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On Eulerian Constitutive Equations for Modeling Growth and Residual Stresses
in Arteries

K.Y. Volokh1

Abstract: Recently Volokh and Lev (2005) argued that
residual stresses could appear in growing arteries because
of the arterial anisotropy. This conclusion emerged from
a continuum mechanics theory of growth of soft biologi-
cal tissues proposed by the authors. This theory included
Lagrangian constitutive equations, which were formu-
lated directly with respect to the reference configuration.
Alternatively, it is possible to formulate Eulerian consti-
tutive equations with respect to the current configuration
and to ’pull them back’ to the reference configuration.
Such possibility is examined in the present work. The
Eulerian formulation of the constitutive equations is used
for a study of arterial growth. It is shown, particularly,
that bending resultants are developed in the ring cross-
section of the artery. These resultants may cause the
ring opening or closing after cutting the artery in vitro
as it is observed in experiments. It is remarkable that
the results of the present study, based on the Eulerian
constitutive equations, are very similar to the results of
Volokh and Lev (2005), based on the Lagrangian consti-
tutive equations. This strengthens the authors’ argument
that anisotropy is a possible reason for accumulation of
residual stresses in arteries. This argument appears to be
invariant with respect to the mathematical description.

keyword: Constitutive theory, Growth, Tissue, Resid-
ual stress; Artery

1 Introduction

A ring, extracted from an artery in vitro, opens up (or
closes) after a radial cut (Chuong and Fung, 1986; Vaish-
nav and Vossoughi, 1987). This proves the existence
of residual stresses in arteries, which provide the arte-
rial compatibility and integrity. The residual stresses are
formed during growth of arteries. According to the tra-
ditional point of view (Fung, 1993), the residual stresses
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are a consequence of the differential growth of arteries.

Recently Volokh and Lev (2005) argued that the arterial
anisotropy combined with volumetric growth could be
another source of residual stresses. They showed, partic-
ularly, that the ring opening or closing mode depends on
elastic anisotropy of the artery. The authors’ argument
was based on a continuum mechanics theory of tissue
growth, which included full-scale mass and momentum
balance equations, constitutive equations, and boundary
conditions. The constitutive equations related stresses,
mass flux, and volumetric mass supply with the defor-
mation gradient, mass density, and the mass density gra-
dient. It is important that the constitutive equations were
formulated directly with respect to the reference config-
uration and, thus, they can be called the Lagrangian con-
stitutive equations.

As an alternative to the Lagrangian constitutive equations
formulated in the reference configuration, it is possible
to formulate Eulerian constitutive equations in the cur-
rent configuration (what is not a ’push-forward’ of the
Lagrangian equations!). The latter is done in this note.
The Eulerian equations are set and used for a study of
arterial growth and formation of residual stresses. Nu-
merical examples considered in Volokh and Lev (2005)
are re-considered in the present work by using the mod-
ified, Eulerian, constitutive equations. This reveals the
effect of the alternative formulation of constitutive equa-
tions on the results and conclusions of the consideration
of the problem of growth and residual stresses in arteries.

2 Methods

2.1 Governing equations

Equations of mechanics of tissue growth can be moti-
vated by a microstructural model of tissue growth as it
is discussed in length in Volokh (2004) and Volokh and
Lev (2005). In this section, we do not revisit the mi-
crostructural growth model given in the mentioned works
and write down the main equations without delay
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DivψψψR +ξR = 0, (1)

DivP = 0, (2)

PFT = FPT , (3)

⎧⎨
⎩

P = F∂W/∂E−Fηηηρ
ψψψR = β Gradρ
ξR = ω+ f − γρ

, (4)

{
ρR = ρ on ∂Ωρ
φR = ψψψR ·N = φ on ∂Ωφ

, (5)

{
χχχ = χχχ on ∂Ωχχχ
t = t on ∂Ωt

. (6)

Here subscript ”R” designates the referential description
of body Ω; ρR is mass density; ψψψRis a vector of mass flux;
ξR is volumetric mass supply; P is the 1st Piola-Kirchhoff
stress tensor; F = Gradχχχ(X) is the deformation gradient;
x =χχχ(X) is a current position of point X; W is a strain po-
tential; ρ = ρR−ρ0 is the density increment; ρ0 is the ini-
tial distribution of mass density; E = (FT F−1)/2 is the
Green strain tensor; and 1 is the identity tensor; ηηη = ηηηT

is a tensor of material growth parameters; β > 0 is a coef-
ficient of mass conductivity of the tissue and it counts for
how much the mass supply changes for the spatially vary-
ing increment of mass density; ω > 0 is the genetic mass
supply, which is determined by the genetically controlled
production of new cells and the extracellular matrix pro-
teins by the existing cells; f (F,P) is the epigenetic mass
supply, which should depend on stress and/or strain mea-
sures (its correct expression is a key problem when tissue
remodeling is considered); γ > 0 is a coefficient of tissue
resistance, which defines the resistance of the tissue to
accommodate new mass for the increasing mass density;
t is a surface traction; φR = ψR ·N is mass supply through
a surface with an outward unit normal N in the reference
configuration; and the barred quantities are prescribed.

