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Viscoelasticity of Living Materials: Mechanics and Chemistry of Muscle
as an Active Macromolecular System

Hong Qian∗

Abstract: At the molecular and cellular level,
mechanics and chemistry are two aspects of the
same macromolecular system. We present a
bottom-up approach to such systems based on
Kramers’ diffusion theory of chemical reactions,
the theory of polymer dynamics, and the recently
developed models for molecular motors. Using
muscle as an example, we develop a viscoelastic
theory of muscle in terms of an simple equation
for single motor protein movement. Both A.V.
Hill’s contractile component and A.F. Huxley’s
equation of sliding-filament motion are shown to
be special cases of the general viscoelastic theory
of the active material. Some disparity between
the mechanical and the chemical views of cross-
bridges and motor proteins are noted, and a du-
ality between force and energy in discrete states
and transitions of macromolecular systems is dis-
cussed.
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1 Introduction

In classical sciences, mechanics and chemistry are
two well established disciplines, each with its own
theoretical foundations and pedagogies. When
dealing with macromolecules in living cells, how-
ever, theories and approaches from these two tra-
ditions intertwine, and mechanics and chemistry
are two sides of the same coin. In particular, me-
chanics deals with movements and forces while
chemistry deals with states and energies. Since
a state of a macromolecule is defined in its con-
formational space in which submolecular move-
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ments occur, and force is simply the gradient of
an energy function, a mathematical description of
a macromolecule, its states, dynamics and func-
tions, can be a powerful tool to integrate the two
theories into a unifying view of macromolecu-
lar systems at a mesoscopic level [Qian (2000a,
2002)].

Muscle is one of the first living materials to have
been studied mechanically. The study of muscle
physiology and its molecular basis has been one
of the most exciting stories of biochemistry and
molecular biology. The understanding of mus-
cle mechanics has gone through several important
stages: viscoelastic theory and its generalization
by A.V. Hill (1939), sliding filament theory of
Huxley (1957), statistical thermodynamic theory
of T.L. Hill (1974), and the recent theories based
on molecular motors [Jülicher, Ajdari, and Prost
(1997); Qian (1997, 2000b); Baker and Thomas
(2000)].

The historical development clearly shows a move-
ment away from mechanics and toward chemistry.
But at the level of macromolecular motors, the
chemistry and mechanics again become unified.
In fact, the theory of sliding filaments in terms of
motor proteins as cross-bridges is precisely a the-
ory of viscoelastic living materials: As the energy
source, the chemical reaction of ATP hydrolysis
is built in as a part of the mechanical theory.

Through the studies of muscle physiology, the
dialogue between the chemistry and the me-
chanics has led to the field of chemomechan-
ics or mechanochemistry [White and Thorson
(1973); Volkenstein (1977); Hibberd and Tren-
tham (1986)]. This is the theoretical foundation
of molecular and cellular biomechanics and tis-
sue engineering. In this paper, I shall discuss two
particular problems:
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(1) How the chemical approach to motor proteins
based on the theories of Kramers’ [Kramers
(1940)] toegether with polymer dynamics
[Doi and Edwards (1986)] and its general-
izations leads to the viscoelasticity of active
materials of A.V. Hill and chemomechanical
equations such as those of Huxley.

(2) The duality of energy and force in macro-
molecular states and transitions. We show
that there is an interesting disparity between
considering motor proteins moving against a
load with force-dependent chemical transi-
tions, and treating cross-bridges with force-
generating states. Inquiry into these different
views on muscle and motor proteins leads to
a deeper understanding of the mechanics and
chemistry of macromolecular systems.

2 Muscle Mechanics and Simple Viscoelastic
Model

Treating muscle as a mechanical system, one nat-
urally considers it in analogy to a viscoelastic
material with a pre-stress. A completely naive
model would be a pre-stressed viscoelastic ob-
ject moving in a highly viscous medium, with
overdamped motion. That is mẍ + η ẋ + k(x −
x0) = 0 in which kx0 = Fmax is the pre-stress and
η2/(mk) � 1. This leads to a force-velocity re-
lation F = Fmax − ηv. The linear viscoelastic
model with a pre-stressed spring in parallel with
a dashpot [Voigt model, Fung (1965)] relates the
the velocity, i.e., the speed of shortening, to the
corresponding force, i.e., load [Gasser and Hill
(1924)]. See Fig. 1.

