthikeyan, B. (2019). Processing of cardanol resin with CSP using compression molding 

technique. Materials and Manufacturing Processes, 34(4), 397-406. 

68. Dashtizadeh, Z., Abdan, K., Jawaid, M., Khan, M. A., Behmanesh, M. et al. (2016). Effect of chemical 

treatment on kenaf single fiber and bio-phenolic resin regarding its tensile and Interfacial shear stress. Middle-

East Journal of Scientific Research, 24, 2685-2692. 



 

JRM, 2019, vol.7, no.7                                                                                                                                                                     617 

 

69. Dashtizadeh, Z., Khalina, A., Cardona, F., Lee, C. H. (2019). Mechanical characteristics of green composites 

of short kenaf bast fiber reinforced in cardanol. Advances in Materials Science and Engineering.  

70. Liu, L., Fu, M. T., Wang, Z. Z. (2015). Synthesis of boron-containing toughening agents and their application 

in phenolic foams. Industrial & Engineering Chemistry Research, 54(7), 1962-1970. 

71. Wang, F. Y., Huang, Z. X., Liu, Y., Li, Y. X. (2017). Novel cardanol-containing boron-modified phenolic resin 

composites: non-isothermal curing kinetics, thermal properties, and ablation mechanism. High Performance 

Polymers, 29(3), 279-288. 

72. Xu, G. M., Shi, T. J., Xiang, Y., Yuan, W., Wang, Q. (2015). Fabrication and properties of hybrid Mo-CPF/P 1 

B from cardanol. RSC Advances, 5, 77429-77436. 

73. Souza, Jr. F. G., Orlando, M. T. D., Michel, R. C., Pinto, J. C., Cosme, T. et al. (2011). Effect of pressure on 

the structure and electrical conductivity of cardanol-furfural-polyaniline blends. Journal of Applied Polymer 

Science, 119(5), 2666-2673. 

74. Sang, M. Z., Meng, Y. H., Wang, S. H., Long, Z. (2018). Graphene/cardanol modified phenolic resin for the 

development of carbon fiber paper-based composites. RSC Advances, 8(43), 24464-24469. 

75. Campaner, P., D'Amico, D., Longo, L., Stifani, C., Tarzia, A. (2009). Cardanol-based novolac resins as curing 

agents of epoxy resins. Journal of Applied Polymer Science, 114(6), 3585-3591. 

76. Huang, K., Zhang, Y., Li, M., Lian, J. W., Yang, X. H. et al. (2012). Preparation of a light color cardanol-based 

curing agent and epoxy resin composite: cure-induced phase separation and its effect on properties. Progress in 

Organic Coatings, 74(1), 240-247. 

77. Aggarwal, L. K., Thapliyal, P. C., Karade, S. R. (2007). Anticorrosive properties of the epoxy-cardanol resin 

based paints. Progress in Organic Coatings, 59(1), 76-80. 

78. Caillol, S., Jaillet, F., Darroman, E., Ratsimihety, A., Auvergne, R. et al. (2014). New biobased epoxy 

materials from cardanol. European Journal of Lipid Science & Technology, 116(1), 63-73. 

79. Kanehashi, S., Yokoyama, K., Masuda, R., Kidesaki, T., Nagai, K. et al. (2013). Preparation and 

characterization of cardanol‐based epoxy resin for coating at room temperature curing. Journal of Applied 

Polymer Science, 130(4), 2468-2478. 

80. Patel, M. B., Patel, R. G., Patel, V. S. (1989). Effects of reactive diluent diepoxidized cardanol and epoxy 

fortifier on curing kinetics of epoxy resin. Journal of Thermal Analysis and Calorimetry, 35(1), 47-57. 

81. Darroman, E., Durand, N., Boutevin, B., Caillol, S. (2015). New cardanol/sucrose epoxy blends for biobased 

coatings. Progress in Organic Coatings, 83, 47-54. 

82. Liu, Y., Wang, J., Xu, S. A. (2014). Synthesis and curing kinetics of cardanol-based curing agents for epoxy 

resin by in situ depolymerization of paraformaldehyde. Journal of Polymer Science Part A: Polymer Chemistry, 

52(4), 472-480. 

83. Unnikrishnan, K. P., Thachil, E. T. (2008). Synthesis and characterization of cardanol-based epoxy systems. 

Designed Monomers and Polymers, 11(6), 593-607. 

84. Wang, X., Kalali, E. N., Wang, D. Y. (2015). Renewable cardanol-based surfactant modified layered double 

hydroxide as a flame retardant for epoxy resin. ACS Sustainable Chemistry, 3(12), 3281-3290. 

85. Chen, J., Nie, X. A., Liu, Z. S., Mi, Z., Zhou, Y. H. (2015). Synthesis and application of polyepoxide cardanol 

glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin. ACS Sustainable Chemistry & 

Engineering, 3(6), 1164-1171. 

86. Huo, S. P., Wu, G. M., Chen, J., Liu, G. F., Kong, Z. W. (2014). Curing kinetics of lignin and cardanol based 

novolac epoxy resin with methyl tetrahydrophthalic anhydride. Thermochimica Acta, 587, 18-23. 