Dynamic processes of mechanical deformation as well
as the inertia effects are ignored in the field equations
above. Besides, it is assumed that the growth process
can be considered quasi-statically because of its slow-
ness: ∂ρR/∂t = 0, i.e. every increment of the volumetric
material supply inside a material point is in equilibrium
with the material coming through the boundaries of this
point. It is crucial to make a distinction between the real
material particles and the mathematical concept of the
material point. Physically, the material point is a finite
and very small volume comprising few material particles.
During growth, the number of real material particles is
changing within the material point, while the ’number’
of material points is preserved. The latter allows us-
ing continuum mechanics where a one-to-one mapping
of material points before and after growth-deformation is
assumed.

The proposed constitutive equations have a simple math-
ematical form and they are written directly in terms of
the referential quantities. They are objective in the sense
that they are not affected by a superposed rigid body mo-
tion. Alternatively, it is possible to define constitutive
equations in terms of the current configuration – Eule-
rian form – first and then to transform them into the ref-
erential description – Lagrangian form. Thus, first we
re-define the simple constitutive equations in the current
configuration

⎧⎨
⎩

σσσ = J−1F(∂W/∂E)FT −η̃ηηρ̃
ψψψ = β̃ grad ρ̃
ξ = ω̃+ f̃ − γ̃ ρ̃

, (7)

where η̃ηη, β̃, ω̃, f̃ , γ̃, being defined with respect to
the current configuration, have the same meaning as
ηηη, β, ω, f , γ. Other current quantities are related with
the referential ones as follows

σσσ = J−1PFT , (8)

ρ̃ = J−1ρ, (9)

ψψψ = J−1FψR, (10)
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grad = F−T Grad, (11)

ξ = J−1ξR. (12)

Here σσσ is the Cauchy stress tensor; and J = detF.

Substituting Eqs. (8) - (12) in Eq. (7) we have

⎧⎨
⎩

P = F∂W/∂E−Jη̃ηηF−T ρ̃
ψψψR = J(FT F)−1β̃Gradρ̃
ξR = Jω̃ +J f̃ −Jγ̃ρ̃

. (13)

Comparing formulations based on Eq. (4) and Eq. (13) it
easy to recognize the following substitutes, which should
be made in the former equation in order to arrive at the
latter one

ηηη → JF−1η̃ηηF−T , (14)

ρ → ρ̃ = ρ/J, (15)

1β → J(FT F)−1β̃ , (16)

ω → Jω̃, (17)

f → J f̃ , (18)

ξR = Jω̃ +J f̃ −Jγ̃(ρ/J). (19)

As expected, all the parameters defined in the current
configuration are ’pulled back’ to the reference config-
uration. There is a subtle question of what formulation,
based on Eq. (4) or Eq. (13), is more appealing physi-
cally. We do not have a strong opinion about that. There
is no doubt, however, that the constitutive formulation
based on Eq. (4) is simpler mathematically.

2.2 Artery growth

Focusing on the arterial growth, we introduce the follow-
ing form of the growth tensor for an orthotropic artery

⎧⎨
⎩

η̃11 = c(c1α1 +c4α2 +c6α3)
η̃22 = c(c4α1 +c2α2 +c5α3)
η̃33 = c(c6α1 +c5α2 +c3α3)

, η̃i j = 0, i �= j,

(20)

where the coefficients of growth expansion αi > 0 de-
fine how much the relative volume changes for the given
increment of mass density. These coefficients are anal-
ogous to the coefficients of thermal expansion in the
classical small-strain thermoelasticity. Other parameters
(c and cis) were chosen in accordance with the Fung
pseudo-strain energy expression

W = ceQ/2,

Q = c1E2
11 +c2E2

22 +c3E2
33 +2c4E11E22

+2c5E33E22 +2c6E11E33, (21)

where c has the unit of stresses and cis are unitless.

