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Inflation of An Artery Leading to Aneurysm Formation and Rupture

J. S. Ren∗

Abstract: Formation and rupture of aneurysms
due to the inflation of an artery with collagen
fibers distributed in two preferred directions, sub-
jected to internal pressure and axial stretch are ex-
amined within the framework of nonlinear elastic-
ity. A two layer tube model with a fiber-reinforced
composite based incompressible anisotropic hy-
perelastic constitutive material is employed to
model the stress-strain behavior of the artery wall
with distributed collagen fibers. The artery wall
takes up a uniform inflation deformation, and
there are no aneurysms in the artery under the nor-
mal condition. But an aneurysm may be formed
in arteries when the stiffness of the fibers is de-
creased to a certain value or the direction of the
fibers is changed to a certain degree towards the
circumferential direction. The aneurysm may
expand to much large extent and become com-
plex in shape. One portion of the aneurysm be-
comes highly distended as a bubble while the
rest remains lightly inflated. The rupture of the
aneurysm is discussed along with the distribu-
tion of stresses. Critical pressures and the rupture
pressures are given for different collagen fiber ori-
entations or stiffness. Furthermore, the stability of
the solutions is discussed to explain the formation
of aneurysm.

Keyword: artery, collagen fibers, aneurysm, in-
compressible anisotropic hyperelastic material,
stress distribution, material instability

1 Introduction

Arterial aneurysms are focal dilatations of the
arterial wall in or near bifurcations within the
primary network of vessels that supply blood.
In recent years, more and more people in the

∗ Department of Mechanics, Shanghai institute of applied
Mathematics and Mechanics,ShanghaiUniversity, Shang-
hai 200444, China

world suffer aneurysms with asymptomatic le-
sions. Risk factors, such as hypertension, heavy
alcohol consumption, cigarette smoking and long
term use of analgesics, oral contraceptives or co-
caine, may lead to the formation of aneurysms
(Humphrey 2002, Humphrey 2003b). Begin-
ning as a small dilatation of the arterial wall,
aneurysms may expand much large and become
complex in shape along with rapidly expanding
lesions as shown in Fig. 1 (Watton et al 2004). Fi-
nally, aneurysms might in some cases rupture and
this will give rise to devastating consequences.
Rupture of aneurysm implies two outcomes such
as significant bleeding and the formation of an in-
traluminal or intramural thrombus (He et al 1993,
Lanne et al 1992, Papahariluon et al 2006). So
aneurysms continue to be the cause of significant
morbidity and mortality. Clearly, there is a need
to combine geometrical, mechanical and histo-
logical methods to understand the mechanism of
aneurysms comprehensively (Humphrey 2003b,
Watton et al 2004, Wilmink et al 1995). And it
is helpful for development of soft tissue biome-
chanics and tissue engineering (Neren and Seli-
htar 2001).

Figure 1: Schematic representation of an
aneurysm (modified from Watton et al 2003)

From the point of histological view, soft biologi-
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cal tissues such as arteries consist of various cell
types and the extracellular matrix (Holzapfel et
al 2004). The latter one is composed of proteins
such as fibrous collagen and elastin. Structurally,
for typical fiber architecture in an artery, the col-
lagen fibers constitute symmetrically arranged he-
lices (Holzapfel et al 1998, Holzapfel et al 2000,
Driessen et al 2003). As shown in Fig. 2, the
collagen fibers of the arterial wall are arranged
in two helically distributed families with a small
pitch and very little dispersion in their orientation
(Humphrey 1995, Driessen et al 2004).

Figure 2: Schematic representation of typical
fiber architecture in an artery (Holzapfel et al
2000, with a modification by Driessen et al 2004)

The constitutive response of soft tissue is an im-
portant prerequisite for analysis of the mechani-
cal behavior of musculoskeletal system. But the
behavior of soft tissue is complex, and it is of-
ten difficult to characterize (Olsenl et al 1999,
Holzapfel et al 2002). In addition to undergoing
large strains, soft tissues exhibit time-dependent
behavior and can actively contract, grow and re-
model (Humphrey 2002). However, for many
types of soft tissues, there is a characteristic,
called pseudoelasticity (Fung 1990, Ogden 2002),
that allows the use of nonlinear elasticity theory
to study as a first approximation. And in practice,
most researches, more commonly, simply assume
that the material is elastic with constitutive rela-
tion based only on the loading curves. This ap-
proach has provided useful approximate results in
a large number of problems although not strictly.

