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ABSTRACT

Gasification of organic waste represents one of the most effective valorization pathways for renewable energy and
resources recovery, while this process can be affected by multi-factors like temperature, feedstock, and steam con-
tent, making the product’s prediction problematic. With the popularization and promotion of artificial intelligence
such as machine learning (ML), traditional artificial neural networks have been paid more attention by research-
ers from the data science field, which provides scientific and engineering communities with flexible and rapid
prediction frameworks in the field of organic waste gasification. In this work, critical parameters including tem-
perature, steam ratio, and feedstock during gasification of organic waste were reviewed in three scenarios includ-
ing steam gasification, air gasification, and oxygen-riched gasification, and the product distribution and involved
mechanism were elaborated. Moreover, we presented the details of ML methods like regression analysis, artificial
neural networks, decision trees, and related methods, which are expected to revolutionize data analysis and mod-
eling of the gasification of organic waste. Typical outputs including the syngas yield, composition, and HHVs
were discussed with a better understanding of the gasification process and ML application. This review focused
on the combination of gasification and ML, and it is of immediate significance for the resource and energy uti-
lization of organic waste.
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1 Introduction

Organic waste like lignocellulosic biomass, sewage sludge, and municipal solid waste contains rich carbon
resources, and the high-value utilization is direct to the realization of carbon neutrality [1,2]. In recent years, a
variety of high-value utilization approaches have emerged for energy or resource recovery. To efficiently valorize
organic waste, thermochemical pathways have been widely studied due to the huge potential to convert organic
waste into bioenergy [3]. Among these conversion techniques, gasification shows great potential due to its high
efficiency and flexibility, and feedstock species, carrier environment, and thermal parameters are the main
factors. With the moisture in feedstock or the load of the water, gasification can be divided into hydrothermal
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gasification and conventional gasification, while the former can use water as a reaction medium for syngas
production, and the latter one is dominated by molecular rearrangement and gas release [4,5]. Generally,
organic waste gasification produces high-value gases such as CO, CH4, and H2 [6]. However, the thermal-
conversion mechanism is very complex due to the fact that diverse molecular rearrangement reactions and
condensation reactions happen during the process [7,8].

In addition to the pyrolysis environment and parameters, lignocellulose materials differ from biowaste like
sludge and algae, and this makes the products with various yields, HHVs, and components, while gasification is
limited by the experiments and it is cost-effective [9]. Thus, accurate prediction of the components and mass
distribution is a subject of great industrial significance. Considering this, it is necessary to have a basic
understanding of the conversion process and to predict the gasification products. In recent years, studies
have tried to explore the effect of parameters on the gasification of various biomass through experimental
methods. Several works used Aspen Plus or CFD models to investigate the equilibrium and kinetic models
of gasification [10,11]. However, with the development of artificial intelligence and the improvement of
modern computer computing power, machine learning (ML) methods like artificial neural networks have
been widely used in medical, environmental, and electrical fields, bringing new methods for the accurate
prediction of biomass pyrolysis products [12,13]. ML is regarded as one of the most critical pathways, and
it can be conducted by accurate prediction based on big data [14]. Therefore, a new area and direction of
development emerged in recent years. ML means that algorithms build a model depending on the data of
samples, namely training data, and then predictions or decisions can be made without being explicitly
programmed [15]. For organic waste upgrading, ML models have great potential to accurately describe this
complex process regardless of experiments with a reactor. However, at present, most studies use a variety of
models for predication, but lack comparison in the same scenario, especially in the gasification process
which also has not been fully explored about the mechanism and product distribution law, and this needs to
improve the accuracy and understanding of the ML models in the future. This work will develop a better
understanding of gasification mechanisms and the influence of parameters, as well as build reasonable
models for the prediction of the gas product.

In this work, critical parameters, gasification mechanism, and product distribution from organic waste
gasification were systematically reviewed, with three typical gasification techniques and the involved
mechanism. The gasification process of organic waste and several popular ML techniques like regression
analysis, artificial neural networks, decision trees, and related methods were discussed, which are
expected to revolutionize data analysis and modeling of the gasification of organic waste including main
outputs like the syngas yield, gas composition, and HHV. Moreover, current challenges and future
perspectives of ML applications in organic waste gasification were discussed.