However, there are major difficulties to consider-
ing a muscle as a traditional, passive viscoelas-
tic material. Unlike a pre-stressed spring which
stores and liberates energy reversibly, the me-
chanical energy in a muscle could not be recon-
verted to chemical energy and be used later on. If
the muscle does not do work, the energy can only
be released as heat. Therefore, the heat produc-
tion of a muscle is higher than what is expected
from a viscoelastic material. This is known as the
Fenn effect [Fenn (1924)]. In an isometric mea-
surement, i.e., when a muscle is held at constant

Figure 1: The force velocity relation according to a naive
viscoelastic Voigt model ηv = Fmax − F . When F = 0,
vmax = Fmax/η . The mechanical power per unit time is
Fv = F(Fmax−F)/η and the heat production rate is ηv2.

length, there is no work being done but the muscle
constantly produces heat. This is called mainte-
nance heat. From a chemical standpoint, the iso-
metric state of a muscle is not an chemical equi-
librium, but a nonequilibrium steady state. Mus-
cle is an open chemical system [Qian (2007)].

These considerations led A.V. Hill (1939) to pro-
pose a new kind of mechanical element called
a contractile component (CC), together with an
empirically determined steady state force-velocity
relation

(F +a)(v+b) = c. (1)

This model describes a decreasing viscosity coef-
ficient with increasing force, sometimes referred
to as “shear thinning”.

3 Sliding Filament and Motor Proteins

The actin-myosin complex is the basic structural
component of a muscle [Huxley (1986)]. The
dynamic interaction between the motor protein
myosin and its designated track, the actin fila-
ment, contributes to the mechanical behavior of
muscle contraction [Huxley (1957)]. A compre-
hensive statistical thermodynamic theory for sin-
gle motor-protein movement along its linear track
has been developed. For recent reviews see Qian
(2005); Kolomeisky and Fisher (2007). The the-
ory provides a molecular basis for the “contractile
component” in muscle contraction.
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In the theory of a motor protein, both the stochas-
tic dynamics of its internal conformation includ-
ing biochemical reactions, Y(t), and the stochastic
movements of its center of mass along its track,
X(t), are described. Since both X(t) and Y (t)
are stochastic, one is no long able to say “what
are X and Y at time t”, but rather one must say
what are the probability of X = x and of Y = y
at time t, in terms of a probability density func-
tion P(x,y, t). This is the same approach used in
Kramers’ theory of chemical reactions [Kramers
(1940)] and the theory of polymer dynamics [Doi
and Edwards (1986)]. Qian (2002) has recently
further developed this approach to account for ac-
tive macromolecules in living matter as an open
chemical system [Qian (2007)].

There are many different ways to realize a the-
ory of motor proteins. Some treat the conforma-
tional space as discrete, other treat it as continu-
ous. One can also consider the motion of a motor
protein as continuous along an actin filament, or
as jumping between discrete sites. We shall adopt
the continuous representation for the movement
of a motor protein along its track. Furthermore,
for the simplicity of the discussion, we shall fur-
ther assume that the internal conformational dy-
namics and biochemical reactions of the motor,
i.e., Y(t), is fast in comparison with the trasloac-
tion movement X(t). With this one assumption,
a full set of equations for motor-protein dynam-
ics and movements can be simplified into a single
equation [Qian (2000b)]:

η
∂P(x, t)

∂ t
= kBT

∂ 2P(x, t)
∂x2

+
∂
∂x

[(
dE(x)

dx
−Fmax +Fext

)
P(x, t)

]
, (2)

where x characterizes the position of the motor
protein along its periodic track with period L, rep-
resenting the periodic structure of an actin fila-
ment (∼ 36nm). P(x, t) is the probability den-
sity of the single motor protein at x at time t.
η is a frictional coefficient, E(x) = E(x + L) is
the potential of mean force between the actin and
myosin in the absence of ATP hydrolysis. In
the presence of ATP hydrolysis, E(x)− Fmaxx is
the energy landscape in which the motor protein

moves. The internal driving force for the motor
protein is implicitly contained in the Fmax term
and the Fext is the external load acting on the mo-
tor protein. Eq. 2 is the starting point of our
present discussion.