The mechanical behavior of soft tissue under
quasi-static loading is dominated by the perfor-

mance of its fibrous components, primarily col-
lagen and elastin fibers. So, it is necessary to
address how the collagen will remodel as the ar-
terial wall dilates (Holzapfel et al 2003). Col-
lagen fibers are often modeled as microscopic
cylinders with a preferred direction and assumed
to have mechanical characteristics independent
of the configuration at which they are recruited
(Humphrey 1999, Humphrey 2003a). Most of
the researchers also assumes that the predicted
principal collagen fiber direction coincide with
the principal strain direction within the valve tis-
sue. However, the principal strain directions are
in general oriented axially and circumferentially
in blood vessels (Gasser et al 2006). As a re-
sult, continuum models that do not account for the
dispersion between the directions of the principal
strains and principal stresses are not able to cap-
ture accurately the stress-strain behavior of arter-
ies. Ogden (Ogden 2003) gave the general stress-
strain constitutive relation for arterial walls with
collagen fibers distributed in two preferred direc-
tions. Holzapfel, Ogden and Gasser (Holzapfel
et al 2000) proposed a hyperelastic model for
arterial walls with collagen fibers distributed in
two preferred directions. Guo et al (Guo et al
2006) developed a composites based hyperelastic
constitutive model for arterial walls with colla-
gen fibers distributed in two preferred directions
which is used to model the annulus fibrosus. In
the model proposed by Holzapfel et al (Holzapfel
et al 2000), the preferred fiber directions and their
changes depend on the magnitude of the principal
stretches, which may explain the interrelation be-
tween the collagen architecture and the mechani-
cal loading conditions.

The purpose of the present paper is to further
investigate the formation, enlargement and rup-
ture of aneurysm for arterial walls with collagen
fibers distributed in two preferred directions us-
ing the nonlinear elastic theory. Based on the
fiber-reinforced composite material model devel-
oped by Holzapfel et al (Holzapfel et al 2000) and
view the artery as a two layer thick-walled tube,
the stabilities of the artery is investigated in detail.
At the normal condition, the artery wall under-
goes a uniform inflation. But in some cases, when
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the stiffness of the collagen fibers is damaged or
the directions of the collagen fibers are changed,
the artery wall may experience a strikingly non-
uniform deformation. One portion of the artery
becomes highly distended as a bubble while the
rest remains lightly inflated. That is to say, an
aneurysm is formed in the artery. Stretch-inflation
pressure curves along with the critical pressures
are given with different axial stretch and different
collagen fiber stiffness. Furthermore, the distri-
bution and the change of stresses are discussed.
Finally, the rupture of aneurysm along with the
deformation of aneurysm is discussed. The stabil-
ity of the solutions is discussed, and the formation
of the aneurysm is analyzed as a result of material
instability.

2 Constituent relations

Typical architecture of an artery wall is shown in
Fig. 2, the collagen fibers of the arterial wall are
arranged in two helically distributed families with
a small pitch and very little dispersion in their ori-
entation. Based on the study of Driessen et al
(Driessen et al 2004), the arterial wall is mod-
eled as an incompressible fiber-reinforced com-
posite material, in which the collagen fibers are
viewed as a one-dimensional material, exerting
only stress in the fiber direction, and the corre-
sponding constitutive equation is derived from hy-
perelasticity. With the assumption of the incom-
pressible matrix and fiber of the artery, the strain
energy function of the artery can be expressed as

W = WM +WF (1)

in which, WM is the strain energy of the matrix
and here is described by the incompressible Og-
den hyperelastic material (Haugton et al 1978)

WM = ∑
r

μr

αi

(
λ αr

r +λ αr
θ +λ αr

z −3
)

(2)

in which, α1 = 1.3, α2 = 5.0, α3 = −2.0, μ1 =
1.491μ , μ2 = 0.003μ , μ3 = −0.023μ . μ is the
shear modulus for the artery wall, λr, λθ , λz are
the principal stretches. WF is the strain energy of
the collagen fiber and is described by the follow-
ing express introduced by Driessen et al (Driessen

et al 2004)

WF =
k1

2k2
ek2(λ 2−1)2

(3)

in which, λ is the fiber stretch. Material constant
k1 is the stiffness of the collagen fiber and k2 de-
scribes the degree of nonlinearity of the collagen
fiber. The Cauchy stress is written as

