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ABSTRACT

TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.
Two concentrations of NaOCl, 5 and 30 mmol/g of cellulose, were used in this study. The number of carboxyl
groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cel-
lulose, respectively. The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystal-
linity, at 81.15% and 80.14%, respectively, compared to untreated cellulose, which had a crystallinity of 75.95%.
The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline
conditions (pH 9), while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic
conditions. The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG
conformed to the pseudo-second-order model. The initial concentration parameter revealed that the isotherm
model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed
to the Langmuir model. The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPO-
oxidized cellulose (30 mmol/g) were approximately 80.17% and 59.52%, respectively. These results demonstrate
that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures. Further-
more, the use of TEMPO-oxidized cellulose showed good regeneration capability, maintaining more than 95% of
its adsorption capacity after 8 cycles.
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1 Introduction

Water, as a vital source of life, is essential for human beings, fulfilling their fundamental needs.
However, with the progression of time and technology, various regions in Indonesia are grappling with
the scarcity of clean water due to the rapid growth of industries, particularly the textile industry [1,2].
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Rivers in the affected areas have become contaminated due to the discharge of dye waste from textile
production processes [3,4].

The textile industry significantly impacts water pollution. Various processes within this industry,
primarily the dyeing of fabric materials until the production of ready-to-use textiles, heavily rely on water
and chemicals. These chemicals may include heavy metals, dyes, and phenolic compounds, which are
often discharged directly into rivers, leading to increased pollution of natural water reservoirs [5–7].
Pollution levels can be monitored through dynamics in parameters such as BOD, COD, TDS, TSS
[8–10], and the presence of heavy metals like Cd, Cr, Ni, and Pb [8,11–14].

Numerous methods can be employed to reduce hazardous substances or xenobiotics in water
environments, including biological treatment using microorganisms [15], membrane technology [16,17],
photocatalysis [18–20], electrochemical [21,22] and adsorption [23–27]. Among these, adsorption
processes have gained widespread popularity in waste treatment due to their cost-effectiveness, ease of
operation, and capability to remove almost all harmful pollutants [28,29]. Several adsorbents, such as
activated carbon, sponge, montmorillonite, zeolite, kaolin, and microbial-based adsorbents, can be used
for color waste adsorption [5,30,31]. Another viable alternative for adsorption is bioadsorbents derived
from agricultural waste [32–35]. Bioadsorbents offer several advantages, including low cost, easy
availability, environmental friendliness, and high adsorption capacity [29,36,37]. Cellulose, a promising
material for bioadsorbents in water purification [1,34,38,39], has limitations in color adsorption, as it
cannot selectively adsorb specific color groups [28–30]. Colors can be classified into three groups based
on their charge in the chemical structure: anionic, cationic, and non-ionic [40]. Therefore, surface
modification of cellulose is essential to facilitate interactions with specific color groups. This modification
advantageously allows the bound or adsorbed color to be reused in subsequent applications.

Various methods can enhance the ability of cellulose to absorb specific dye groups, including oxidation
using periodate, potassium permanganate, and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) [40–42].
Currently, TEMPO oxidation is widely used for oxidizing cellulose surfaces due to its relatively
straightforward process, resulting in the incorporation of numerous carboxylate groups onto the cellulose
surfaces. Moreover, TEMPO oxidation can be conducted in water under mild conditions [41–43]. The
selective nature of TEMPO oxidation allows for the transformation of hydroxyl groups at the primary
C6 position of anhydroglucose units into carboxyl groups on the cellulose surface [44]. Consequently,
surface modification of cellulose using TEMPO increases the negative charge content on the cellulose
surface, enabling the adsorption of positively charged dye substances. During TEMPO oxidation, several
chemicals are normally added as supporting materials, such as NaBr and NaOCl, which are utilized as a
co-catalyst and oxidizing agent, respectively. Several studies have evaluated the effect of varying amounts
of NaBr and NaOCl on the properties of oxidized cellulose, such as opacity and mechanical properties,
which depend on the carboxyl content after TEMPO oxidation. Zhang et al. conducted a study on the
effect of NaOCl concentration on TEMPO oxidation, and the resulting fiber was subsequently treated
with periodate for further oxidation. The adsorption capacity of the treated fiber was evaluated against
chrysoidine and hydrazine [45]. However, the presence of multiple oxidation processes prevents a
detailed understanding of the effect of NaOCl concentration on its performance as an adsorbent for
chrysoidine and hydrazine due to the subsequent periodate oxidation. Another study by Zhu et al. varied
the concentration of NaOCl during TEMPO oxidation and evaluated its performance for humidity sensing
[46]. The results confirmed that the NaOCl concentration linearly affected the number of carboxylic
groups, and the fiber treated with a high concentration of NaOCl showed the highest performance in
humidity sensing.