2 Gasification of Organic Waste

2.1 Typical Gasification Techniques
Generally, gasification can be divided into steam gasification, air gasification, and oxygen-riched

gasification, based on the agent used during the process. Among these techniques, steam gasification can
generate the highest stoichiometric yield of H2. Since the properties of water change dramatically when a
supercritical point (22.1 MPa and 374°C) is reached, water can be oxidant. Under this environment, organic
components react with oxygen molecules of water, while CO2 can be produced by a reaction between CO
and steam [16]. Steam gasification is regarded as one efficient way to produce H2, while the cost of this
method is several folds higher than that of other gasification techniques due to that the steam reforming
reactions require more heat to perform. However, this method is suitable for high-moisture feedstock like
sewage sludge, algae, and manure. As for air gasification, the advantage is that the reaction agent can be
easily obtained from nature, which had high gasification efficiency and it is the most economic one of all
gasification techniques. It suggested that the HHV of syngas can be significantly influenced by the
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temperature and equivalence ratio during air gasification [16]. One obvious drawback of air gasification is that
the air injection also brings more N2 into a reactor, which may lead to a low heating value (3~8 MJ/m3) of
syngas and this also results in a difficult separation of N2 [17]. Generally, medium heating value gas can
be obtained from oxygen-riched gasification. Wang et al. [18] reported that the concentrations of H2 and
CO2 in the syngas showed a sharp reduction with the increase of the O/C, while the CO concentration
remained constant. The tendency of gas components from both oxygen-riched gasification and air
gasification is similar to the variations of equivalence ratio. The solid residue and tar can be fully
combustion combined with extra heat. However, oxygen-riched gasification needs high capital costs due to
the requirement of pure oxygen. Typical gasification sets including steam gasification, air gasification, and
oxygen-riched gasification are shown in Fig. 1, and the comparison is shown in Table 1. It can be observed
the agent supply, purging, heating, and cooling are the main units, which support the operation of the gasifier.

Figure 1: (Continued)
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2.2 Gasification Mechanism
A deep understanding of the gasification mechanism is essential to the applications of ML as a prediction tool.

Thus, this section mentioned the details of gasification. Generally, the objective of gasification is to convert organic
waste into gaseous products under a low-oxygen environment, which is also called syngas, combustible gas with
CO, H2, or CH4 as the main component [21,22]. This process also produces condensable tars and oils. The
chemistry involved in the gasification is very complex, and a series of cracking, molecular rearrangement, etc.
happen during gasification, and the air, steam, or oxygen can be used as the reaction agent in which a
thermochemical reaction occurs since organic waste contains these components above [23].

The whole process can be divided into four stages (drying, pyrolysis, oxidation, and reduction), which are
happened at a temperature range of 200°C–300°C, 300°C–400°C, and 1000°C–1200°C, respectively. During

Figure 1: Typical gasification techniques and set including steam gasification (A), air gasification (B), and
oxygen-riched gasification (C) [18–20]

Table 1: The comparison of steam gasification, air gasification, and oxygen-riched gasification

Gasification Advantages Disadvantages Main
syngas
species

Cost

Steam
gasification

Suitable for high moisture
feedstock

Requirement of external heat
for steam-related reactions

H2, CO,
CO2,
CH4, tar

Medium-
cost

Air
gasification

Reaction agents can be obtained
from nature and high efficiency

Low energy content aroused
by N2

addition

CO, H2,
H2O
CO2, tar,
N2

Cheap

Oxygen-
riched
gasification

Fully combustion with extra heat High capital cost and
requirement of pure
oxygen source

CO, H2,
CO2

High-
cost
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the drying process, moisture contained in the feedstock can be removed to approximately 5%. The pyrolysis
process, namely devolatilization, can significantly decrease the volatile matter since most of the feedstock is
converted into biochar, while the volatile gas can be condensed to tar under a low-temperature range [24].
During the oxidation stage, the main products are CO2 and water because of the carbonized production
reaction and oxidized hydrogen, then this process releases a lot of heat. As for the reduction stage, since the
low oxygen content, reduction reactions happen and most of these reactions like methane reaction and shift
reaction are endothermic [25]. In Fig. 2, we summarized the mechanism and reactions that happened during
steam gasification which included other gasification species based on the endothermic and exothermic
properties. Additionally, a large number of studies focused on the production of fuels or value-added
chemicals from gasification of low or negative-value organic waste, while it is essential to consider the
energy cost due to the separation and catalysts when considering industrial scale.