σ = −pI+τ (B)+
2

∑
j=1

ψ j
f

(
λ 2

j

)
e j

f e
j
f (4)

where p is the hydrostatic pressure, I is the
unit tensor, τττ is the isotropic matrix stress,

ψ f = 2k1λ 2
(
λ 2 −1

)
ek2(λ 2−1)2

is the fiber stress,
B = F · FT is the left Cauchy-Green deforma-
tion tensor, F is the deformation-gradient ten-
sor corresponding to the deformation function,
e f ( j = 1,2) is the fiber direction in the deformed
configuration. It is assumed that τττ represent the
contribution of all matrix components, except the
collagen fibers, to the total constitutive behavior.

The fiber stretch is calculated from

λ =
√

e f 0 ·C · e f 0 (5)

Here, e f 0 is the fiber direction in the undeformed
configuration and C = FT ·F is the right Cauchy-
Green deformation tensor. The fiber direction in
the deformed configuration is determined from
that in the undeformed configuration

λ e f = Fe f 0 (6)

3 Formulations

An artery subjected to combined internal inflation
pressure and axial stretch may be considered as
the inflation and extension of a two layer tube with
inner radius a and outer radius b. The media and
the adventitia of the artery are conglutinated at the
interface with radius d (a < d < b) with the con-
tribution of the intima is neglected. Assume that
the undeformed and deformed configurations are
described by the cylindrical coordinate systems
(R,Θ,Z) and (r,θ , z), respectively (as shown in
Fig. 3). The deformation function of the tube is

r = r(R) > 0, a ≤ R ≤ b, θ = Θ, z = λzZ
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(7)

Where, r(R) is a function to be determined, λz is
the axial stretch ratio of the tube.

Figure 3: Schematic representation of the tube
and fiber orientation

The corresponding deformation-gradient tensor F
is

F = diag(ṙ(R), r(R)/R,λz) = diag(λr,λθ ,λz) ,
(8)

the corresponding principal stretches are

λr = ṙ(R) = dr/dR, λθ = r(R)/R, λz = λz,

(9)

and the corresponding right or left Cauchy-Green
deformation tensor is

C = B = diag
(
ṙ2(R), r2(R)/R2,λ 2

z

)
. (10)

The equilibrium equation for the tube in the ab-
sence of body force is

dσm
rr

dR
+

ṙ(R)
r(R)

[σm
rr −σm

θθ ] = 0, (11a)

dσa
rr

dR
+

ṙ(R)
r(R)

[σa
rr −σa

θθ ] = 0. (11b)

where, σm
rr ,σm

θθ ,σm
zz represent Cauchy stress com-

ponents of the media, and σa
rr, σa

θθ , σa
zz represent

Cauchy stress components of the adventitia given
by (4), respectively. Without special announce-
ment in this paper, the superscript m denotes the
media part when a ≤ R ≤ d and the superscript a
denotes the adventitia part when d ≤ R ≤ b. The
boundary conditions are

σm
rr = −q, R = a

σa
rr = 0, R = b

(12)

where, q is the inflation pressure applied on the
inner surface.

From continuity of σrr at the interface of the me-
dia and the adventitia, it has

σm
rr = σa

rr, R = d (13)

The incompressibility condition of the material
can be expressed as

r(R) =
(

1
λz

(
R2−a2)+ r2(a)

) 1
2

(14)

Letting

v = v(R) =
r(R)

R
=

(
1
λz

(
1− a2

R2

)
+

r2(a)
R2

) 1
2

(15)

Then,

λθ = v, λr = λ−1
z v−1 (16)

Assume that the collagen fibers align with pre-
ferred directions ei

f 0 (i = 1,2), directed among the
principal stretch directions as shown in Fig.3.
Then the directions for collagen fibers may be
written as

e1
f 0 =

⎧⎨
⎩

0
sinβ
cosβ

⎫⎬
⎭ , e2

f 0 =

⎧⎨
⎩

0
−sinβ
cosβ

⎫⎬
⎭ (17)

Then, from (5), (10) and (17), it obtains

λ1 = λ2 = λ =
√

sin2 β v2 +cos2 β λ 2
z (18)
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From (6), (17) and (18), we have

e1
f =

1
λ

⎧⎨
⎩

0
sinβ v

cosβ λz

⎫⎬
⎭ , e2

f =
1
λ

⎧⎨
⎩

0
−sinβ v
cosβ λz

⎫⎬
⎭ (19)