We consider artery growth as a radial growth of an in-
finite cylinder under the plane strain conditions where
a point occupying position (R, Θ, Z) in the initial con-
figuration is moving to position (r, θ, z) in the current
configuration and the law of motion takes the following
form

r = r(R), θ = Θ, z = Z. (22)

Then the deformation gradient is

F = (dr/dR)kr ⊗KR +(r/R)kθ⊗KΘ +kz ⊗KZ , (23)

where {KR, KΘ, KZ} and {kr, kθ, kz} form the orthonor-
mal bases2 in cylindrical coordinates at the reference and

2 KR = (cosΘ,sinΘ,0)T ; KΘ = (−sinΘ,cosΘ,0)T ; KZ =
(0,0,1)T and KM ⊗KN = KMKT

N kr = (cosθ,sinθ,0)T ; kθ =
(−sinθ,cosθ,0)T ; kz = (0,0,1)T and km ⊗kn = kmkT

n
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current configurations accordingly. Because of the defor-
mation assumption we have

{F−1
Rr ,F−1

Θθ ,F−1
Zz } = {(dr/dR)−1, (r/R)−1, 1}, (24)

2{ERR,EΘΘ,EZZ} = {(dr/dR)2−1, (r/R)2−1, 0}.
(25)

Mass balance (1) and momentum balance (2) take the fol-
lowing forms accordingly

d(ψψψR)R

dR
+

(ψR)R

R
+ξ = 0, (26)

dPrR

dR
+

PrR −PθΘ

R
= 0, (27)

Constitutive equations (13) transform into

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ψψψR)R = β̃ r
R( dr

dR)−1 dρ̃
dR

ξ = (ω̃− γ̃ρ̃) r
R

dr
dR

PrR = c(eQ(c1ERR +c4EΘΘ) dr
dR

−(c1 +c4 +c6)αρ̃ r
R)

PθΘ = c(eQ(c2EΘΘ +c4ERR) r
R

−(c2 +c4 +c5)αρ̃ dr
dR)

, (28)

where α = α1 = α2 = α3; Q = c1E2
RR + c2E2

ΘΘ +
2c4ERREΘΘ; and remodeling is ignored, f̃ = 0.

Boundary conditions (5) and (6) are set as follows

{
φR(R = a) = 0
φR(R = b) = 0

, (29)

{
σrr(R = a) = (R/r)PrR(R = a) = 0
σrr(R = b) = (R/r)PrR(R = b) = 0

. (30)

We assume that new material is supplied uniformly. In
this case

ρ̃ = ω̃/γ̃ = constant (31)

is a solution of Eqs. (26) and (29).

Substituting Eqs. (21) and (283,4) in the equilibrium
equation (27) and boundary conditions (30), we have a
two-point boundary value problem (BVP) in terms of
r(R). The two-point BVP is solved numerically employ-
ing the shooting procedure, where the Mathematica ’ND-
Solve’ procedure (Wolfram, 2003) is used iteratively as a
solver of the corresponding initial-value problem.

3 Results

Radial displacements, radial and circumferential Cauchy
stresses (Figs. 1 and 2) were computed for two sets of
material parameters with a = 1.0 and b = 1.3:

(1) Chuong and Fung (1986)

c1 = 0.0499; c2 = 1.0672;
c3 = 0.4775; c4 = 0.0042;
c5 = 0.0903; c6 = 0.0585.

(32)

(2) Chuong and Fung (1984)

c1 = 1.744; c2 = 0.619;
c3 = 0.0405; c4 = 0.004;
c5 = 0.0667; c6 = 0.0019.

(33)

Every set of material parameters was considered with
four growth parameters varying by four orders of mag-
nitude: αω̃/γ̃ = 0.001; 0.01; 0.1; 1.

