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The Effect of Longitudinal Pre-Stretch and Radial Constraint on the Stress
Distribution in the Vessel Wall: A New Hypothesis

Wei Zhang1,2, Carly Herrera1, Satya N. Atluri1, Ghassan S. Kassab2,3

Abstract: It is well known that blood vessels shorten
axially when excised. This is due to the perivascular
tethering constraint by side branches and the existence of
pre-stretch of blood vessels at the in situ state. Further-
more, vessels are radially constrained to various extents
by the surrounding tissues at physiological loading. Our
hypothesis is that the axial pre-stretch and radial con-
straint by the surrounding tissue homogenizes the stress
and strain distributions in the vessel wall. A finite ele-
ment analysis of porcine coronary artery and rabbit tho-
racic aorta based on measured material properties, geom-
etry, residual strain and physiological loading is used to
compute the intramural stresses and strains. We system-
atically examined the effect of pre-stretch and external
radial constraint in both vessels. Our results show that
both stretching in the axial direction and compression in
the radial direction lead to a more homogeneous strain
and stress state in the blood vessel wall. A “uniform bi-
axial strain” hypothesis is proposed for the blood vessel
wall and the ramifications are discussed.

keyword: Blood vessel, remodeling, homogeneous
state, mechanical homeostasis.

1 Introduction

Classically, the no-load state (zero transmural pressure)
of a blood vessel was thought to be the zero-stress state.
A clear consequence of this assumption was a large trans-
mural stress gradient in the vessel wall. The paradigm
changed two decades ago when Fung (1983b) and Vaish-
nav and Vossoughi (1983) independently observed that
the geometry of the zero-stress state is an open sector
which is very different from the no-load state. The ob-
servation was made through a rather simple but elegant
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experiment. A radial cut of the no-load state caused the
ring to spring open into a sector. The finding of circum-
ferential residual stress removed the concept of stress
concentration at the inner wall of the vessel in the in
vivo state (Chuong and Fung, 1986). The implication
of the circumferential residual strain was the “uniform
stress” hypothesis proposed by Fung (1983b). The uni-
form stress hypothesis has been used by Takamizawa and
Hayashi (1987, 1988) to predict the material constants of
a strain energy density function and by others to under-
stand arterial remodeling in response to changes in phys-
ical stress and strain (e.g., Rachev, Stergiopulos, Meister,
1996; Taber and Humphrey, 2001).

The existence of pre-stretch and longitudinal tethering
was documented much earlier than circumferential resid-
ual strain (Fuchs, 1900; Hesses, 1926; Bergel, 1961; Pa-
tel and Fry, 1966; Patel and Vaishnav, 1972; McDonald,
1974). Numerous studies have quantified the degree of
axial shortening when a blood vessel is excised from the
in situ condition; i.e., the in vitro axial length is signifi-
cantly shorter than that of the in situ condition under zero
pressure (see Review in Guo and Kassab, 2003). The
axial pre-stretch is typically characterized by the axial
stretch ratio, λz, which is the ratio of the axial length of
the vessel in situ to that in vitro. The λz has been system-
atically measured along the length of the canine, porcine
and mouse aortas (Han and Fung, 1995; Guo and Kassab,
2003). It was found that λz increases along the length of
the aorta from 1.1 to 1.6 (larger near the common iliac
bifurcation). Recently, we have found that the λz for the
left anterior descending (LAD) artery is about 1.4 (Lu,
Yang, Zhao, Gregersen, Kassab, 2003).

We have also recently determined the effect of surround-
ing tissue on the mechanical properties of blood ves-
sels. We considered an epicardial coronary artery (LAD
artery) surrounded by the passive myocardium. The
pressure-cross sectional area (CSA) relation was mea-
sured for the LAD artery in situ and in vitro using digital
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subtraction angiography (Hamza, Dang, Lu, Mian, Mol-
loi, Kassab, 2003). We found that, at pressure of 100
mmHg, the CSA in situ is 34% smaller than that at the in
vitro state. This corresponds to a 19% decrease in diam-
eter due to the surrounding tissue constraint. Hence, the
coronary arteries have axial pre-stretch and are radially
constrained by the surrounding tissue and myocardium
(Hamza, Dang, Lu, Mian, Molloi, Kassab, 2003). The
obvious question is: What are the mechanical implica-
tions of these observations?