87. Kathalewar, M., Sabnis, A. (2014). Epoxy resin from cardanol as partial replacement of bisphenol-A-based 

epoxy for coating application. Journal of Coatings Technology & Research, 11(4), 601-618. 

88. Darroman, E., Durand, N., Boutevin, B., Caillol, S. (2016). Improved cardanol derived epoxy coatings. 

Progress in Organic Coatings, 91, 9-16. 

89. Patel, M. B., Patel, R. G., Patel, V. S. (1988). Curing kinetics of epoxy resin using epoxidized cardanol as 

diluent with/without fortifier. Thermochimica Acta, 129(2), 277-284. 



 

618                                                                                                                                                                     JRM, 2019, vol.7, no.7 

90. Dworakowska, S., Cornille, A., Bogdał, D., Boutevin, B., Caillol, S. (2015). Formulation of bio‐based epoxy 

foams from epoxidized cardanol and vegetable oil amine. European Journal of Lipid Science and Technology, 

117(11), 1893-1902. 

91. Kasemsiri, P., Neramittagapong, A., Chindaprasirt, P. (2015). Curing kinetic, thermal and adhesive properties 

of epoxy resin cured with cashew nut shell liquid. Thermochimica Acta, 600, 20-27. 

92. Shukla, R., Kumar, P. (2011). Self-curable epoxide resins based on cardanol for use in surface coatings. 

Pigment & Resin Technology, 40(5), 311-333. 

93. Ranaweera, C. K., Ionescu, M., Bilic, N., Wan, X., Kahol, P. K. et al. (2017). Biobased polyols using thiol-ene 

chemistry for rigid polyurethane foams with enhanced flame-retardant properties. Journal of Renewable 

Materials, 5, 1-12. 

94. Himabindu, M., Kamalakar, K., Karuna, M. S. L., Palanisamy, A. (2017). Karanja oil polyol and rigid 

polyurethane biofoams for thermal insulation. Journal of Renewable Materials, (5), 124-131. 

95. Kirpluks, M., Kalnbunde, D., Walterova, Z., Cabulis, U. (2017). Rapeseed oil as feedstock for high 

functionality polyol synthesis. Journal of Renewable Materials, (5), 258-270. 

96. Michałowski, S., Mosiewicki, M. A., Kurańska, M., Aranguren, M. I., Prociak, A. (2018). Polyurethane 

composites synthesized using natural oil-based polyols and sisal fibers. Journal of Renewable Materials, (6), 

426-437. 

97. Abolins, A., Yakushin, V., Vilsone, D. (2018). Properties of polyurethane coatings based on linseed oil 

phosphate ester polyol. Journal of Renewable Materials, (6), 737-745. 

98. Suresh, K. I. (2012). Rigid polyurethane foams from cardanol: synthesis, structural characterization, and 

evaluation of polyol and foam properties. ACS Sustainable Chemistry & Engineering, 1(2), 232-242. 

99. Shrestha, M. L., Ionescu, M., Wan, X. M., Bilić, N., Petrović, Z. S. et al. (2018). Biobased aromatic-aliphatic 

polyols from cardanol by thermal thiol-ene reaction. Journal of Renewable Materials, (6), 87-101. 

100. Gandhi, T. S., Patel, M. R., Dholakiya, B. Z. (2014). Synthesis and characterization of different types of 

epoxide-based Mannich polyols from low-cost cashew nut shell liquid. Research on Chemical Intermediates, 

40(3), 1223-1232. 

101. Ionescu, M., Wan, X. M., Bilić, N., Petrović, Z. S. (2012). Polyols and rigid polyurethane foams from cashew 

nut shell liquid. Journal of Polymers and the Environment, 20(3), 647-658. 

102. Meng, Z., Zhang, J. W., Chen, S. G., Zhou, Y. H. (2014). Synthesis and fire properties of rigid polyurethane 

foams made from a polyol derived from melamine and cardanol. Polymer Degradation & Stability, 110, 27-34. 

103. Suresh, K. I., Kishanprasad, V. S. (2005). Synthesis, structure, and properties of novel polyols from cardanol 

and developed polyurethanes. Industrial & Engineering Chemistry Research, 44(13), 4504-4512. 

104. Mythili, C. V., Retna, A. M., Gopalakrishnan, S. (2004). Synthesis, mechanical, thermal and chemical 

properties of polyurethanes based on cardanol. Bulletin of Materials Science, 27(3), 235-241. 

105. Wazarkar, K., Sabnis, A. (2018). Development of cardanol-based polyol via click chemistry and crosslinking 

with melamine formaldehyde resin for coating applications. Journal of Renewable Materials, (6), 438-449. 

106. Bo, C. Y., Hu, L. H., Jia, P. Y., Liang, B. C., Zhou, J. et al. (2015). Structure and thermal properties of 

phosphorus-containing polyol synthesized from cardanol. RSC Advances, 5(129), 106651-106660. 