Resulting displacements vary almost linearly along the
radius (Figs. 1a and 2a). Absolute magnitudes of the ra-
dial stresses increase towards the mid-surface of the wall
(Figs.1b and 2b), while the absolute magnitudes of the
circumferential stresses approach zero at the mid-surface
and they vary almost linearly along the radius (Fig. 1c
and 2c). It should be noted that circumferential stresses
are larger than the radial stresses by an order of magni-
tude in both cases of material parameters. It is interesting
that the directions of the stresses are different for the two
sets of material parameters. This is, particularly, critical
for the circumferential stresses because it means that dif-
ferent bending resultants appear in the ring. If the ring is
cut radially, then it opens as shown in Fig. 3a (right) for
the first set of elastic parameters. A ring with the second
set of material parameters behaves differently: it closes
(Fig. 3b) after the cut, i.e. its edges overlap.
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Figure 1 : (a) Normalized radial displacements (r−R)/a
(vertical axis) for the dimensionless growth parameter
αω̃/γ̃ equal to 0.001; 0.01; 0.1; 1.0 (from the top to the
bottom accordingly) for free volumetric growth of the
cylinder: the first set of material parameters Eq. (32).
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Figure 1 : (b) Normalized radial stress σrr/c (vertical
axis) for the dimensionless growth parameter αω̃/γ̃ equal
to 0.001; 0.01; 0.1; 1.0 (from the top to the bottom ac-
cordingly) for free volumetric growth of the cylinder: the
first set of material parameters Eq. (32).
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Figure 1 : (c) Normalized circumferential stress σθθ/c
(vertical axis) for the dimensionless growth parameter
αω̃/γ̃ equal to 0.001; 0.01; 0.1; 1.0 (from the top to the
bottom accordingly) for free volumetric growth of the
cylinder: the first set of material parameters Eq. (32).
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Figure 2 : (a) Normalized radial displacements (r−R)/a
(vertical axis) for the dimensionless growth parameter
αω̃/γ̃ equal to 0.001; 0.01; 0.1; 1.0 (from the top to the
bottom accordingly) for free volumetric growth of the
cylinder: the first set of material parameters Eq. (33).



On Eulerian Constitutive Equations for Modeling Growth and Residual Stresses in Arteries 83

1 1.05 1.1 1.15 1.2 1.25 1.3

0

1´10-7

2´10-7

3´10-7

4´10
-7

5´10-7

1 1.05 1.1 1.15 1.2 1.25 1.3
0

1´10-6

2´10-6

3´10
-6

4´10-6

5´10-6

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.00001

0.00002

0.00003

0.00004

0.00005

1 1.05 1.1 1.15 1.2 1.25 1.3

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Figure 2 : (b) Normalized radial stress σrr/c (vertical
axis) for the dimensionless growth parameter αω̃/γ̃ equal
to 0.001; 0.01; 0.1; 1.0 (from the top to the bottom ac-
cordingly) for free volumetric growth of the cylinder: the
first set of material parameters Eq. (33).
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Figure 2 : (c) Normalized circumferential stress σθθ/c
(vertical axis) for the dimensionless growth parameter
αω̃/γ̃ equal to 0.001; 0.01; 0.1; 1.0 (from the top to the
bottom accordingly) for free volumetric growth of the
cylinder: the first set of material parameters Eq. (33).



84 Copyright c© 2005 Tech Science Press MCB, vol.2, no.2, pp.77-86, 2005

Figure 3 : (a) Bending moment (left) provides compati-
bility of the ring, which opens when cut (right).

Figure 3 : (b) Bending moment (left) provides compati-
bility of the ring, which closes when cut (right).

It is remarkable that the results of the computation are
qualitatively similar for the essentially varying growth
parameter even though the deformation is large – up to
50%.

4 Discussion

A simple phenomenological theory of tissue growth has
been used for explaining the phenomenon of the residual
stresses in arteries qualitatively. Material anisotropy was
included in the theoretical setting in accordance with the
experimental data and the Eulerian constitutive frame-
work was employed. The theory was applied to the prob-
lem of free and uniform radial growth of a cylindrical
blood vessel. Displacement and stress fields were com-
puted for the experimentally obtained values of the elas-
ticity parameters. Computations give evidence of the ap-
pearance of the circumferential stresses resulting in the
bending moments, which provide the compatibility of the
grown arterial cross-section. The radial cut of the arterial
ring will lead to the disappearance of the bending mo-
ments and opening or closing of the ring as it is observed
in experiments.

Circumferential stresses, which are accumulated in the
residual stresses during the long-term growth, appear
due to the arterial anisotropy. This conclusion is dif-
ferent from the traditional point of view stating that the
differential growth is the main sources of the residual
stresses (Fung, 1993). It is very likely that the material
anisotropy is a complementary factor to the differential
growth in causing the residual stresses. It is also inter-
esting that depending on the mutual ratio of the param-
eters of anisotropy various scenarios of the ring opening
in the artery-cutting experiments are available. The ring
can open up after cutting – resulting in a positive open-
ing angle; or the ring can close after the radial cut – re-
sulting in a negative opening angle. Both these scenarios
are in agreement with the experimental data (Fung, 1984;
1993; Rachev and Greenwald, 2003; Saini et al., 1995;
Vaishnav and Vossoughi, 1987). It should not be missed
that also radial stresses appear in the considered arterial
growth. The magnitude of these stresses is of lower order
of magnitude as compared to the circumferential stresses.
Nonetheless, the radial stresses can play a role in form-
ing the global residual stresses. Particularly, the radial
stresses are a good candidate for the explanation of Vos-
soughi et al. (1993) experiments. These authors cut the
opened artery ring along the midline and found that the
inside segment opened more while the outside segment
closed more. Probably, this happened because the radial
residual stresses had been relieved partially.