The steady-state velocity of the motor protein can
be obtained by solving Eq. 2 under a periodic
boundary condition P(x) = P(x+L):

vss =
kBT L

η

(
1−e(Fext−Fmax)L/kBT

)

×
{∫ L

0
R(x)e−(E(x)−Fmaxx+Fextx)/kBT dx

}−1

(3)

in which

R(x) =
∫ L

x
e(E(y)−Fmaxy+Fexty)/kBT dy

+e(Fext−Fmax)L/kBT
∫ x

0
e(E(y)−Fmaxy+Fexty)/kBT dy.

If we introduce dimensionless variables φ =
e(Fext−Fmax)L/kBT to replace Fext , θ = x/L, express
energy function E(x) in kBT units, and vss in unit
of kBT/(ηL), then we have

(
ηL
kBT

)
vss(φ ) =

(1−φ )
{∫ 1

0
R(θ )φ−θe−E(θ)dθ

}−1

(4)

in which

R(θ ) =
∫ 1

θ
φ yeE(y)dy+φ

∫ θ

0
φ yeE(y)dy.

Eq. 4 provides the relationship between motor
protein velocity and external load acting on the
motor. It should be compared with Eq. 1. This
relation is determined by the functional form of
E(x), i.e., the molecular interaction between sin-
gle myosin molecular and the actin filament. With
Eq. 4 in hand, we are now in a position to inves-
tigate the effect of the intermolecular energy on
the viscoelastic properties of the contractile com-
ponent (CC).

The most trivial case of Eq. 4 is when the
intermolecular interaction has negligible effect:
E(x) ≈ 0. In this case, the motion of the motor
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Figure 2: The effect of the height of the activa-
tion barrier on the viscoelasticity of motor units.
The calculations are based on a quadratic ptoen-
tial E(x) = 4ΔG‡(x/L)(1− x/L). The transition
state is located at the center where x = L/2. With
varying Fext , the location and the height of the
transition state change. The peak of E(x) is the
transition state for Fext = Fmax. (FmaxL/kBT = 10.)
Five curves with symbols connected by dashed
lines, from top to bottom, are for ΔG‡/(kBT ) =
0, 2.5, 5, 12.5, 50. The solid line is the asymp-
totic chemical limit based on transition state the-
ory (see text). According to the transition-state
theory, the shape of the normalized load-velocity
curve is independent of the barrier height.

protein experiences an energy down-hill, due to
ATP hydrolysis, with no significant energy barri-
ers. This is the case of mechanical limit,

vss =
Fmax −Fext

η
.

This corresponds to the simple model of Gasser
and Hill (1924) in Fig. 1.

If there is only a single dominant binding site for
myosin on an actin filament per period L, then
E(x) has a dominant energy well and a single rate-
limiting energy barrier within each period, cor-
responding to the binding site and the transition
state, respectively. Figs. 2 and 3 show the effect
of the height of the barrier and the location of the
transition state on the viscoelasticity of the motor
unit.

The model exhibits a set of rich behaviors. With
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Figure 3: The effect of the position of the tran-
sition state on the viscoelasticity of motor units.
The calculation is based on a piece-wise linear
E(x) with transition state at x = δ , barrier height
ΔG‡ = 20kBT . Four curves with symbols, from
top to bottom, are for δ/L = 0.0, 0.1, 0.5, 1.0.
Solid lines are calculations based on transition
state theory (Eq. 6): from top to bottom δ/L =
0.0, 0.075, 0.15, 0.5, 1.0. All calculations are with
FmaxL/kBT = 10.

increasing barrier height, the load-velocity curve
becomes hyperbolic (Fig. 2), i.e., “shear thin-
ning”.

When the transition state appears “early”, i.e, lo-
cated near the nth well and far from the (n+1)th
well , the load-velocity curve exhibits a negative
curvature (concave, Fig. 3). When the transition
state appears “late”, the curve becomes convex.
For very late transition state, the curve is quasi-
linear [Qian (2000c)] with an apparent linear por-
tion but a long flat tail. The significance of the last
result is that, measuring a low steady-state veloc-
ity (< 10% vmax) with corresponding experimen-
tal uncertainty, could give an apparent maximal
force which is significantly lower than the true
Fmax. It has been shown [Fisher and Kolomeisky
(1999); Qian (2000c)] that while the true Fmax is a
function of ATP concentration, the apparent max-
imal force is insensitive to the concentration.