Based on the theories mentioned above, there was no study that has been performed about the adsorption
of the dyes mixture using TEMPO oxidized cellulose. This study focuses on developing oxidized cellulose
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using TEMPO/NaBr in the presence of NaOCl at concentrations of 5 and 30 mmol/g of fiber. The goal is to
enhance the adsorption of a mixture of methylene blue and rhemazol yellow FG dyes. To support this,
various tests were conducted, including Fourier Transform Infrared (FTIR) analysis, Scanning Electron
Microscopy (SEM), and X-Ray Diffraction (XRD).

2 Materials and Methods

2.1 Materials
The materials used in this study include sodium hydroxide (NaOH, Glatt Chemical-Indonesia), sodium

hypochlorite, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, Sigma-Singapore), sodium bromide (HiMedia
Laboratories-India), deionized water, rhemazol yellow FG (Aman Semesta Enterprise-Malaysia), methylene
blue (Sigma-Singapore), hydrochloric acid (BDA Chemical-Indonesia), sodium acetate (Sigma-Singapore),
phenolphthalein indicator (Arkitos Chemical-Indonesia), and cellulose (Avicel PH 101, Sigma-Singapore).

2.2 Oxidation of Cellulose Using TEMPO/NaOCl/NaBr
Approximately 0.08 g of TEMPO was dissolved in 500 mL of deionized water, and 5 g of cellulose was

added to the TEMPO solution. Sodium bromide (0.05 g) and sodium hypochlorite (NaOCl) at 5 mmol/g were
added to the cellulose suspension. The pH of the solution was maintained at 10–11 by adding 5 M sodium
hydroxide (NaOH). The cellulose suspension was stirred for 6 h at room temperature, and then the TEMPO-
oxidized cellulose was washed with deionized water. The obtained oxidized cellulose was dried at room
temperature. The same procedure was repeated with NaOCl at a concentration of 30 mmol/g [47].

2.3 Acid-Base Titration
Approximately 0.1 g of TEMPO-treated cellulose was weighed and acidified using 15 mL of 0.01 M

HCl for 1 h. The TEMPO-oxidized cellulose was neutralized by rinsing it with deionized water. The
oxidized cellulose was mixed with 50 mL of deionized water and 30 mL of 0.25 M sodium acetate and
stirred for 2 h. Then, 30 mL of the mixture was added with one drop of phenolphthalein indicator and
titrated using 0.01 M NaOH [48].

2.4 Adsorption Test
Cellulose and TEMPO-oxidized cellulose were subjected to adsorption experiments using several

parameters, including pH, contact time, initial concentration, recyclability, and dye separation. The
samples were then separated using a centrifuge at 4500 rpm for 10 min. The obtained filtrate was tested
using a UV-Vis spectrophotometer. The same procedure was repeated for methylene blue dye and binary
mixtures [49,50].

2.5 Fourier Transform Infrared (FTIR) Analysis
FTIR characterization was conducted to analyze the characteristic functional groups of the cellulose

samples. Approximately 1 mg of the sample was mixed with 9 mg of KBr, then placed into a press
holder and pressed to form a thin pellet. The pellet was inserted into the FTIR compartment (Bruker
ALPHA II Compact). FTIR analysis was performed by measuring the transmittance in the wavenumber
range of 4000–500 cm−1 at a resolution of 4 cm−1.