Although the effect of circumferential residual strain on
the in vivo intramural stress distribution has been thor-
oughly investigated (see Review in Rachev and Green-
wald, 2003), there are few similar studies on the axial
pre-stretch and the external radial constraint by the sur-
rounding tissue. Hence, our objectives are to determine
the effect of these factors on the distributionof intramural
stresses and strains in the coronary artery wall. Our hy-
pothesis is that the axial pre-stretch and radial constraint
by the surrounding tissue homogenizes the circumferen-
tial and axial stresses and strains in vivo. A finite element
method was used to determine the distributions of intra-
mural stresses and strains in the vessel wall under differ-
ent axial pre-stretch and radial constraints. The results of
the study are important since stresses and strains are in-
timately related to the physiology and patho-physiology
of the arterial wall.

2 Model

A finite element method is used to take into account
the non-linear constitutive properties of the vessel. A
straight, cylindrical vessel is considered with a length
L = 3 cm (Figure 1). At the no-load state, the inner ra-
dius and wall thickness are taken as ri = 1.202 mm and
T = 0.544 mm, respectively (Kassab, unpublished data
for LAD artery). The solid area is discretized into 1500
rectangular elements.

The mechanical behavior of the artery is assumed to obey
an exponential-type constitutive model proposed by Fung
(Chuong and Fung, 1986):

W =
c0

2

{
exp

[
c1E2

r +c2E2
z +c3E2

θ

+2(c4ErEz +c5EzEθ +c6EθEr)
]−1

}
,

(1)

where W is the pseudo-strain energy density. Er, Ez and
Eθ denote the scaled Green’s strains in the radial, axial
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Figure 1 : Schematic of the axisymmetric model (not to
scale) and a portion of its finite element mesh.

and circumferential directions, respectively. The strains
are related to the “normalized–stretch-ratios” by

Ei =
1
2
(λ

2
i −1) (i = r, z,θ) (2)

The normalized-stretch-ratios are defined as the corre-
sponding principal stretch ratios (λr, λz, λθ), divided by
the cubic root of the third invariant (J = λrλzλθ) of the
deformation gradient as per

λr = λrJ
−1/3, λz = λzJ

−1/3, λθ = λθJ−1/3. (3)

For large deformations of isotropic materials, the Cauchy
stress, and its work-conjugate, the Hencky (logarithmic)
strain are the proper measures of true stress and strain de-
fined in the deformed configuration (Atluri, 1984). How-
ever, the stress-strain relation should be properly estab-
lished between the second Piola-Kirchhoff stress and the
Green-Lagrange strain, for anisotropic materials (Atluri,
1984), as shown in Fung’s model (Eq. (1)). The deriva-
tives of strain energy are the second Piola-Kirchhoff
stresses. The principal logarithmic strains are simply

εi = lnλi (i = r, z,θ). (4)

If we take into account the incompressibility of the blood
vessel by the method of a Lagrangian multiplier, the
Cauchy stresses can be expressed as

σi j =
ρ
ρ0

∂x j

∂Xα

∂xi

∂Xβ

∂W
∂Eβα

+η
∂ϕ
∂εi j

(i, j,α,β = r, z,θ),

(5)

where xi and Xα denote coordinates, and ρ and ρ0 rep-
resent densities, in the deformed and reference states,



The Effect of Longitudinal Pre-Stretch and Radial Constraint on the Stress Distribution in the Vessel Wall: A New Hypothesis43

respectively. Here, ϕ(J) = (J − 1)2 is selected as the
penalty function to impose the volume-conserving con-
straint (Atluri and Reissner, 1989). The parameter η
reflects the incompressibility of the material. Note that
summation is assumed in Eq. (5) for indexes α and β.