Comparing the theory considered in the present work
with the one considered in Volokh and Lev (2005) it
is possible to conclude that both Lagrangian and Eule-
rian formulations of the constitutive equations give sim-
ilar results. The results for the case of large growth-
deformation (∼50%) of the initial artery radius are pre-
sented in Figs. 4 and 5. It is clearly seen from these
figures that the difference in the distribution of displace-
ments and stresses is relatively small, i.e. all qualitative
conclusions on the artery growth and residual stresses
in arteries are invariant with respect to the mathemati-
cal formulation. The latter strengthens the argument that
anisotropy is a possible reason for accumulation of resid-
ual stresses in arteries. This argument appears to be in-
variant with respect to the mathematical description.
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Figure 4 : (a) Normalized radial displacements (r−R)/a
(vertical axis) for the Lagrangean (bold line, αω/γ = 1)
and Eulerian (dashed line, αω̃/γ̃ = 1) constitutive equa-
tions for the first set of material parameters Eq. (32).
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Figure 4 : (b) Normalized radial stress σrr/c (vertical
axis) for the Lagrangean (bold line, αω/γ = 1) and Eu-
lerian (dashed line, αω̃/γ̃ = 1) constitutive equations for
the first set of material parameters Eq. (32).
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Figure 4 : (c) Normalized circumferential stress σθθ/c
(vertical axis) for the Lagrangean (bold line, αω/γ = 1)
and Eulerian (dashed line, αω̃/γ̃ = 1) constitutive equa-
tions for the first set of material parameters Eq. (32).
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Figure 5 : (a) Normalized radial displacements (r−R)/a
(vertical axis) for the Lagrangean (bold line, αω/γ = 1)
and Eulerian (dashed line, αω̃/γ̃ = 1) constitutive equa-
tions for the second set of material parameters Eq. (33).
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Figure 5 : (b) Normalized radial stress σrr/c (vertical
axis) for the Lagrangean (bold line, αω/γ = 1) and Eu-
lerian (dashed line, αω̃/γ̃ = 1) constitutive equations for
the second set of material parameters Eq. (33).
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Figure 5 : (c) Normalized circumferential stress σθθ/c
(vertical axis) for the Lagrangean (bold line, αω/γ = 1)
and Eulerian (dashed line, αω̃/γ̃ = 1) constitutive equa-
tions for the second set of material parameters Eq. (33).



86 Copyright c© 2005 Tech Science Press MCB, vol.2, no.2, pp.77-86, 2005

Journal of Biomechanics 17, 35-40.

Chuong, C.J.; Fung, Y.C. (1986): On residual stress in
arteries. ASME Journal of Biomechanical Engineering
108, 189-192.

Fung, Y.C. (1984): Biodynamics: Circulation. Springer,
New York.

Fung, Y.C. (1993): Biomechanics: Mechanical Proper-
ties of Living Tissues. 2nd ed., Springer, New York.

Rachev, A.; Greenwald, S.E. (2003): Residual strains in
conduit arteries. Journal of Biomechanics 36, 661-670.

Saini, A.; Berry, C.; Greenwald, S.E. (1995): Effect
of age and stress on residual stress in aorta. Journal of
Vascular Research 32, 398-405.

Vaishnav, R.N.; Vossoughi, J. (1987): Residual stress
and strain in aortic segments. Journal of Biomechanics
20, 235-239.

Volokh, K.Y. (2004): A simple phenomenological the-
ory of tissue growth. MCB: Mechanics and Chemistry of
Biosystems 1, 147-160.

Volokh, K.Y.; Lev, Y. (2005): Growth, anisotropy, and
residual stresses in arteries. MCB: Mechanics and Chem-
istry of Biosystems 2, 27-40.

Vossoughi, J.; Hedjazi, Z.; Borris, F.S. (1993): Intimal
residual stress and strain in large arteries. In: Proceed-
ings of the Summer Bioengineering Conference, N.A.
Langrana et al., Eds, New York, ASME, 1993, pp. 434
-437.

Wolfram, S. (2003): The Mathematica Book. 5th edn,
Wolfram Media.