Here, the direction of collagen fibers β for the
media and adventitia may take different values βm

and βa in (17), (18) and (19). Then, from (4), non-
zero Cauchy stresses for the media and adventitia
are:

σm
rr(R) =− pm(R)∑

r
μm

αr
λ−αr

z v−αr

σm
θθ (R) =− pm(R)∑

r
μm

αr
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+4km
1

(
λ 2

m −1
)

ekm
2 (λ 2

m−1)2

sin2 βmv2
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r
μm
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z

+4km
1

(
λ 2
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z

(20a)

σa
rr(R) =− pa(R)∑

r
μa

αr
λ−αr

z v−αr

σa
θθ (R) = −pa(R)∑

r
μa

αr
vαr

+4ka
1

(
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)
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2(λ 2
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z

+4ka
1
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2(λ 2
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cos2 βaλ 2
z

(20b)

Substituting stresses (20a), (20b) into equation
(11a), (11b) and integrating them over interval
[a,R], it has

−pm(R) = ∑
r

μm
αr

λ−αr
z v−αr + pm(a)+Jm(R) = 0

(21a)

−pa(R) = ∑
r

μa
αr

λ−αr
z v−αr + pa(a)+Ja(R) = 0

(21b)

where,

Jm(R) =
1

λzv2R
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)

−4km
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1

λzv2R
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∑
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Substituting (21a) and (21b) into stresses (20a)
and (20b) and using the continuity condition of
σrr at the interface of the media and the adventi-
tia, we have

pm(a) = pa(a) = p(a) (22)

Using the boundary conditions (12), we have

q =

v(d)∫
v(a)

[
∑

r
μm

αr
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z v

]
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] ·dv

+
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[
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z
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1
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)
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(23)

In which, v(b) =
(

1
λz

(
1− a2

b2

)
+ r2(a)

b2

)1
2 , v(a) =

r(a)
a . It is an exact analytic relation between the

stretch of the tube and the inflation pressure.



60 Copyright c© 2007 Tech Science Press MCB, vol.4, no.1, pp.55-66, 2007

The corresponding non-zero principal stresses are
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4 Results

Expression (23) gives the stretch-inflation pres-
sure curves of the tube for given values of ax-
ial stretches and fiber directions as shown in Fig.
4∼9. The geometrical and material parameters
as well as the loading conditions used in calcu-
lations are taken from Holzapfel et al 2000 and
Driessen et al 2003 for healthy youths arterial
wall. The reference values of the initial fiber di-
rections of the artery are taken from Holzapfel et
al 2002. The reference values are summarized
in Table 1. The internal pressure level is varied
from 13.0 ∼ 20.0kPa and the axial stretch is var-
ied from 1.2 ∼ 1.6.

As shown in Fig. 4, at the normal condition, the
stretch-inflation pressure curve does not exhibit a
maximum, and it means that no obvious instabil-
ity can occur. That is to say, the artery wall takes
up a uniform inflation deformation and there are
no aneurysms in the artery at the normal condi-
tion. This is coincident with the clinical or exper-
iment observations (Chyatte, Bruno, Desai, Tor-
dor et al and Humphrey 2003). So we need to
consider situations of imposed abnormal condi-
tions, such as the change of the stiffness and di-
rections of the fibers, the shear modulus of the
matrix and the axial stretch. These changes can
take place due to ages and vascular disease or dis-
orders (Holzapfel and Ogden 2003 and Hunphrey
2003a). The effects of age and disease on the
artery are reflected by different values of mate-
rial parameters for the strain energy function of
the artery.

It is found that decrease of the shear modulus of
the matrix does not also gives rise to instability
(Fig. 4), and the main difference of the curves
with respect to the normal condition is at its small
strain deformation stage, i.e., the matrix bears the
main part of the load at the small strain deforma-
tion stage, while the fibers bear the main part of
the load at the large strain deformation stage.

