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Optimal Substrate Shape for Vesicle Adhesion on a Curved Substrate

Wendong Shi∗,†, Xi-Qiao Feng∗ and Huajian Gao†

Abstract: When pulling a vesicle adhered on a sub-
strate, both the force-displacement profile and the maxi-
mum force at pull-off are sensitively dependent upon the
substrate shape. Here we consider the adhesion between
a two-dimensional vesicle and a rigid substrate via long-
range molecular interactions. For a given contact area,
the theoretical pull-off force of the vesicle is obtained by
multiplying the theoretical strength of adhesion and the
contact area. It is shown that one may design an optimal
substrate shape to achieve the theoretical pull-off force.
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1 Introduction

Cell adhesion is one of the most important biological pro-
cesses and also one of the most intensively studied areas
of molecular and cellular biomechanics (1). Since lipid
bilayer is the universal basis of cell membrane structure
(2), vesicles composed of lipids provided a simplified
model system for investigating mechanical properties of
cell adhesion by excluding the effects of cytoskeleton and
membrane proteins (3). Due to the fluidity of the mem-
brane, the elastic deformation of membranes is mainly
governed by the curvature elastic deformation (4, 5).
Within the Canham-Helfrich curvature elasticity model,
numerous theoretical models have been developed for
both specific adhesion and nonspecific adhesion of vesi-
cles (6–13). There have also been theoretical and exper-
imental studies on pulling a vesicle initially adhered to a
flat surface (14–22).

Recently, we have studied adhesion of a vesicle to a
curved substrate via long-range molecular interactions
and investigated how the substrate shape affects the ad-
hesion strength (23). It was found that both the force-
displacement profile and the maximum force at pull-off
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are sensitively dependent upon the substrate shape. This
result indicates that probes with different tip shapes may
be designed for cell manipulation. For example, a vesi-
cle can be pulled off a flat surface using a probe with
a curved tip. In the present paper, we calculate the opti-
mal substrate shape which leads to the theoretically max-
imum pull-off force.

Figure 1 : (a) A vesicle adhered to a flat substrate and
subjected to an external load. (b) A vesicle adhered to
a curved substrate with the optimal shape (the springs
represent the interaction forces between the vesicle and
the substrate).

If two objects joined together by adhesion are subjected
to an externally applied load, the pull-off process and the
adhesion strength normally depend on the shape of the
contact surfaces (24). Gao and Yao (25) have shown that
there exists an optimal shape for the contact surfaces to
achieve the maximum adhesion strength Σth. Such shape
effects can be explained as follows. If a vesicle adhered
to a planar substrate is subjected to an externally applied
load, the adhesive force inside the contact area is non-
uniform and normally only a small fraction of material
bears effectively the applied pulling force at any instant
in time, as shown in Fig. 1a. As the load increases, the
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maximally stretched contact region ultimately reaches
a critical stress and the adhesive joint would break via
crack-like propagation. For the optimal shape, the vesicle
and the substrate surfaces are spaced by a uniform sep-
aration over the entire contact region at pull-off, giving
rise to a uniform stress field equal to the theoretical adhe-
sive strength. In other words, if the two surfaces achieve
perfect conformity at pull-off, as shown in Fig. 1b, the
adhesion strength would reach the maximum value Σth.
This article is aimed to demonstrate this effect for vesi-
cles on curved substrates using a two-dimensional model.

2 Model

The optimal shape of the substrate is defined as such that
a uniform distribution of normal stress equal to the theo-
retical strength Σth is achieved at pull-off of the vesicle.
In what follows, we will calculate the shape of the vesi-
cle at the critical moment of pull-off for optimal adhe-
sion. The Young’s modulus of a solid substrate is typi-
cally much higher than that of a vesicle and is therefore
reasonably assumed to be rigid in the present paper (12).