For ideally incompressible materials, J=1 and ρ = ρ0.
Hence, the above equations are exactly the same as those
presented by Chuong and Fung (1986) or Rachev, Ster-
giopulos, Meister (1996). The material properties for
a representative LAD artery are: c0 = 13.7 kPa, c1 =
5.7, c2 = 3.1, c3 = 0.87, c4 = 2.7, c5 = 0.66, c6 = 0.41
(Kassab, unpublished data). These parameters were ob-
tained by varying the stretch ratio and internal pres-
sure systematically for a coronary arterial segment. The
stress-strain relationship was then derived based on the
loading and deformation data in reference to the zero-
stress state. A relatively large penalty parameter η =
1000 kPa is used in our simulations.

The assumption of incompressibility yields the follow-
ing principal stretch ratios (Rachev, Stergiopulos, Meis-
ter, 1996)

λr =
R

λzχr
, λz =

z
Z

, λθ =
χr
R

, (6)

where R denotes the radius of an arbitrary point at zero-
stress state (an open sector), r is the radial coordinate in
the deformed configuration, χ = π/(π− Φ) is a factor
that depends on the opening angle Φ, which is defined as
the angle subtended by two radii connecting the midpoint
of the inner wall of the open sector. The inner and outer
radii at no-load state and zero-stress state can be obtained
as: ri = 1.202, re = 1.746,Ri = 3.519,Re = 4.053 mm,
which correspond to χ = 2.523 and an opening angle Φ =
108.7◦ when assuming λz = 1 from the zero stress state
to the no-load state (Frobert, Gregersen, Bjerre, Bagger,
Kassab, 1998). The relationship between the undeformed
coordinate and the deformed (no-load) coordinate can be
written as (Rachev, Stergiopulos, Meister, 1996)

R =
√

χ(r2− r2
i )+R2

i . (7)

Equations (4), (6) and (7) can be combined to give the
residual strains at the no-load state. To simulate the phys-
iological (in vivo) condition, we first stretch the artery
from the no-load configuration, and then pressurize the
inner vessel surface (e.g., 120 mmHg). To accomplish
these tasks, the lower end of the vessel (see Fig. 1) is

not allowed to move in the axial direction (the displace-
ment in the axial direction is fixed to zero), and the dis-
placement of the other end along the axial direction is
ramped from zero to the desired stretch ratio, and kept
constant thereafter. The pressure on the inner surface is
then increased linearly from 0 to 16 kPa (120 mmHg),
and maintained constant. To investigate the influence
of the stretch ratio on stress and strain distributions, the
stretch ratio is varied between 1.15 and 1.5. ANSYS
Multiphysics (ANSYS, 2003) is selected as the numer-
ical tool. Fung’s exponential constitutive model is pro-
grammed and linked to ANSYS through the user sub-
routine USERMAT. In the user subroutine, the geometric
dimensions of the blood vessel at zero-stress state and
no-load state are used to compute the residual strains. In
the subsequent calculations, the zero-stress state is used
as the reference state and the total strains, including both
the residual strains and the strains accumulated from the
no-load state, are used to compute the total stresses.

3 Results

The simulations were performed on a DELL desktop
computer running Windows XP Professional. A single
Pentium 4 CPU operating at 2.4 GHz and 512 MB of
RAM were available on this machine. A typical run for a
full analysis takes about 30 minutes.

3.1 Effect of circumferential residual strain

The three components of residual strain are shown in Fig-
ure 2(a). Figure 2(b) shows the distributions of circum-
ferential stress in the vessel wall, with and without the
circumferential residual strain. It is clearly seen that the
residual strain greatly reduces the stress gradient. In all
subsequent results, the circumferential residual strain is
taken into account.