2.3 Gasification Parameters and Effect on the Distribution of the Products
The types of organic waste are directly related to gasification. The main species of organic waste used in

the presented works include lignocellulose materials, algae, MSW, sewage sludge, and manure. The
dominant components are cellulose, lignin, hemicellulose, protein, and lipid. Thermal-stable components
like lignin can collapse at a relatively higher temperature, so the intrinsic nature of organic waste like
biomass must be cracked before the step of gas generation. Interestingly, moisture contained in the
organic waste can be direct as reaction media, so sewage sludge or algae can be properly converted under
a stem gasification environment. The size of the feedstock can significantly influence gas production.
Since small particles have better heat and mass transfer, the gasification process can be effectively
improved. In Lv et al.’s work [26], a larger feedstock size was not favored for the gasification due to the
incomplete crack of large particles, and more biochar was produced. This tendency was also proved by
Hernández et al.’s work, which suggested that a low biomass size can decrease the tar yield, and the
gasification efficiency was also enhanced [27].

Temperature represents one critical factor during gasification. This factor can significantly affect the
water properties like ionic concentration, then the type of reactions can be determined. Since most of
the reactions are endothermic, an increase in temperature can decline the yield of biochar and tar, and the
production of components with low molecules increases the efficiency of gasification. Especially,

Figure 2: Typical gasification mechanism from organic waste during steam gasification
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methane is relatively stable at a temperature range of 300°C~600°C due to its highly endothermic, while
methane will decompose or reform with hydrocarbon at a temperature above 600°C [24]. Nevertheless,
the yield of H2 usually increases with increasing temperature, which is highly related to the
decomposition of methane and hydrocarbon. In addition, the filling ratio, namely the mass of
steam/feedstock ratio, is another factor influencing the gas yield and HHV. A high organic waste ratio
will generate more solid residue and methane because a solid-solid conversion dominates the organic
waste gasification. With an excessive steam ratio, the production of H2 is favorable, and more tar can be
formed. Considering this, a good balance of stem ratio should be controlled. Catalysts also play a critical
role during gasification, and this discussion can be found in others’ work [17]. In Fig. 3, the distribution
of the gas composition with a stem/feedstock ratio is summarized including typical air gasification and
steam gasification. As observed, the CH4 ratio is relatively stable as discussed above, while the yield of
H2 and CO2 shows an obvious increase and the tendency of CO content is adverse. This suggests that the
load of the feedstock is one critical factor and strategy adjustment of steam/feedstock is essential.
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Figure 3: Influence of the steam/biomass ratio on the gas composition for the air and steam gasification of
biowaste feedstock [28–31]
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3 Machine Learning Applications in Gasification

3.1 Application Scenario of Machine Learning Methods
Several ML pathways have been widely used for modeling gasification, and a variety of predictions with

different accuracy can be found in these works. Here, we mainly described regression analysis, artificial neural
networks, decision trees, and related methods. Among them, regression analysis is popular to model the
gasification process. Regression analysis represents one typical statistical way that models the connection
between dependent variables, namely the object variable, and an independent variable with more. In detail,
regression analysis can help researchers to recognize how the values of independent variables correspond to
changes in the independent variables, while the other variables remain fixed. It can predict continuously
values like mass balance, yield, and one of the typical components of organic waste gasification [32]. A
simple process of the machine learning method in the field of gasification was shown in Fig. 4.

3.2 Typical Machine Learning Techniques
Generally, regression is a discovery of correlations between variables, which can predict continuous

output data depending on other variables. It can be conducted for forecasting, time series modeling, and
exploring relationships among these variables. Especially, linear regression is one simple method that
reveals the linear relationship between an independent variable and the dependent variables. Additionally,
logistic regression and polynomial regression, etc. are other typical regression methods. The former is
generally used as a classification algorithm, and only solves binary classification problems and probability
can be obtained [33]. Meanwhile, the sigmoid function or logistic function is generally adopted by
logistic regression methods. Polynomial regression represents one linear regression model, in which the
regression function is linear corresponding to the regression coefficient [34]. With polynomial regression,
the regression model can be fitted better.