107. Suresh, K. I., Harikrishnan, M. G. (2014). Effect of cardanol diol on the synthesis, characterization, and film 

properties of aqueous polyurethane dispersions. Journal of Coatings Technology and Research, 11(4), 619-629. 

108. Patel, C. J., Mannari, V. (2014). Air-drying bio-based polyurethane dispersion from cardanol: Synthesis and 

characterization of coatings. Progress in Organic Coatings, 77(5), 997-1006. 

109. Tan, T. T. M. (1996). Cardanol-lignin-based polyurethanes. Polymer International, 41(1), 13-16. 

110. Sathiyalekshmi, K., Gopalakrishnan, S. (2000). Synthesis and characterisation of rigid polyurethanes based on 

hydroxyalkylated cardanol formaldehyde resin. Plastics, Rubber and Composites, 29(2), 63-69. 

111. Gopalakrishnan, S., Fernando T. L. (2012). Influence of polyols on properties of bio-based polyurethanes. 

Bulletin of Materials Science, 35(2), 243-251. 

112. Nasar, A. S., Shrinivas, V., Shanmugam, T., Raghavan, A. (2004). Synthesis and deblocking of cardanol-and 

anacardate-blocked toluene diisocyanates. Journal of Polymer Science Part A: Polymer Chemistry, 42(16), 

4047-4055. 



 

JRM, 2019, vol.7, no.7                                                                                                                                                                     619 

 

113. Athawale, V., Shetty, N. (2010). Synthesis and characterisation of low-cost cardanol polyurethanes. Pigment & 

Resin Technology, 39(1), 9-14. 

114. Balgude, D., Sabnis, A., Ghosh, S. K. (2016). Synthesis and characterization of cardanol based aqueous 2K 

polyurethane coatings. European Polymer Journal, 85, 620-634. 

115. Shrestha, M. L., Ionescu, M., Wan, X. M., Bilić, N., Petrović, Z. S. et al. (2018). Biobased aromatic-aliphatic 

polyols from cardanol by thermal thiol-ene reaction. Journal of Renewable Materials, (6), 87-101. 

116. Jaillet, F., Nouailhas, H., Auvergne, R., Ratsimihety, A., Boutevin, B. et al. (2014). Synthesis and 

characterization of novel vinylester prepolymers from cardanol. European Journal of Lipid Science and 

Technology, 116(7), 928-939. 

117. Garg, M. S., Srivastava, D. (2014). Effect of glycidyl methacrylate (GMA) content on thermal and mechanical 

properties of ternary blend systems based on cardanol-based vinyl ester resin, styrene and glycidyl 

methacrylate. Progress in Organic Coatings, 77(7), 1208-1220. 

118. Sultania, M., Rai, J. S. P., Srivastava, D. (2010). Studies on the synthesis and curing of epoxidized novolac 

vinyl ester resin from renewable resource material. European Polymer Journal, 46(10), 2019-2032. 

119. Sultania, M., Rai, J. S. P., Srivastava, D. (2010). Kinetic modeling of esterification of cardanol-based epoxy 

resin in the presence of triphenylphosphine for producing vinyl ester resin: Mechanistic rate equation. Journal 

of Applied Polymer Science, 118(4), 1979-1989. 

120. Sultania, M., Rai, J. S. P., Srivastava, D. (2011). Process modeling, optimization and analysis of esterification 

reaction of cashew nut shell liquid (CNSL)-derived epoxy resin using response surface methodology. Journal 

of Hazardous Materials, 185(2-3), 1198-1204. 

121. Garg, M. S., Srivastava, K., Srivastava, D. (2015). Physical and chemical toughening of cardanol-based vinyl 

ester resin using CTBN: a study on spectral, thermal and morphological characteristics. Progress in Organic 

Coatings, 78, 307-317. 

122. Agrawal, S., Mishra, A., Rai, J. S. P. (2003). Effect of diluents on the curing behavior of vinyl ester resin. 

Journal of Applied Polymer Science, 87(12), 1948-1951. 

123. John, G., Pillai, C. K. S. (1992). Self-crosslinkable monomer from cardanol: crosslinked beads of poly 

(cardanyl acrylate) by suspension polymerization. Die Makromolekulare Chemie, Rapid Communications, 

13(5), 255-259. 

124. Balgude, D., Sabnis, A., Ghosh, S. K. (2017). Investigation of cardanol-based reactive polyamide as a 

crosslinker in epoxy zinc-rich primer. Journal of Coatings Technology and Research, 14(3), 583-595. 

125. Balgude, D., Sabnis, A., Ghosh, S. K. (2017). Synthesis and characterization of cardanol based reactive 

polyamide for epoxy coating application. Progress in Organic Coatings, 104, 250-262. 

126. Nair, R., Bindu, R., Joseph, V. C. (1995). Cyanate esters based on cardanol modified-phenol-formaldehyde 

resins: Syntheses and thermal characteristics. Journal of Polymer Science Part A: Polymer Chemistry, 33(4), 

621-627. 

 