When the activation barrier is sufficiently high,
the load-velocity relationship is readily obtained
from simple transition-state theory. We call this
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Figure 4: A schematic diagram showing the en-
ergy landscape in which a motor protein moves
along its linear track. It assumes a single binding
site per step (..., n− 1, n, n + 1, ...). When the
ΔG‡ is sufficiently large, there is a transition state
at x = δ and the process is a jump process. How-
ever, if the ΔG‡ is small, then the process is a dif-
fusional. When an external load (Fext ) is applied,
the energy function will be tilted toward the left.
When Fext = Fmax, the two energy wells will be at
an equal height and there will be no driving force
for the motor to go from n to n + 1. The driving
force is implicitly contained in the α and γ which
are functions of ATP, ADP, and Pi concentrations.
Hence the driving force is a function of nucleotide
concentrations in solution. When they are at their
chemical equilibrium concentrations, α = γ .

the chemical limit. This is schematically shown
in Fig. 4 for a single step along the track. When
there is an external load, the energy function will
be tilted toward the left. We note in Fig. 4 that
the external load Fext decreases the forward rate
constant α while it increases the backward rate
constant γ :

α(Fext) = α(0)e−Fextδ/kBT ,

γ(Fext) = γ(0)eFext(L−δ)/kBT
(5)

where δ is the position of the transition-state.
The thermodynamic driving force of the reaction
is Fmax = (kBT/L) ln[α(0)/γ(0)] and the steady-
state velocity is vss = (α − γ)L. We therefore im-

mediately have:

vss =

κ
(

e(Fmax−Fext)δ/kBT −e(Fmax−Fext )(δ−L)/kBT
)

L (6)

where κ is a prefactor in the standard Kramers’
rate theory.

Introducing the dimensionless variable φ , Eq. 6
can be written as

vss = κL
1−φ
φ δ/L

. (7)

This result for the chemical limit should be com-
pared with Eq. 4: kBT /ηL ↔ κL, φ δ/L ↔ {...}.
The former is simply the Einstein relationship if
we identify κL2 as the diffusion coefficient [Hill
(1976)]. Eq. 7 gives a clear indication of how
the position of the transition-state (δ ) affects the
viscoelastic properties of a molecular motor.

If δ = L/2, Eq. 6 is further simplified into
2κLsinh[(Fmax − Fext)/(2kBT )] (the solid line in
Fig. 2). If on the other hand δ = L representing
a late transition state, then Eq. 6 is further simpli-
fied into

vss = κ
(

e(Fmax−Fext )L/kBT −1
)

L

=
κL
c

(
cFext/Fmax −c

) (8)

where c = e−FmaxL/kBT . This equation has been
previously obtained from a three-state chemical
model for a single motor, with a single rate-
limiting step assumption [Qian (2000c)].

Not shown in Fig. 3 is the load-velocity re-
lation for δ < 0. In this case the curve is
non-monotonic, which implies a certain insta-
bility [Thomas, Trintchina, Forero, Vogel, and
Sokurenko (2002); Marshall, Long, Piper, Yago,
McEver, and Zhu (2003)]. This possibility was
first noted by Fisher and Kolomeisky (1999). The
transition state preceding the “reactant” along a
reaction coordinate is possible for a reaction in
multidimensional space; the E(x) in our model is
a simplification based on the assumption of rapid
biochemical reactions.

The results we present here demonstrate the sim-
plest chemomechanical coupling. If the external
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load is not a constant force, but, for example,
due to an elastic cantilever or laser trap, then the
model requires a more sophisticated mathemati-
cal treatment [Shapiro and Qian (1997); Qian and
Shapiro (1999)] but it poses no additional concep-
tual difficulties. The model also provides a frame-
work for calculating transient kinetics under vary-
ing external load.

I shall point out that the model we studied is not
limited to chemomechanical energy transduction
in motor proteins. A similar statistical mechanical
model for the mechanical gating of mechanosen-
sitive channels has been proposed in the past
[Sachs and Lecar (1991)]. Our results can be ap-
plied equally well to other macromolecular me-
chanical systems.