The artificial neural network is a common nonlinear algorithm model in machine learning, which is
inspired by the biological neural networks from a human brain. This idea was generated in the 1960s
[35]. Actually, an artificial neural network is also regarded as a universal function approximator. The
detail of the running process of the neural networks mainly concludes the prediction of relevant
dependent variables according to independent variables, and the model is nonlinear and calculated by the
machine when the prediction function is considered [35]. The independent variables and dependent
variables can be added to the model (input layer), and the data goes into a black box (hidden layer),
which will train the data repeatedly and discover corresponding patterns, and then a model can be built in

Figure 4: The principle process of the machine learning method in the field of gasification
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the box where the independent variables and dependent variables are intertwined [36]. One point that should
be pointed out is that the black box is short of interpretability for artificial neural networks, which needs more
work in the future [36]. In Fig. 5, a brief single-layer perceptron structure was presented.

Decision tree represents another basic machine learning method for classification and regression, and its
model presents a tree structure. Fig. 6 showed a brief of the decision tree and random forest methods. For
classification issues, it can be regarded as one probability distribution based on the feature space and
class space [37]. The advantages of the decision tree are strong interpretability and fast classification.
According to the principle of minimizing loss function, a decision tree can be developed for training.
During classification, the rule is developed by the path from a root node to a leaf node, which is used for
matching classification, and the features of internal nodes on the path [38]. Decision tree training
generally includes feature selection, tree generation, and tree pruning [38]. Only the local optimum is
considered when a decision tree is generated, whereas the global optimum is considered for the pruning
of the decision tree [39]. Generally, decision tree shows advantages with high speed and relatively low
demand computation, and it is easy to be transformed into classification rules [40]. Herewith, the strong
interpretability makes it easy to be controlled. However, rapid training may lead the overfitting and high
variance, which should not be neglected in practice. In addition to decision, the support vector machine
represents another type of algorithm, which is popular for solving binary classification problems, and this
method is suitable for other classification and regression tasks. In the next section, the application of ML
methodology in the gasification of organic waste will be presented.

3.3 Machine Learning Applications in the Gasification of Organic Waste
To obtain gasification products with high yield and HHVs, etc., researchers usually estimate the actual

and model results from supervised machine learning algorithms data [41]. Multi-output and single-output
models are conducted by researchers, and machine learning methods are more suitable for a particular
organic waste gasification scenario which can be developed by comparison. With this, the modeling
process is always conducted by selecting the feedstock species like lignocellulose content, and
gasification parameters like temperature, residence time, CO2/N2 environment, and solid ratio, which are
generally used as input data. The gasification yield of gas like H2, gas composition, HHVs, etc. are set as
out value. For example, Zhao et al. [42] applied a random forest model, artificial neural network, and
support vector machine models in supercritical water gasification for the prediction of H2 yield, and
modeling results suggested that high oxygen-containing feedstock was advantageous for H2 recovery

Figure 5: A simple single-layer perceptron structure with I and O representing corresponding inputs and
outputs, where W means the weights in two neurons and B is denoted as the bias terms [36]
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efficiency. In addition to the yield of gas production, composition analysis is essential. Mutlu et al. [43] used
binary least squares support vector machine and multi-class random forests classifiers to predict the gas
composition and calorific value from organic waste gasification, and temperature distribution was proved
to be critical for the models’ prediction of gasification products. In Bahadar et al.’s work [44], the
gasification temperature was found to be the critical factor for hydrogen-rich syngas from a co-
gasification of biomass/lignite which was predicted by machine learning algorithms with configured and
trained datasets. Additionally, the quantization of the training dataset is important, since this is the main
reason for the formation of errors. Ögren et al. [45] compared the applications of gaussian process
regression and artificial neural networks in a laboratory-scale flat-flame burner and a pilot-scale of
biomass gasification respectively, while the results suggested that a large dataset led an irreducible error
based on the variance of the training dataset, and limited made the gaussian process regression better.