We define the shape of the part of the vesicle subjected to
the maximum allowable stress Σth as Zv(R). Following a
similar argument made by Gao and Yao (25), the optimal
shape of the substrate Zso(R) with a fixed adhesion area
(e.g., a finite-sized probe) can be written as

Zso(R) = Zv(R). (1)

The free energy of a vesicle subjected to a uniform dis-
tribution of stress Σth from S1 to S2 can be written as

FTOT =
∮ [κB

2
(2M−2M0)

2 +κGK
]

dS

+ΔPV +ΓS +
∫ S2

S1

ΣthZ dS (2)

where the first integral term corresponds to the elastic
bending energy of the membrane (4, 5); M = (C1 +C2)/2
is the mean curvature of the membrane with C1 and C2

being the principal curvatures, K = C1C2 is the Gaussian
curvature, M0 is the mean spontaneous curvature induced
by the asymmetry of the membrane bilayer, and κB and
κG are the bending modulus and Gaussian rigidity, re-
spectively. The second term in Eq. (2) is the free en-
ergy due to a pressure difference across the membrane,
V is the vesicle volume, and ΔP can be regarded as a

Lagrange multiplier if the volume is assumed constant
(26, 27). The third term in Eq. (2) can be regarded as
the surface energy of membrane, with S being the sur-
face area of the vesicle and Γ being the surface energy
per unit area; Γ serves as the Lagrange multiplier to im-
pose the constraint of a constant membrane area when the
in-plane deformation of the membrane is neglected com-
pared to the out-of-plane bending (26, 27). The last term
in Eq. (2) represents the potential energy of the pulling
stress Σth at the displaced position Z of the vesicle and
the contact area is S2– S1.

In the two-dimensional model, the free energy expression
in Eq. (2) is reduced to

FTOT =
κB

ρ

[∫ 2π

0

1
2

(c(s)−c0)
2ds+

p
ρ2 A+

∫ s2

s1

σthz ds

]

(3)

where a constant contour length of the vesicle is as-
sumed, A denotes the area of the 2D vesicle. The pa-
rameter ρ = L/2π = constant is introduced as a normaliz-
ing length unit (8), and thereby, ds = dS/ρ, c(s)≡ 2Mρ,
c0 ≡ 2M0ρ, p ≡ ΔPρ3/κB, σth ≡ Σthρ3/κB and z ≡ Z/ρ
(23).

Figure 2 : Parametrization of the shape of a two-
dimensional vesicle.

Using the arc length s as the basic coordinate, the shape
of the vesicle can be described by the tangent function
ψ(s) or by coordinate functions r(s) and z(s) along the
arc length, as shown in Fig. 2. In this system, the free
energy can be written as

FTOT

2κB/ρ
=

∫ π

0

[
1
2

(ψ̇−c0)
2 + pzcosψ+λ(ṙ−cosψ)

+χ(ż+ sinψ)]ds+
∫ π

s1

σthzds. (4)
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The variation of the free energy function in Eq. (4) leads
to

δ
(

FTOT

2κB/ρ

)
=

∫ s1

0
[(−ψ̈− pz sinψ+λsinψ+χcos ψ)δψ

+
(
−λ̇

)
δr +(−χ̇+ pcos ψ)δz+(ṙ−cosψ)δλ

+(ż+ sinψ)δχ]ds

+
∫ π

s1

[(−ψ̈− pz sinψ+λsin ψ+χcosψ)δψ

+
(
−λ̇

)
δr +(−χ̇+ pcos ψ+σth)δz

+(ṙ−cosψ)δλ+(ż+ sinψ)δχ]ds

+[(ψ̇−c0)δψ+λδr +χδz]s=s1
s=0

+[(ψ̇−c0)δψ+λδr +χδz]s=π
s=s1

. (5)

Since the functions δψ(s1), δ(s1) and δ(s1) are arbitrary,
one obtains from Eq. (5) that

ψ̇+ = ψ̇−, (6a)

λ̇+ = λ̇−, (6b)

χ̇+ = χ̇− (6c)

where ψ̇+, λ̇+, χ̇+ and, ψ̇−, λ̇−, χ̇− denote the values
of the corresponding parameters at the starting and the
end points of the arc length s1, respectively. Here the
continuities of

ψ+ = ψ−, (6d)

r+ = r−, (6e)

z+ = z− (6f)

have been assumed since the membrane has a continuous
bilayer structure at s1(28).