3.2 Effect of axial pre-stretch

The effect of axial pre-stretch on strain and stress distri-
bution was examined through a series of simulations with
λz = 1.15,1.2,1.3,1.4 and 1.5, respectively. Figures 3(a)
and (b) show the principal Cauchy stress and logarithmic
strain at λz = 1.4, respectively. The transmural variations
of stress and strain are averaged over the thickness of the
wall and are shown in Figures 3(c) and (d), respectively,
for various λz. The radial stress did not vary with the
change in stretch ratio. It is seen that the circumferential
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Figure 2 : (a) Distribution of logarithmic residual strains
throughout the wall thickness of the LAD artery. (b)
Circumferential Cauchy stress distributions in the vessel
wall at physiological conditions (for axial stretch ratio of
1.4 and internal pressure of 120 mmHg) for the porcine
LAD artery.

stress and the axial stress both increase with an increase
in stretch ratio (Fig. 3(c)). The increase in axial stress,
however, is much larger than the circumferential stress.
As the λz increases, the axial stress gradually reaches the
magnitude of circumferential stress. Figure 3(d) reveals
that the change of λz influences the radial and circumfer-
ential strains as well as the axial strain. The radial strain,
which is always compressive, becomes more compres-
sive with an increase in λz. The axial strain which is
completely prescribed by the axial stretch ratio is uni-
formly distributed in the vessel wall and proportional to
λz. The circumferential strain, which is dominated by the
physiological pressure, appears to be less sensitive to the

variation of λz.

3.3 Effect of external constraint

In the above simulations, we have assumed that there
is no constraint on the vessel surface (zero-traction on
the outer surface). To gain insight into the effect of
radial constraint, we conducted the following simula-
tions. We applied various displacement boundary con-
ditions to constrain the outer surface to different extents,
while keeping the internal pressure at 120 mmHg and the
stretch ratio at 1.4. These simulations mimic the pressur-
ized in situ coronary artery whose outer surface cannot
reach the same maximum displacement as that in vitro
(outer radius of 2.61 mm). Hence, the vessel is com-
pressed by the surrounding myocardium at physiolog-
ical blood pressure (Hamza, Dang, Lu, Mian, Molloi,
Kassab, 2003). Figures 4(a) and (b) show the intramu-
ral distribution of stress and strain, respectively, when
the outer radius is compressed by 10% (radius of 2.35
mm). It is noted that the effect of radial constraint is
to increase the radial stress (see Figure 4(a)) but decrease
the tensile axial and circumferential stresses significantly
(as compared to Fig. 3(a)). Figure 4(b) shows that the
magnitudes of radial and circumferential strains are also
decreased as compared to Figure 3(b). The simulation
results indicate that the wall stress (especially the cir-
cumferential stress, see Fig. 4(a)) can be considerably
reduced by an external rigid constraint.

Figures 4(c) and (d) are the average stresses and strains,
respectively, at various degrees of radial compression
(from 0 to 30%). For the same internal pressure (120
mmHg) and axial stretch ratio (1.4), external compres-
sion reduces both the average circumferential and ax-
ial stresses. Furthermore, it creates equivalent stresses
in the axial and circumferential directions at 8% radial
compression in the blood vessel wall (Figure 4(c)). Fig-
ure 4(d) shows that the average radial and circumferen-
tial strains decrease with the degree of external compres-
sion, but the variations of strains are not as large as those
of stresses because the material is highly nonlinear. At
15% radial compression, the axial and the circumferen-
tial strains become identical. Thus, a bi-axially homoge-
nous strain state is obtained when the lumen diameter is
externally compressed by 15%. At this degree of com-
pression, the corresponding stresses are also nearly ho-
mogeneous (Figure 4(c)).



The Effect of Longitudinal Pre-Stretch and Radial Constraint on the Stress Distribution in the Vessel Wall: A New Hypothesis45

-50

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

Normalized wall thickness

S
tr

es
s 

(k
P

a)
Radial Axial Circumferential

(a)

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

0 0.2 0.4 0.6 0.8 1

Normalized wall thickness

L
o

g
ar

it
h

m
ic

 s
tr

ai
n

Radial Axial Circumferential

(b)

-50

0

50

100

150

200

250

1.1 1.2 1.3 1.4 1.5

Axial stretch ratio

A
ve

ra
g

e 
w

al
l s

tr
es

s 
(k

P
a)