Generally, the line-regression method is inadequate for modeling the gasification process, and other
regression methods like polynomial regression and stepwise regression are relatively suitable for higher
dimensionality data. For example, in Ayodele et al. and coworker’s study [46], a non-linear response
quadratic model with inbuilt algorithms was proved to be best for the prediction of hydrogen production
from co-gasification of coconut shell and oil palm waste, while the support vector machine incorporated
with linear kernel lead a low R2 performance of 0.3~0.7. Few works used a decision tree-based method
to model the gasification and predict the yield of gas compared to the artificial neural networks. Although
a simple tree decision can be conducted easily, it still possesses the same black-box nature as an artificial
neural network, and its interpretability is relatively higher than that of the artificial neural network [47].
One most recent work compared six models for supercritical water gasification of coal, and their work
showed that the decision tree had a better prediction performance of gas yield than the artificial neural
networks [47]. Several studies used support vector machines to finish the classification tasks, but they
also can be applied to the modeling of the gasification process, since support vector machines resulted in
a better value of both RMSE and R2 compared to the artificial neural network. With this, the gas

Figure 6: A brief of the decision tree and random forest methods. Single decision trees are shown in a blue
box. The highlighted branches with green color give a pathway of a tree’s prediction
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components or the corresponding distribution can be favored. For instance, Aguado et al. [48] successfully
predicted the hydrogen concentration from an air-blown downdraft fixed-bed gasifier, and the modeling
result was consistent with the artificial neural network. However, in Hossain et al.’s work [49], the
support vector machine showed poor performance during the modeling of H2 production with any
incorporation of kernel functions. This work was conducted with a biological process instead of
gasification, since the parameters was more complex than gasification.

Table 2: Summary of ML model application in the field of organic waste gasification

Feedstock ML model used Predicted
parameters

Prediction
performance

RMSE Input/
Output
numbers

Data
size

Year Reference

Municipal solid
waste

Decision tree,
extreme gradient
boosting, random
forest, multilayer
perceptron, and
support vector
regression

Heating value
of gas, the
heating value
of gasification
products, and
syngas yield

R2 > 0.98 0.01–
1.878

9/3 67 2021 [50]

Olive pit Linear regression, k-
nearest neighbors
regression, support
vector machine
regression, and
decision tree
regression algorithms

Time,
temperature,
CO, CO2,
CH4, O2 and
heating value,
and H2

R2 > 0.99 0.008–
0.892

8/1 529 2019 [51]

Biomass Artificial neural
network and support
vector machine

H2 yield R2 = 0.9782 0.106–
0.964

8/1 95 2021 [42]

Woody biomass Artificial neural
networks and
regression techniques

CO, CO2,
CH4, H2 and
HHV

R2 > 0.96 0.348–
1.520

8/5 5237 2018 [43]

Biomass Artificial neural
network, support
vector machine, and
random forest

HHV R2 > 0.905 2.564–
3.05

7/1 495 2019 [52]

Sewage sludge Support vector
machine, ensembled
tree, Gaussian
process regression,
and artificial neural
network

H2 yield R2: 0.761–
0.994

0.093–
2.479

12/1 125 2022 [53]

Biomass Polynomial
regression models
and online
optimization routines

Hydrogen
production

R2 > 0.98 0.342–
1.269

2/6 3500 2020 [54]

Lignocellulosic
biomass

Bayesian regularized
artificial neural
network models

Syngas
composition
and chemical
exergy value

R2 = 0.99 36.99 5/2 32025 2021 [55]

(Continued)
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In Table 2, we presented recent works about ML methods and their corresponding applications in the field
of organic waste gasification. It can be observed that R2 reached a value close to 1 meaning high fitting results.
Most works focus on the high yield of H2 and the HHVof gas products, which suggests that ML application in
energy recovery can be very successful since gasification of organic waste requires high energy input and a
good optimization of energy balance is essential. Generally, the popular applications of ML in organic
waste gasification include artificial neural networks, followed by support vector machines, decision trees,
and gradient tree boosting. Typical input variables adopted by the ML tool are the elemental composition,
proximate analysis of feedstock, and gasifying agent, and gas compositions including CO, CO2, H2, and
CH4, mass yield, and HHV are the most comment used as output data [58].

The numbers of input and out data were generally not beyond ten in these works, while the data size was
different due to the difference in samples and collection methods. The data size also played a critical role in an
accurate prediction. These works used more than three models to predict the output parameters, and similar
results from the ML models were accepted. Among these input factors, although a large number of studies
considered the effect of temperature and residence time, few works focused on parameters like heating rates
and environmental pressures with the air and N2. Unlike traditional methods of stoichiometric and
nonstoichiometric equilibrium, in which the results significantly rely on the chemical reactions and
equilibrium conditions, approaches of ML are more autonomous to finish the modeling process.