Using Eq. (5), we obtain the Euler-Lagrange equations
corresponding to Eq. (4), which can be expressed in a
system of first order ordinary differential equations:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ̇ = u
u̇ = −pz sinψ+λsinψ+χcos ψ
λ̇ = 0
χ̇ = pcosψ
ṙ = cosψ
ż = −sinψ

(0 ≤ s ≤ s1)(7a)

and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ̇ = u
u̇ = −pz sinψ+λsinψ+χcos ψ
λ̇ = 0
χ̇ = pcosψ+σth

ṙ = cosψ
ż = −sinψ

(s1 < s ≤ π)(7b)

The geometric boundary conditions are

ψ(0) = 0, (8a)

r(0) = 0, (8b)

ψ(π) = π, (8c)

r(π) = 0 (8d)

and additional boundary conditions can be obtained from
the variational equation (5)

z(0) = z0, (8e)

χ(π) = 0. (8f)

3 Results

The shape function of the vesicle can be numerically
determined by solving the governing equations (7a, b)
together with the continuity conditions (6a–f) and the
boundary conditions (8a–f). The deformed shapes of the
vesicle are numerically solved by the shooting method
and plotted in Fig. 3 (the solid contour) for parameter
values σth = 11.2, p ≡ 0 and two normalized contact ar-
eas (1) s2− s1 = π/6, (2) s2− s1 = π/3. For comparison,
the undeformed shape of the vesicle (the dashed contour)
is also shown. The deformation of the vesicle is larger
for the case of a larger contact area (π/3 as shown in Fig.
3) than for that of a smaller contact area (π/6 as shown
in Fig. 3). Once the shape of the part of the vesicle
subjected to Σth is calculated, the optimal shape of the
substrate can be determined from the principle of perfect
conformity at pull-off (25), via Eq. (1) for a fixed contact
area (e.g., a finite-sized probe). Fig. 3 illustrates that the
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Figure 3 : The undeformed (dashed contour) and de-
formed (solid contour) shapes of a vesicle under uniform
stress σth = 11.2 for different contact areas (s2−s1 = π/6
and s2 − s1 = π/3) with zero pressure difference (p = 0)
across the membrane. According to the principle of per-
fect conformity at pull-off (25), the shape of the part of
the vesicle under uniform stress σth = 11.2 is the optimal
shape for a substrate to achieve theoretically maximum
pull-off force with the vesicle if the contact area is fixed
(e.g. a finite sized probe).

optimal shape of the substrate changes with the area of
contact (i.e. the size of a probe).

The pressure difference p across the membrane can also
have significant effects on the optimal shape of the sub-
strate. When p exceeds a critical value (∼3), a free stand-
ing circular vesicle becomes unstable against membrane
buckling (8). Here we only consider cases when a free
standing circular vesicle is still stable. Fig. 4 plots the
undeformed (dashed contour) and deformed (solid con-
tour) vesicle shapes when a uniform stress σth = 11.2
is applied over a fixed contact area s2 − s1 = π/6 under
three values of the pressure difference: (1) p = 0, (2)
p = 1, (3) p = -1. It is observed that the vesicle defor-
mation increases with p, which can be easily understood
as follows. A negative pressure difference indicates that
the pressure in the interior of the vesicle has exceeded
the pressure in the external environment. In this case,
the membrane tension is increased by the pressure dif-
ference and the vesicle becomes more stiff. On the other
hand, a positive pressure difference corresponds to the
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Figure 4 : The undeformed (dashed contour) and de-
formed (solid contour) shapes of a vesicle under uniform
stress σth = 11.2 for different pressure differences (p =
-1, 0, 1) between the interior and exterior environments
of the vesicle under a fixed contact area s2 − s1 = π/6.
A negative pressure difference corresponds to the case of
internal pressure larger than external pressure.

external pressure exceeding internal pressure, in which
case the effect of pressure is to decrease the tension in
the membrane and to decrease the rigidity of the vesicle
against deformation. These results indicate that the opti-
mal shape of the substrate is also influenced by pressure
differences in the environment of a vesicle

4 Summary

In summary, a variational approach has been adopted
in this paper to calculate the optimal substrate shape to
achieve the theoretical pull-off force for vesicle adhesion
on a curved substrate. The present model may provide
some guidelines for designing the devices of cell manip-
ulation. Naturally, the optimal shape of the substrate de-
pends on the adhesion strength between a vesicle and a
surface. The concept developed in this article should be
of general interest for understanding of vesicle-substrate
adhesion.
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