Radial Axial Circumferential

(c)

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.1 1.2 1.3 1.4 1.5

Axial stretch ratio

A
ve

ra
g

e 
lo

g
ar

it
h

m
ic

 s
tr

ai
n Radial Axial Circumferential

(d)

Figure 3 : Distributions of Cauchy stress (a) and logarithmic strain (b) in the vessel wall at the in vivo state (axial
stretch ratio of 1.4 and internal pressure of 120 mmHg). (c) Average wall stress versus axial stretch ratio. (d) Average
wall strain versus axial stretch ratio. The vessel corresponds to the porcine LAD artery.

3.4 Rabbit thoracic aorta

To examine the applicability of our conclusions to other
blood vessels, we used another set of material param-
eters for the rabbit aorta. Chuong and Fung (1986)
previously reported the material constants of the rabbit
thoracic aorta as: c0=22.40 kPa, c1=0.0499, c2=0.4775,
c3=1.0672, c4=0.0585, c5=0.0903, c6=0.0042. The cor-
responding dimensions are: Re=4.52, Ri=3.92, re=1.99,
ri=1.39 mm. For an in vivo stretch ratio of 1.7 and an
internal pressure 120 mmHg, it was found that the axial
stress is about one half of the circumferential stress, as
shown in Figure 5(a). The circumferential strain is nearly
equal to the axial strain (Figure 5(b)). An increase in ax-
ial stretch ratio results in larger average circumferential
and axial stresses (Figure 5(c)). Similar to the coronary
artery, the increase in axial stress is greater than that of

the circumferential stress. Figure 5(d) shows that the ax-
ial strain is equal to the circumferential strain at the re-
ported in vivo stretch ratio of 1.691 (Chuong and Fung,
1986). If a 10% radial compression is assumed (for con-
stant stretch ratio of 1.7), the circumferential and axial
stresses decrease to the same level (Figure 5(e)). The
strain in the circumferential direction also decreases and
becomes smaller than the axial strain (Figure 5(f)).

4 Discussion

4.1 Role of circumferential residual strain

The role of circumferential residual strain has been well
studied in the past two decades (see Review in Rachev
and Greenwald, 2003). Although the residual stress at
no-load state is relatively small in magnitude, it signif-
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Figure 4 : Stress and strain distributions in vessel wall in the case with radial compression by 10%: (a) stress, (b)
strain. (c) Average wall stresses versus radial compression. (d) Average wall strains versus radial compression. The
vessel corresponds to the porcine LAD artery.

icantly contributes to the homogeneity of circumferen-
tial stress. The compressive and tensile circumferential
residual strains on the inner and outer sides of the vessel
wall, respectively, compensate the tensile circumferen-
tial strain caused by the blood pressure. Hence, there is a
significant reduction of stress gradient in the vessel wall
(Figure 2(b)) due to the high nonlinearity of the stress-
strain relation.

4.2 Role of axial pre-stretch

In vivo, the change in vessel length in the cardiovascular
cycle is negligible as compared to the pulsation of diame-
ter. The length is constrained by vessel branches and sur-
rounding tissue. More importantly, the vessel is also pre-
stretched longitudinally (Dobrin, Schwarcz, Mrkvicka,
1990). The longitudinal retraction is small in the young
and increases with postnatal growth and development as

the vessels are stretched by body growth (Dobrin, Can-
field, Sinha, 1975). In the present study, we found that an
increase in axial stretch tends to increase the axial stress
and strain much more significantly than their circumfer-
ential counterparts for both the porcine LAD artery and
rabbit aorta (Figures 3(c) and 5(c), respectively). For the
coronary artery, a stretch ratio of 1.4-1.5 results in iden-
tical circumferential and axial stresses and strains. This
is interesting since the axial pre-stretch ratio for the LAD
artery is about 1.4 (Lu, Yang, Zhao, Gregersen, Kassab,
2003). The foregoing results indicate that the circum-
ferential and axial wall stresses and strains in the LAD
artery become more uniform as the axial pre-stretch ratio
increases. In other words, under the same physiological
pressure, a more homogeneous stress state may be ob-
tained by pre-stretching the vessel. Hence, the axial pre-
stretch at the in vivo state may play a similar role as the
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Figure 5 : Stress (a) and strain (b) distributions in a rabbit thoracic artery subjected to stretch ratio 1.7 and pressure
120 mmHg. (c) Average stress and (d) average strain versus prescribed stretch ratio. (e) Average stress and (f)
average strain vs. radial compression.
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circumferential residual strain does, i.e., makes the stress
and strain more homogeneous in the vessel wall. For the
aorta, the in vivo axial stretch ratio of 1.7 yields simi-
lar circumferential and axial strains but not their stress
counterparts (Figures 5(c) and (d)).