2.6 Scanning Electron Microscopy (SEM)
The surface morphology of the cellulose and TEMPO-oxidized cellulose powder samples was observed

using a Scanning Electron Microscope (SEM TM3000). The samples were coated with gold and then
inserted into the specimen chamber. The samples were observed at various magnifications to understand
their morphology.
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2.7 X-Ray Diffractions (XRD)
XRD analysis was conducted to determine the phase structure and purity of the samples using XRD

Rigaku Smartlab. The analysis was performed on cellulose and TEMPO-oxidized cellulose samples.
Crystallinity testing was carried out by comparing the distances on the crystal planes and the peak
intensities of the diffraction patterns with standard data. The crystallinity index was calculated using the
following equation:

Crystallinity index = (crystalline intensity − amorphous intensity)/crystalline intensity × 100%

Data were obtained using an X-ray diffractometer with a Cu Kα radiation source (λ = 1.54060 Å), a scan
speed of 1°/0.05 sec, and an initial and final 2θ angle range of 5°–80°.

3 Result and Discussions

The surface modification of cellulose using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/NaOCl/
NaBr was successfully carried out. TEMPO, a water-soluble compound, acts as a catalyst to oxidize
primary hydroxyl groups into aldehyde and carboxylate groups [41–43,47]. Previous studies have
documented that increasing the quantity of NaOCl leads to a higher concentration of carboxyl groups on
the cellulose surface [47,51]. In this study, two concentrations of NaOCl (5 and 30 mmol/g) were tested
for the surface modification of cellulose. The acid-base titration method was used to determine the
carboxyl group content in the TEMPO-oxidized cellulose. The amount of carboxyl groups in the
TEMPO-oxidized cellulose was found to be 0.5160 mmol/g for the 5 mmol/g NaOCl variation and
1.8461 mmol/g for the 30 mmol/g NaOCl variation. Both cellulose and TEMPO-oxidized cellulose
samples with NaOCl concentrations of 5 and 30 mmol/g were analyzed using FTIR to identify the
functional groups present. The FTIR spectra are presented in Fig. 1.

The FTIR spectrum depicted in Fig. 1 illustrates the functional groups present in both the cellulose and
TEMPO-oxidized cellulose samples. Despite variations in peak shapes observed among the samples, the
resulting spectra exhibit no significant differences. Analysis of the cellulose spectrum reveals the presence
of the O-H functional group at 3332 cm−1, with the peak at 2892 cm−1 attributed to C-H stretching, and
the band at 1028 cm−1 indicating C-O stretching. In the spectrum of the TEMPO-oxidized cellulose
sample, a distinct peak at 1602 cm−1 is observed, corresponding to the carbonyl vibration of carboxylate
in its sodium form [5,52–55].

Figure 1: FTIR spectra of cellulose and oxidized cellulose samples
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The XRD analysis of cellulose and TEMPO-oxidized cellulose samples treated with NaOCl at
concentrations of 5 and 30 mmol/g aimed to identify the phases present in the samples. The XRD results
are presented in Fig. 2.

The diffractogram results shown in Fig. 2 confirm that the analyzed cellulose sample belongs to cellulose
I, consistent with prior research [56,57]. A shift in the diffraction peaks of the TEMPO-oxidized cellulose
sample compared to cellulose is observed. Cellulose and TEMPO-oxidized cellulose at a concentration of
5 mmol/g exhibit crystallinity values of 75.94% and 81.14%, respectively. This increase in crystallinity is
attributed to the reduction of amorphous regions on the cellulose surface resulting from its interaction
with NaOCl. Oxidation reactions on the amorphous regions eliminate some of the amorphous areas on
the cellulose surface. Aldehyde and carboxyl groups are found on both the crystalline and amorphous
surfaces of TEMPO-oxidized cellulose, supported by previous studies [42,58,59]. Surface oxidation of
cellulose using 30 mmol/g NaOCl results in a slight decrease in crystallinity to 80.15% compared to
oxidized cellulose prepared with 5 mmol/g of cellulose. The reduction in cellulose crystallinity is
attributed to the increased number of carboxyl groups on the cellulose surface, as indicated by titration
results of approximately 1.8461 mmol/g. Several previous studies have reported similar findings
regarding the decrease in crystallinity index [54,60–63].

The surface morphology of cellulose and TEMPO-oxidized cellulose samples treated with NaOCl at
concentrations of 5 and 30 mmol/g was observed using SEM to determine the structural morphology of
the cellulose surface. As shown in Fig. 3, the morphology of cellulose and TEMPO-oxidized cellulose
does not differ significantly, and in general, cellulose particles appear to form aggregates. The width
dimensions of cellulose and TEMPO-oxidized cellulose were measured using ImageJ 1.8.0. Cellulose
exhibited an average width dimension of approximately 8 µm, whereas oxidized cellulose at
concentrations of 5 and 30 mmol/g NaOCl displayed decreased average width dimensions of 6 and 4 µm,
respectively.