The stretch-inflation pressure curve changes with
the change of the directions of fibers when the
fibers orientation towards the circumferential di-
rection. The curve generally exhibits a maxi-
mum, and it means that an instability may occur
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Figure 4: Stretch-inflation pressure curves for dif-
ferent shear modulus of the artery
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Figure 5: Stretch-inflation pressure curves for dif-
ferent directions of collagen fibers
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Figure 6: Stretch-inflation pressure curves for dif-
ferent axial stretch ratios
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Figure 7: Stretch-inflation pressure curve (k1m =
1.18/30kPa, k1a = 0.28/30kPa)
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62 Copyright c© 2007 Tech Science Press MCB, vol.4, no.1, pp.55-66, 2007

Table 1: The reference values of the parameters used in the model

Parameter Description Value
a Inner radius (undeformed configuration) 0.71mm
d Interface for the media and adventitia 0.97mm
b Outer radius 1.1mm

μm Shear modulus for the media 3.0kPa
μa Shear modulus for the adventitia 0.3kPa
k1m Fiber parameter for the media 1.18 kPa
k1a Fiber parameter for the adventitia 0.28 kPa
k2m Fiber parameter for the media 0.84
k2a Fiber parameter for the adventitia 0.71
q Internal pressure 13.0 kPa
λz Axial stretch 1.6∼1.2
βm Initial fiber direction for the media 80o

βa Initial fiber direction for the adventitia 50o

as shown in Fig. 5. It is revealed that there ex-
ist a maximum inflation pressure q1 (v = v1) and
a minimum pressure q2 (v = v2) on the stretch-
inflation pressure curve. When the pressure is
less than the maximum pressure, circumferential
stretch of the tube increases slowly with the in-
creasing of pressure. But when the pressure is
larger than this maximum pressure, the stretch
will increase rapidly. Finally, when the pressure
reaches the minimum pressure, it increases with
the increasing of pressure again.

Curves do not generally exhibit a maximum, and
there is no obvious instability in the cases when
the axial stretch is changed as shown in Fig. 6.
For a certain direction of the fiber, the stiffness
of the artery increases with the increasing of axial
stretch. At the same pressure, the inflation defor-
mation of the artery decreases with the increasing
of the axial stretch. That is to say, the mechanical
properties are mainly determined by the collagen
fibers in the high pressure domain, which is ac-
cord with the main results of Driessen (Driessen
et al 2003).

The curves generally exhibit a maximum, and
there will be an obvious instability with highly re-
duced fiber stiffness as shown in Fig. 7∼9. The
maximum inflation pressure q1 decreases with the
decreasing of the stiffness of the fibers in this
case.

Expressions of (24a) and (24b) yield the distri-

bution of stresses for the tube. Distribution of
stresses for a certain state (λz = 1.6, βm = 80o,
βa = 50o, q = 0.74kPa, v(a) = 3.4) is shown in
Fig. 10. Fig. 11 and Fig. 12 show the in-
creases of stresses with the increasing of stretch
in the cases of λz = 1.6, k1m = k1a = 0kPa and
λz = 1.6, k1m = 1.18/30kPa, k1a = 0.28/30kPa,
respectively. It is shown that the circumferen-
tial stress and the axial stress decrease with the
increasing of radius, and they are discontinuous
with a catastrophic jumping at the interface of the
media and the adventitia. The radial stress in-
creases with the increasing of radius, equaling to
zero at the outer interface, and is continuous. At
the same time, all the stress components increase
with the increasing of stretch. The circumferen-
tial stress increases most rapidly in the case of
λz = 1.6, k1m = k1a = 0kPa and both the circum-
ferential stress and the axial stress increase most
rapidly in the case of λz = 1.6, k1m = 1.18/30kPa,
k1a = 0.28/30kPa.

As shown in the stretch-inflation pressure curves
of the tube in the Fig. 5, Fig. 7, Fig. 8 and Fig. 9,
there exist one or more solutions corresponding to
different inflations for a certain pressure, so that
instability is encountered, and it is necessary to
compare the total potential energy for the tube.
The total potential energy of the inflated tube with
internal pressure from the initial stress-free state
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Figure 10: Stress distribution (q = 0.74kPa, λ =
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(25)