Our numerical results indicate that the increase of stretch
ratio reduces the circumferential strain slightly, which
makes the blood vessel “stiffer”. This implies that the
circumferential strain cannot be effectively decreased by
increasing the axial deformation. The observation that
axial stretch increases the circumferential stiffness of
a blood vessel has been previously confirmed experi-
mentally (Cox, 1975; Vaishnav and Vossoughi, 1983;
Weizsacker, Lambert, Pascale, 1983; Dobrin, 1986;
Humphrey, Kang, Sakarda, Anjanappa, 1993).

Interestingly, we found that the circumferential stress de-
creases significantly if the axial stretch ratio is increased
when an isotropic Mooney-Rivlin model is used for the
vessel wall (results are not shown). This is in sharp con-
trast to the predictions of the anisotropic model (Fig-
ures 3(c) and 5(c)). Thus, it is questionable how well
an isotropic model can represent the anisotropic arter-
ies. The increase of stress in Mooney-Rivlin model most
likely cannot keep up with the exponential trend found in
blood vessels for large strains. Hence, the non-isotropic
properties of the vessel wall must be considered in mod-
eling the intramural stress distribution.

4.3 Role of surrounding tissue

All blood vessels receive some perivascular support from
the surrounding tissue. Some vessels such as pulmonary
arteries receive little support while skeletal, myocardial,
or vertebral vessels are much more constrained (see Re-
view in Fung, 1983a). Our analysis shows that even
a small external compression (10%) of the LAD artery
causes a large reduction in circumferential stress and
tends towards a biaxially (circumferential and axial) uni-
form strain state. For the coronary arteries, it also tends
towards a biaxially uniform stress state. In the aorta, a
10% radial constraint results in homogeneity of stresses
at the expense of strains (Figure 5(e) and (f)). Hence,
it appears that the aorta cannot have simultaneous uni-
form circumferential and axial stresses and strains, which
is in contrast to the coronary artery. Since the geome-
try, residual strain and physiological loading are similar
for the two vessel types, the difference lies in the mate-
rial properties. We expect that the uniform strain state is

more physiological since the thoracic aorta is not as radi-
ally compressed as the coronary artery. Guo and Kassab
(2003) have found the radial compression to be less than
5% for the mouse thoracic aorta.

In the present simulation, the internal pressure is main-
tained constant (120 mmHg) while a displacement
boundary condition is used to mimic external compres-
sion on the artery by the surrounding tissue. The com-
pression is caused by an effective external pressure (ex-
ternal radial stress) which reduces the transmural pres-
sure. Hence, a reduction in transmural pressure decreases
the stress concentration. The simulation of displacement
is preferred over pressure or radial stress because the
change of the latter is less obvious (Figure 4(a)) due to
the non-linear material properties of the vessel wall. Fur-
thermore, it is difficult to experimentally determine the
stress boundary condition at the adventitia of a coronary
artery and hence the transmural pressure is generally un-
known whereas accurate measurements of displacement
can be made as shown by Hamza, Dang, Lu, Mian, Mol-
loi, Kassab (2003).