The adsorption experiment focused on TEMPO-oxidized cellulose prepared with 30 mmol/g of NaOCl
due to its highest carboxylic content. The presence of carboxylic groups, confirmed through titration,
enhances the adsorption capability of TEMPO-oxidized cellulose against cationic dyes, such as methylene
blue. Electrostatic interactions play a significant role in the adsorption of methylene blue on the surface
of TEMPO-oxidized cellulose (Fig. 4). Fig. 5 illustrates van der Waals interactions occurring during the

Figure 2: Diffractogram of cellulose and oxidized cellulose
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adsorption of rhemazol yellow on the surface of TEMPO-oxidized cellulose. Various parameters were
utilized in the adsorption experiments, including pH, contact time, and initial concentration.

The surface charge of TEMPO-oxidized cellulose was influenced by the pH value of the dye. This study
aimed to evaluate the effect of pH on the adsorption performance of TEMPO-oxidized cellulose. The
experiments were conducted at pH 5–9 for rhemazol yellow FG and methylene blue. The adsorption
capacity of rhemazol yellow FG and methylene blue was determined in separate chambers. Fig. 6

Figure 3: Morphology of (a) cellulose, (b) oxidized cellulose 5 mmol/g NaOCl, and (c) Oxidized cellulose
30 mmol/g NaOCl

Figure 4: Electrostatic interaction between methylene blue and TEMPO oxidized cellulose

Figure 5: Van der Waals interaction between RY and TEMPO oxidized cellulose
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illustrates the adsorption capacity of rhemazol yellow FG and methylene blue. The anionic dye, rhemazol
yellow FG, exhibited the highest adsorption capacity in acidic conditions due to the protonation of
carboxylic groups. This phenomenon results in the positive charge on the surface of TEMPO-oxidized
cellulose. Conversely, under alkaline conditions, the hydrogen from carboxylic groups is deprotonated,
resulting in a negative charge on the surface of TEMPO-oxidized cellulose. This explains the highest
adsorption capacity of methylene blue (cationic dye) under alkaline conditions.

Contact time during adsorption plays an important role in determining the maximum adsorption capacity
at a specific contact time suitable for each dye. In this experiment, the adsorption process was evaluated using
pseudo-first and second-order models. Table 1 presents the kinetic parameters of each process. According to
Table 1, the adsorption process of methylene blue and rhemazol yellow FG followed the pseudo-second-
order model, as concluded from the highest correlation coefficient (R2) value from each experiment.

The initial concentration is one parameter used to determine the adsorption capacity of the adsorbent.
The different values of the initial concentration of the adsorbate would affect the optimum contact time
for reaching equilibrium. The adsorption capacities at equilibrium have a linear correlation with the initial
concentration. Two isotherm models were used in this study: Langmuir and Freundlich isotherm models.

Fig. 7 and Table 2 present the results of the effect of initial concentrations and the results of Langmuir
and Freundlich isotherm models. Data in Table 2 show that the adsorption of methylene blue and rhemazol
yellow FG on the matrix of TEMPO oxidized cellulose followed the Langmuir model, as concluded from the
highest correlation coefficient (R2). The Langmuir model suggests that the adsorption process involves
monolayer adsorption occurring on the entire surface of TEMPO-oxidized cellulose as the adsorbent

Figure 6: The pH effect on the adsorption capacity of TEMPO oxidized cellulose against (a) methylene
blue; (b) rhemazol yellow FG

Table 1: Kinetic model of dye adsorption by TEMPO oxidized cellulose

Dye Co (mg/L) Pseudo first order kinetic model Pseudo second order kinetic model

Qe (mg/g) k R2 Qe (mg/g) k R2

Methylene blue 100 97.35 0.0075 0.965 107.5 1.05 × 10−4 0.995

200 181.50 0.0270 0.927 192.05 2.45 × 10−4 0.965

400 359.45 0.0090 0.988 403.25 2.90 × 10−5 0.998

Rhemazol yellow FG 100 92.78 0.0110 0.995 102.75 1.35 × 10−4 0.997

200 161.32 0.0125 0.928 174.95 1.03 × 10−4 0.965

400 247.05 0.0095 0.920 273.15 5.15 × 10−5 0.960
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[64–68]. The maximum adsorption capacities (Qm) for methylene blue and rhemazol yellow FG were
approximately 601.25 and 320.44 mg/g, respectively. This result confirms that TEMPO oxidized cellulose
has better adsorption capacities than adsorbents in previous studies [69–72].