4 Heat Production Rate

One of the important consequences of the stochas-
tic chemical theory is that it provides a way to
actually compute the heat production rate and
the mechanical power of the muscle [Baker and
Thomas (2000); Qian (2000b,c, 2004a)]. In gen-
eral, heat is generated when a macromolecular
system makes a complete cycle that contains ATP
hydrolysis in its conformational space. When an
active cycle produces no movement, it is futile.
The futile cycle is the origin of the maintenance
heat. If all active biochemical cycles are coupled
to motor movements, then there will be no heat
production when a motor protein is under isomet-
ric condition. Such systems are called tightly cou-
pled between the hydrolysis and the movements
[Qian (1997)].

The model given in Eq. 2 assumes rapid biochem-
ical reactions including hydrolysis. It neglects all
the futile cycles. Therefore, the the current model
could not provide a realistic heat production cal-
culation, but only its lower bound, for which we
have

hp ≥ vss

L

·
∫ L

0
dx

[
kBT

dP
dx

+
(

dE
dx

−Fmax +Fext

)
P(x)

]
= ηv2

ss.

(9)
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Figure 5: The mechanical power mp and the lower
bound of the heat production rate hp for a mo-
tor protein in the chemical limit. The ordinate
is in units 0.1×Fmaxvmax. Other parameter used:
FmaxL/kBT = 10.

The corresponding mechanical power is mp =
vss × Fext . Fig. 5 shows the mp and the lower
bound of hp for a motor protein in its chemical
limit, with δ/L = 0.5 and 1.

5 From Single Motor to Sliding Filament

Huxley theory of muscle mechanics is based on
the sliding of myosin filaments relative to actin
filaments driven by interactions of myosin cross-
bridges with the actin filaments [Huxley (1957)].
T.L. Hill (1974) has elucidated that Huxley’s the-
ory is in fact a mathematical model of an ensem-
ble of individual cross-bridges connected by a lin-
ear, rigid filament. The viscoelastic theory of mo-
tor proteins presented above naturally lends itself
to a theory of rigid, sliding filaments [Jülicher, Aj-
dari, and Prost (1997); Qian (2000b)]. In fact,
one can derive equations such as Huxley’s from
an equation for a single motor proteins as follows.

To illustrate the basic idea of the derivation, let
us consider two Brownian motors x1 and x2, each
of which follows Eq. 2 on its own, but which are
connected by a spring whose force is σ(x1 − x2),
where σ(−x) =−σ(x). Then the joint probability
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of the two motors, p(x1,x2, t), satisfies:

∂ p
∂ t

=D ∑
i=1,2

∂ 2p

∂x2
i

− ∂
∂x1

(
F(x1)+σ(x2 −x1)

η
p

)

− ∂
∂x2

(
F(x2)+σ(x1 −x2)

η
p

)
.

(10)

This system of two motors can be best understood
in terms of a coordinate transformation developed
by Qian (2004b). Let y = (x1 +x2)/2 be the center
of mass of the system, and z = x2 − x1, then Eq.
10 becomes an equation for transformed p̃(y, z, t):

∂ p̃
∂ t

=
D
2

∂ 2 p̃
∂y2 +2D

∂ 2 p̃
∂ z2 − ∂

∂y

(
F̂ p̃
2η

)

− ∂
∂ z

(
2σ(z)+ f

η
p̃

)
, (11)

in which F̂ = F(y + z/2)+ F(y− z/2) and f =
F(y + z/2)−F(y− z/2). The seemingly compli-
cated Eq. 11 in fact has a simple mechanical in-
terpretation: the center of mass follows a Brown-
ian motion with diffusion coefficient D

2 and force
F̂ ; and the relative distance between x1 and x1 fol-
lows a Brownian motion with diffusion coefficient
2D. Eq. 11 can be simplified if we follow the ap-
proach in [Qian (2000b, 2004b)] by integrating z
and introducing conditional and marginal proba-
bilities:

p̃(z|y) =
p̃(y, z)
p(y)

, p(y) =
∫ ∞

0
p̃(y, z)dz. (12)

Then we have

p(y, t)
∂ t

=
D
2

∂ 2p(y, t)
∂y2 − ∂

∂y

(
F
η

p(y, t)
)

, (13)

in which

F(y) =
1
2

∫ ∞

0
(F(y+ z/2)+F(y− z/2)) p̃(z|y)dz. (14)

F(y) is in fact the mean force. If the spring con-
necting x1 and x2 is a rigid filament with length

2�, then p̃(z|y) is a delta function, and F(y) =
(F(y+�)+F(y−�))/2.