The equivalent radial stresses at the external surface of
the LAD artery and thoracic aorta can be derived from
Figures 4(c) and 5(e), respectively; where the relation
between average radial stress and radial compression
was plotted. Since the internal pressure is 120 mmHg
(16kPa), the radial stress at the inner surface is -16 kPa,
the equivalent external pressure Pe is thus calculated by
Pe=-(2σr+16), where σr is the average radial stress. It
should be noted that the radial stress is essentially lin-
early distributed through the thickness of the wall as
shown in Figures 3(a), 4(a), and 5(a). The resulting re-
lation between external pressure and radial displacement
is shown in Figures 6(a) and (b) for the LAD artery and
thoracic aorta, respectively. Additionally, we can express
the stresses and strains as a function of transmural pres-
sure as shown in Figures 7(a) and (b) for the LAD artery
and 7(c) and (d) for the thoracic aorta. The conclusions
are, of course, unchanged.

4.4 Generalization of the uniform strain hypothesis

Takamizawa and Hayashi (1988) proposed a uniform
strain hypothesis which states that the circumferential
strain is constant across the vessel wall. We agree that
the uniform hypothesis should be formulated in terms
of strain rather than stress. Strain can be measured di-
rectly while stress must be calculated from deformation.
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Figure 6 : The relation between external pressure and radial displacement for (a) the LAD artery and (b) thoracic
aorta.
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Figure 7 : The relation between stress (a and c) and strain (b and d) and the transmural pressure for the LAD artery
(a and b) and thoracic aorta (c and d), respectively. The transmural pressure is defined as inner minus outer pressure.
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Stress depends on constitutive models and material prop-
erties while strain is a more direct concept. Further-
more, the continuity of strain usually introduces a stress
discontinuity at the interface of different material layers
when a composite model is considered for the blood ves-
sel wall (e.g., Peterson and Okamoto, 2000; Taber and
Humphrey, 2001). Based on our simulation results, we
propose the generalization of the uniform strain hypoth-
esis to the “uniform biaxial strain” hypothesis. The pre-
vious hypothesis relates to transmural uniformity of cir-
cumferential strain while the present hypothesis includes
the uniformity of circumferential and axial strains at in
vivo state.

Theoretically, it is impossible to attain uniformity with
respect to all three principal deformations. The incom-
pressibility condition requires the product of the three
principal stretch ratios to equal unity. Hence, the radial
logarithmic strain will always equal the negative of the
sum of the values of the logarithmic strains of the other
two principal directions. If the circumferential and axial
logarithmic strains are equal as postulated by our hypoth-
esis, then the radial logarithmic strain must equal twice
the homoeostatic strain. The uniformity of radial strain
may not be as important, however, since for a thin walled
vessel the effect of radial strain and stress is less signif-
icant. Furthermore, the radial stress and strain may be
more important for transport of nutrient across the vessel
wall but less important as mechano-sensors. The circum-
ferential strain, for example, has a basis as a stimulus
for mechano-transduction via activation of ion channels
(Sachs, 1988). It would be interesting to investigate a
similar role for axial stretch.

4.5 Implications for vessel growth and remodeling

The ability of living tissues to adapt to altered mechanical
loading conditions makes them very different from inan-
imate objects. It has been shown that stress and strain
are the major stimuli for growth and remodeling (Kassab,
Gregersen, Nielsen, Lu, Tanko, Falk, 2002). For exam-
ple, arteries change their structures, compositions, and
material properties when blood pressure increases (Fung,
1993). The increase in residual strain in blood vessels in
response to hypertension has been well documented (see
Review in Fung, 1993). It is hypothesized that the in-
crease in opening angle and accompanying residual strain
serves to maintain a uniform stress gradient despite the
hypertension (Fung and Liu, 1989). Theoretical mod-

els have also been developed to account for the stress-
dependent adaptation of arteries (e.g., Rachev, Stergiop-
ulos, Meister, 1996; Taber and Humphrey, 2001). These
models take into account the circumferential residual
strain. We are unaware of any studies that have exam-
ined the effect of tissue growth and remodeling on the
axial pre-stretch. Conversely, Han, Ku, Vito (2003) ex-
amined the effect of axial stretch on vascular cell func-
tion and remodeling of blood vessel wall in an ex-vivo
system. They concluded that axial stretch promotes cell
proliferation in arteries while maintaining arterial func-
tion.