The utilization of TEMPO-oxidized cellulose as the adsorbent could be employed for several cycles
through repeated sorption and desorption processes. Fig. 8 illustrates the different behaviors of TEMPO-
oxidized cellulose during the sorption and desorption of methylene blue and rhemazol yellow FG over
several cycles. After 8 cycles, the sorption of methylene blue exhibited desirable adsorption capacities,
approximately 95%. However, the adsorption capacities of rhemazol yellow FG decreased after several
sorption–desorption cycles, reaching approximately 70%. The decrease in the adsorption capacities of
rhemazol yellow FG could be caused by the decrease in the availability of binding sites [73–77].

Another experiment was conducted in this study, namely selective adsorption and intelligent separation.
The adsorption of a mixed-color solution involves the simultaneous adsorption of methylene blue and

Figure 7: The effect of concentration vs. adsorption capacities of TEMPO oxidized cellulose

Table 2: Isotherm model parameters

Isotherm model Parameters Methylene blue Rhemazol yellow FG

Langmuir Qm 601.25 320.44

KL 0.0704 0.1148

R2 0.999 0.9948

Freundlich KF 102.78 60.77

nF 2.9926 2.7532

R2 0.7519 0.9933
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rhemazol yellow FG. The adsorption test was conducted using three samples: cellulose and TEMPO-
oxidized cellulose at concentrations of 5 and 30 mmol/g NaOCl. The results of the adsorption experiment
for the mixed solution of Rhemazol Yellow FG and methylene blue are depicted in Fig. 9. The
percentage adsorption of Rhemazol Yellow FG in the cellulose mixed-color solution was 61.77%. A
decrease in the percentage adsorption was observed in the samples of oxidized cellulose at concentrations
of 5 and 30 mmol/g NaOCl, with values of 58.32% and 59.52%, respectively.

The adsorption test results for methylene blue reveal that TEMPO-oxidized cellulose at 30 mmol/g
NaOCl exhibits the highest adsorption at 80.17%. In contrast, the adsorption capacity of cellulose and
TEMPO/NaOCl/NaBr-oxidized cellulose at 5 mmol/g was achieved at 60.27% and 75.07%, respectively.
The higher content of negatively charged carboxylate groups in the TEMPO-oxidized cellulose samples
facilitates interaction with positively charged colorants. This is attributed to the greater abundance of
carboxylate groups compared to other samples, allowing for effective adsorption of the positively charged
dyes onto the structure of the oxidized cellulose [31,55,78,79].

4 Conclusion

Oxidized cellulose was fabricated using the addition of TEMPO/NaOCl/NaBr, prepared at pH 10–11.
The NaOCl concentration has a linear correlation with the carboxylic content of TEMPO-oxidized
cellulose. The carboxylic content for NaOCl concentrations of 5 and 30 mmol/g was approximately
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Figure 8: Dye removal performance of TEMPO-oxidized cellulose after 8 cycles

Figure 9: Selective adsorption and intelligent separation of TEMPO-oxidized cellulose
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0.5160 and 1.8461 mmol/g, respectively. The successful oxidation of cellulose using TEMPO/NaOCl/NaBr
was confirmed by the presence of the C = O group. TEMPO-oxidized cellulose has a higher crystallization
index than cellulose. The maximum adsorption capacities of TEMPO-oxidized cellulose (30 mmol/g) against
methylene blue and rhemazol yellow FG were approximately 601.25 and 320.44 mg/g, respectively. The
recyclability of TEMPO-oxidized cellulose shows good performance for up to 8 cycles, with sorption
capacities of methylene blue reaching up to 95%, although a decrease was observed for rhemazol yellow
FG. Due to the presence of carboxylic groups on the surface of TEMPO-oxidized cellulose, the prepared
adsorbent could separate the anionic and cationic groups. The degree of removal of anionic and cationic
dyes depends on the amount of carboxylic content.
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