The above method can be applied to a large en-
semble of N motors uniformly distributed along a
rigid filament. Then the motion of the entire fila-
ment is characterized by a diffusion coefficient of
D/N and a mean force

F ≈ 1
L

∫ L

0
F(x)dx. (15)

Here we assumed that the motors are uniformly
distributed over the periodic L [Hill (1974)]. For
large N, the diffusion coefficient is essentially
zero. Hence we obtain a first order partial differ-
ential equation. If one applies the above method
to a system of equations for Brownian ratchet,
then one obtains Huxley’s equation. For more de-
tails, see [Jülicher, Ajdari, and Prost (1997); Qian
(2000b)].

6 Chemical and Mechanical Views of Force
Generation

The theories for motor proteins and for cross-
bridges share many common features: both as-
sume a set of discrete conformational states for a
myosin molecule in terms of its interactions with
an actin filament and nucleotides. Both have a set
of rate constants which determine the transitions
among the states. However, there is a disparity
between the views of how force is generated by
a cross-bridge and by a motor protein. In a mo-
tor model, a motor protein moves along its linear
track against an external load [Qian (1997); Fisher
and Kolomeisky (1999); Qian (2000c); Baker and
Thomas (2000)]. In this approach, the force en-
ters biochemical kinetics via force-dependent rate
constants, as shown in Fig. 4 and Fig. 6A. On
the other hand, discrete versions of the Huxley’s
cross-bridge theory often have the force associ-
ated with the states of a cross-bridge [Landesberg
and Sideman (1994); Homsher, Lacktis, and Reg-
nier (1997)]. It is widely considered that force is
generated in various states.

Fig. 6 shows a duality in how to understand the
force in a continuous energy landscape. The dis-
crete models for motor proteins and cross-bridges
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in fact provide complementary views of continu-
ous motor protein/cross-bridge movement. To see
this, consider Fig. 6A in which the rate constants
between state n and n + 1 are force-dependent.
However, an alternative view exists: in Fig. 6B
one considers the transitions from n to (n − 1)
and from n to (n + 1). Then the different barrier
heights of these two respective transitions define
a force associated with state n.

A discrete state is a simplification of an energy
well in the continuous energy landscape. When
the energy barriers between the wells are large,
this is an extremely good approximation for the
system, as first demonstrated by Kramers (1940).
Associated with a discrete state, there are energy
and entropy that characterize, conceptually, the
depth and the width of an energy well. The proba-
bility of being in an energy well is determined by
both, i.e., the free energy. These are the basic con-
cepts of equilibrium statistical chemistry. How-
ever, another important quantity, also associated
with an energy well, which has not been widely
appreciated is the force exerted on the discrete
state. In Fig. 6B, this simply means the difference
between the peak values of the energy barriers on
the left and on the right, divided by the distance.
This is a force which biases the motion of the sin-
gle molecule toward the right! Therefore, there
is a well-defined force associated with a discrete
conformational state, even for a single molecule.
(In a high-dimensional system, this force becomes
a stress tensor as in solid mechanics.) In chem-
istry, one is taught that the ratio of the forward and
backward rate constants associated with a transi-
tion is directly related to (free) energy of the re-
action: ΔG = −kBT ln(α/γ). One now sees that
the ratio between forward and backward rate con-
stants associated with a state is directly related to
the force of the conformation: F = kBT

L ln(α/γ).
There is a duality between these two equivalent
views.