4.6 Critique of study

The convergence of the simulation results is verified by
the use of a finer finite element mesh. It was found that no
significant changes of vessel wall stresses are introduced
by imposing four times as many elements (i.e., when el-
ement size is reduced to half of the current size).

It was noted in the simulations that for blood vessels with
larger opening angles, negative stress gradient can occur
(i.e., inner stress is smaller than outer stress). We believe
that the implementation of such large bending deforma-
tion may lead to numerical errors. It is clear that χ be-
comes infinite when the opening angle approaches 180o

and equation (6) becomes invalid. Practically speaking,
we found that numerical errors occur for opening angles
much smaller than that. The opening angles for the coro-
nary arteries have a large variation; i.e., 90-200o(Frobert,
Gregersen, Bjerre, Bagger, Kassab, 1998). In the present
study, we only considered vessels with smaller open-
ing angles (108o). The numerical difficulty will be ad-
dressed in future studies so that vessels with larger resid-
ual strains can be modeled.

A further consideration is that the opening angle may not
be the best measure of residual strains. Li and Hayashi
(1996) reported an alternative approach for quantifying
the residual strains based on measurement of the edge an-
gle. The authors argued that values of residual strain cal-
culated from measurements of the opening angle may be
erroneous if the edge angle is not small (also see Rachev
and Greenwald, 2003). Even for large opening angles, if
the internal pressure is increased, both the circumferen-
tial stress and the circumferential strain must have posi-
tive gradients (larger on the inner surface). Therefore, the
anisotropy and nonlinearity of the material model must
be kept in mind when interpreting stress distributions in
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a vessel wall that has large residual strains.

We should remark on the use of logarithmic strains since
most biomechanics studies use Green’s strains. The log-
arithmic strain is convenient to check the incompress-
ibility condition which requires that the sum of the three
strain components to be zero. The logarithmic strains can
be easily converted to stretch ratios (Eq. (4)), Green’s
strains and engineering strains. A plot of stretch ratios
or engineering strains will make the strain gradient in the
vessel wall more obvious, but will not change the con-
clusions.

The current study does not take into account the effect of
muscle tone. The in vivo and the residual stresses in ar-
teries have been found to be strongly dependent on mus-
cle tone (Matsumoto, Tsuchida, Sato, 1996; Rachev and
Hayashi, 1999). Although the present results are purely
of a passive model, they provide the framework for ex-
ploring the effect of active contraction in future studies.

Finally, it is well known that soft-tissue models have lim-
itations in that the model can behave very differently de-
pending on the material constants used. Hence, it is im-
portant to show that the homogenization of the stress or
strain in the vessel wall observed in the present study is
not merely model-dependent. In addition to the segments
of swine LAD artery and rabbit thoracic aorta, we studied
three additional swine coronary arteries from different
animals. The conclusion regarding the uniform biaxial
stress and strain for the coronary artery under physiolog-
ical conditions remained unchanged. Other mathemati-
cal forms of the strain-energy density function should be
examined in future studies.

5 Summary

Stress and strain are intimately related to tissue function,
growth and remodeling. Hence, a thorough understand-
ing of the stress and strain state in the normal vessel
wall can be used as a physiological reference state. The
present simulation reveals that distributions of stresses
and strains become more uniform when the axial pre-
stretch is considered and the outer surface is compressed
by the surrounding tissues. Hence, at the in vivo con-
dition, residual strains in the circumferential, axial and
radial directions and surrounding tissue all help to main-
tain biaxial strain homogeneity or uniformity in the ves-
sel wall. This state may define the mechanical homeosta-
sis of the vessel wall. Initiation of atherosclerosis or other

vascular dysfunctions may be caused by perturbations of
the homeostatic state of stress and strain. We propose
that the physical principle that dictates the growth and
remodeling of the vessel wall is to restore the homeo-
static biaxial strain state. An experimental test of this
hypothesis remains a task of future investigations.
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