Numerical result of (25) for the inflation tube in
the case of λz = 1.0, k1 = 0 is shown in Fig.
14. The corresponding stretch-inflation pressure
curve is shown in Fig. 15. It is shown that the to-
tal potential energy of the inflated tube decreases
with the increasing of stretch when 1 ≤ v(a) ≤
v1(a) or v2(a) ≤ v(a). But it increases with the
increasing of stretch when v1(a) ≤ v(a) ≤ v2(a).
The total potential energy at stretch v3(a) = 5.2
is less than that at stretch v1(a) = 2.2 under the
same inflation pressure q = 0.79kPa. That is to
say, the tube attained a stable deformation state
when the pressure is less than the maximum pres-
sure and takes up a uniform deformation. But
when the pressure is larger than the maximum
pressure, the deformation state is unstable. Af-
ter a small inflation, the tube is subject to a com-
plex deformation. One part of the tube becomes
highly distended as a bubble while the rest re-
mains lightly inflated (Gent 2002). It means that
an aneurysm is formed in the artery as shown in
Fig. 1. When the stretch reaches the value of
v3(a) = 5.2, the tube will attain a second stable
deformation. The stretch will increase with the
increasing inflation pressure again. That is to say
the aneurysm will expand rapidly after this forma-
tion and will become complex in shape and con-
stitution at first. Then it will expand to a certain
extent until the finally rupture. This procedure is
well agreement with the observation for intracra-
nial saccular aneurysms described by Humphrey
(Humphrey 2003b).

It is widely thought that if the stress induced
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by pressure is less than the strength of the
artery wall, the aneurysm will keep its infla-
tion state. But if this stress is larger than the
strength of the artery wall, the rupture will occur
(Humphrey 2003b). Based on the observation of
Humphrey (Humphrey 2003b), two human secu-
lar aneurysms exhibited critical breaking stresses
on the order of σc = 1 ∼ 2MPa, σc = 1.6MPa is
taken out to model the rupture of the aneurysm.
The critical breaking point (v4(a),q4) is shown
on the stretch-inflation pressure curve for all the
cases with the formation of aneurysm. It is shown
that the normal blood pressure (13.0 ∼ 20.0kPa)
is large enough for the rupture of the aneurysm.
That is to say the aneurysm will rupture after it
is formed. But we may see that the demand rup-
ture pressure increases with the increasing of the
stiffness of the fibers. So there has the probability
that the demand rupture pressure is larger than the
normal blood pressure. Thus the aneurysm will
keep its inflation state without the risk of rupture.

5 Discussions

From the above analyses, we can conclude that
the formation and enlargement, even the rupture
of the aneurysm in arteries with collagen fibers
distributed in two preferred directions may be de-
scribed by the model presented in the paper. An
aneurysm may be formed in arteries with collagen
fibers when the stiffness of the fibers is decreased

to a certain value or the direction of the fibers is
changed to a certain degree towards the circum-
ferential direction due to ages or vascular diseases
for certain people. The aneurysm may undergo
an instable expand deformation, expand to much
large extent and become complex in shape. Then
the aneurysm may get a stable deformation for
further enlargement when the stretch is larger than
the certain value corresponding to the maximum
pressure. Finally, the aneurysm may catastrophi-
cally rupture when the demand failure pressure is
less than the normal blood pressure.

The effect of collagen fibers distributed in the
artery wall is remarkable. Both of the stiff-
ness and the distribution direction of the collagen
fibers affect on the formation, enlargement and
rupture of the aneurysm. When the stiffness of
the collagen fibers is reduced by some risk factors
such as hypertension, heavy alcohol consumption,
cigarette smoking, long term use of analgesics,
oral contraceptives or cocaine, the stiffness of the
artery decreased. So it is easier for an aneurysm
to be formed and it will expand to a larger extent
under the same condition.

When the collagen fibers orient towards the cir-
cumferential direction, the stiffness in the circum-
ferential direction will be increased. So it is eas-
ier for an aneurysm to be formed at a small value
of the fiber direction. When the axial stretch is
increased, the stiffness of the whole aneurysm in-
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creases with it (Peng 1999). Although the stiff-
ness of the circumferential direction contributed
by the fibers decreased because the fiber direc-
tion decreased, it is less than that increased. So
the stiffness of the aneurysm increases with the
increasing of axial stretch, and it is easier for an
aneurysm to be formed at a small value of axial
stretch.

These results have an obvious clinical application
in those patients with aneurysms. The formation,
enlargement and the rupture of the aneurysm is
determined by different ages and health condi-
tions of the people. The effects of age and dis-
ease on the artery are reflected by different values
of material parameters for the strain energy func-
tion. But the relation between them requires in-
creased physiological knowledge, more material
constants and physiological data are demanded.
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