7 Equal Barrier and Equal Well Paradox

The above way of thinking also leads to another
seeming paradox. Fig 7. shows two energy land-
scapes: one has equal barrier heights, and one
with equal well levels. From the transition-state

Figure 6: A periodic energy landscape for mo-
tor proteins. (A) The standard chemical view of
molecular transition in terms of energy barrier
crossing. FmaxL is usually denoted as ΔG between
the two energy wells. It is related to the rate con-
stants ΔG = −kBT ln(α/γ). While in (A) one
focuses on the forward and backward rate con-
stants associated with the energy barrier between
states n and (n+1), in (B) one focuses on the for-
ward and backward rate constants associated with
two different energy barriers. In this view there
is a force Fmax associated with the discrete state
n. One immediate insight is that the force associ-
ated with the state n varies with external load (not
shown).

point of view from chemistry, the transitions be-
tween any two neighbouring states that share a
same energy barrier have equal rates in (A), there-
fore equal probability in the long time limit; while
in (B), the rate going leftward is greater than that
going rightward between the two neighbouring
states, hence the probability increases leftward.
However, from the state-force point of view we
developed, each state has a force going leftward
in (A), while in (B) there are none. The transition-
state view and the state-force view seem to be
contradictory.

A resolution of this seeming paradox is in the
meaning of “long time limit”, which requires
boundaries for the systems. With the possibil-
ity of reflection by the boundary, eventually there
will be equal probability in all the energy wells
in (A) but increasing probability leftward in (B).
In (B), even though the rate of crossing the bar-
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Figure 7: Is there a paradox? (A) The energy
landscape with constant energy well indicates that
the probabilities for all states are equal. But there
is a bias in movement toward left. (B) There is
no bias in movement but the probability increases
leftward. If we denote the rightward and left-
ward rate constants leaving nth well by αn and
βn, respectively, then we have in (A): αn < βn,
αn = βn+1; and in (B): αn = βn, αn < αn+1.

rier on one’s left is the same as that on the right,
one spends more time in a deeper well. The en-
ergy view is more appropriate for the equilibrium
steady-state, while the state-force view is more
appropriate for transient, stochastic movements.
In fact, it is known that stationary probability dis-
tributions for systems in Fig. 7 are expressed in
terms of αn

βn+1
, while fluxs and mean first passage

times are expressed in terms of αn
βn

.

This situation can also be understood from an
energy versus entropy perspective. The system
shown in Fig. 7 can be represented in terms
of a simple diffusion equation if we introduce
D(nΔx) = (αn +βn)(Δx)2/2 and V(nΔx) = (αn−
βn)Δx where Δx is the distance between two en-
ergy wells:

∂u
∂ t

=
∂
∂x

(
∂
∂x

(D(x)u)−V (x)u

)
. (16)

The stationary distribution with a reflecting
boundary is

uss(x) ∝
1

D(x)
e

∫
(V (x)/D(x))dx. (17)

Hence, if V(x) = 0, the stationary distribution
is determined by the inhomogeneous diffusion:
The region with smaller diffusion will have higher

probability. Of course, one can also obtained
a different D(nΔx) = (αn + βn+1)(Δx)2/2 and
V(nΔx) = (αn − βn+1)Δx. In this case, the more
appropriate diffusion equation becomes

∂u
∂ t

=
∂
∂x

(
D(x)

∂
∂x

u−V (x)u

)
. (18)

See Ao, Kwon, and Qian (2007) for a discussion
on the different interpretations of Eqs. 16 and 18.

8 Summary

At the molecular and cellular level, states and
motions, and associated energies and forces, of
macromolecules determine the material proper-
ties of living matters, such as a muscle. Tra-
ditional mechanics focuses on forces and move-
ments of subcellular or submolecular compo-
nents, while traditional chemistry focuses on the
molecular states and their energies. These pro-
vide different views of the same macromolecular
system. Recently developed theories of molec-
ular motors [Jülicher, Ajdari, and Prost (1997);
Qian (2000b); Bustamante, Keller, and Oster
(2001); Kolomeisky and Fisher (2007)] show that
one can obtain viscoelasticity of living materi-
als, such a muscle, from a mesoscopic, stochas-
tic theory based on Kramers’ approach to chem-
ical reactions [Kramers (1940)], and the theories
of polymer dynamics [Doi and Edwards (1986)]
and open chemical systems [Qian (2002, 2005,
2007)]. This paper discusses muscle viscoelas-
ticity from such a mesoscopic approach. It is
shown that A.V. Hill’s contractile component and
A.F. Huxley’s equation for sliding-filament mo-
tions can both be derived. In the light of this
integrative approach, we discussed the relation-
ship between the force-dependent transition view
of chemical motor proteins and force-generating
state view of cross-bridges, and illustrate a dual-
ity between the force and energy in discrete states
and transitions of macromolecular systems.
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