Finally, in Fig. 7, we presented typical samples for theML application models for different target variables.
In summary, it will be convenient for researchers to select ML models based on adaptability, advantage, and
drawbacks in the gasification field. When the target is set to solve complicated non-linear environmental
problems, the artificial neural network is highly adaptive and fault tolerant, but the nature of the “black
box” and overfitting make is limited. Several researchers use support vector machines to avoid local
optimum and dimensionality problems, and the accuracy can be improved, while it is sensitive to the
missing data. Even if low overfitting can be expected from the support vector machine method, the training
efficiency during the interpolation of large-scale data is low. Meanwhile, a similar situation in both the
random forest model and the genetic algorithm is the low calculation speed, but the genetic algorithm can
be easily incorporated with other types of models. In addition, though the decision tree has a higher
learning rate and interpretability, the data can be easily overfitted as the support vector machine method. In

Table 2 (continued)

Feedstock ML model used Predicted
parameters

Prediction
performance

RMSE Input/
Output
numbers

Data
size

Year Reference

Biomass Levenberg-
Marquardt algorithm,
artificial neural
network

Hydrogen
mole fraction
of syngas

R2 > 0.99 0.11–
5.09

6/1 16 2021 [56]

Lignite and
sorghum

Regression models,
support vector
machine regression,
gaussian processing
regression, and
artificial neural
networks

Hydrogen
yield

R2: 0.857–
0.998

0.283–
0.502

13/1 124 2022 [44]

Waste wood Artificial neural
network

Gas yield and
compositions

R2 > 0.99 0.013–
0.058

4/6 40 2021 [57]
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summary, from the perspectives of data size, setting of input and output parameters, process optimization, and
estimation of the performance of and quality of products, a suitable ML model for organic waste gasification
should be developed. Because of the high complexity of organic waste, the mechanism of the gasification
process is still under exploration in a view of thermal chemistry, the selection of a certain parameter and
ML model, or the characteristics of the product to be evaluated, which are facing challenges.

Figure 7: Representative examples of ML application for organic waste gasification [42,46,53,59,60]: (a)
random forest and support vector machine as yield and compositions; (b) artificial neural network derived
ML models for the prediction of biomass pyrolysis kinetics; (c) H2 production prediction during
hydrothermal gasification using random forest model outperformed gaussian process regression, artificial
neural network and support vector machine models; (d) genetic algorithm based ML models for
prediction, analysis, and evaluation of H2 yield with elemental and proximate analysis; (e) support vector
machine, Gaussian process regression, sequential quadratic programming algorithms for predication
Hydrogen-rich syngas production with factors of temperature, catalysts loading and blending ratio
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4 Conclusion

In this work, the detailed process parameters including temperature, steam ratio, and feedstock during
gasification of organic wastes were reviewed, with three typical gasification techniques including air
gasification, and the involved mechanism were elaborated. Additionally, parameters affecting the product
distribution were discussed, which provided references for the ML application. We also presented the
details of ML methods like regression analysis, artificial neural networks, decision trees, and related
methods, which are expected to revolutionize data analysis and modeling of the gasification of organic
waste. Main outputs including the syngas yield, gas composition, and HHV can be predicted with a better
understanding of the gasification process and ML application. A combination of gasification and ML is of
great significance for the resource and energy utilization of organic waste, and a reference for industrial
application can be provided.

5 Future Challenges

Organic waste gasification is an effective and sustainable way for energy utilization, and the advantages
are exploited to the hilt with adjustment and optimization of process parameters. ML has shown excellent
application performance in the field of organic waste gasification including product distribution and HHV.
Nevertheless, ML application in gasification faces huge challenges. Since every modeling strategy is
distinct and the running way is different, enough data should be considered when model training and
validation are developed. Sufficient samples should be provided when high dimensional datasets are
conducted to avoid overfitting, which means a low efficient training. Future challenges are given below:

(a) Though significant works have successful applications of these ML models for a thermal conversion
process, these models are really different and lack comparability, which hinders their practical application.

(b) Additionally, although the high accuracy, models should enhance the interpretability, because the
involved internal principle like black box form artificial neural network is confusing for
researchers, and the gray-box modeling method coupled with a partial theory-driven model and
first principal model with the data-driven model are expected.

(c) Moreover, it is important to estimate the role of the variable contained in the gasification. Few works
focused on catalyst loading and optimization during gasification. More works should consider the
ML application in catalyst-assisted gasification processes regardless of the species and efficiency
in the future. The solid residue and tar should be considered in the data set.
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