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The Mechanical Buckling of Curved Arteries∗

Hai-Chao Han†

Abstract: Though tortuosity and kinking are
often observed in various arteries and arterioles,
little is known about the underlying mechanisms.
This paper presents a biomechanical analysis of
bent buckling in long arterial segments with a
small initial curvature using a thick-walled elas-
tic cylindrical arterial model. The critical buck-
ling pressure was established as a function of wall
stiffness, wall dimensions, and the axial tension
(or axial stretch ratio). The effects of both wall
dimensions and axial stretch ratio on the critical
pressure, as well as the thin-walled approxima-
tion were discussed. The buckling equation sheds
light on the biomechanical mechanism of artery
tortuosity and provides guidance for the develop-
ment of new techniques to treat and prevent artery
tortuosity and kinking.
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1 Introduction

Arterial tortuosity, often associated with aging,
hypertension, and atherosclerosis, occurs in many
patients with significant clinical complications
(Metz et al. 1961; Weibel and Fields 1965;
Weibel and Fields 1965; Del Corso et al. 1998;
Pancera et al. 2000; Dawson et al. 2002; Thore
et al. 2007). However, the underlying mechanism
of arterial tortuosity remains poorly understood.
Normal arteries in vivo are subjected to signifi-
cant blood pressure and axial (longitudinal) ten-
sion (Han and Fung 1995; Nichols and O’Rourke
1998; Humphrey 2002). The axial tension and
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pressure in arteries may change due to aging or
vascular disease. For example, while hyperten-
sion becomes prevalent with aging, axial tension
decreases significantly with aging (Han and Fung
1995; Nichols and O’Rourke 1998; Humphrey
2002). We have shown recently that cylindri-
cal arteries may buckle (bend) due to increased
pressure or reduced axial stretch (Han 2007). In
the long-term, loss of mechanical stability due to
buckling may lead to arterial tortuosity. Our pre-
vious buckling equation was established for a lin-
ear elastic, thin-walled, straight cylindrical artery
model; However, arteries are often nonlinear elas-
tic and slightly curved. According to column
buckling theory, this “imperfection” may affect
the stability of the structure (Gere 2004). There-
fore, the objective of this study was to establish
the buckling equation for thick-walled, nonlinear
elastic, and slightly curved arteries.

2 The Mechanical Model

The arteries are modeled as nonlinear elastic,
thick-walled, circular cylinders with a small cur-
vature. Let the lumen radius, wall thickness, and
length of an artery under pressure p and axial ten-
sion N be designated as a, t, and L, respectively.
The axial stress and stretch ratio in the artery are
denoted by σz and λz, respectively. For simplic-
ity, we assume the shape of the axial (longitudi-
nal) axis is a half-sine wave and the artery has
two open ends that are pin-supported (free to ro-
tate but restricted from lateral movement). In the
small pressure range, the artery is stable and de-
forms under pressure with its shape defined for
each pressure load. The central axis of the artery
under the pressure and axial tension is given by

xc = C · sin
(πz

l

)
(1)
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where, C is a (small) constant and z is the coordi-
nate in the axial direction (Fig. 1).
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Figure 1: Schematic illustration of the shape of
a curved arterial segment under internal pressure
and axial stretch and the definition of the z axis.
Dotted lines indicate the initial shape.

When the pressure reaches critical pressure, the
artery will become unstable and can bend further
without increasing pressure. Let’s consider the
beginning of the buckling process when the artery
bends a small amount and the central axis deforms
into a new half-sine wave shape:

x̃c = C̃ · sin
(πz

L

)
(2)

Where C̃ is a constant (C̃ > C).

In both configurations, the lumen surface area is
uneven on the concave and convex sides of the
artery (Fig. 2). Thus, the internal pressure p gen-
erates an uneven lateral load that leads to a dis-
tributed lateral load q(z) along the artery (Han
2007).

q(z) =
2π∫
0

p(adϕ)
(

∂ 2xc

∂ z2

)
(acosϕ)cosϕ

= C
pπ3a2

l2 sin
(πz

l

)

q̃(z) =
2π∫
0

p(adϕ)
(

∂ 2x̃c

∂ z2

)
(acosϕ)cosϕ

= C̃
pπ3a2

l2 sin
(πz

l

)

(3)

The load q(z)is balanced by the axial tension N
and lateral restriction forces Q at the ends (Fig.
2 bottom). Thus, the lateral reaction force Q and

Length change Δλzdz

Δf = p(adϕ)(Δλz)dz

dz
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Figure 2: Top: Schematics of a small segment dz
in a buckled artery illustrating the change in un-
even surface area due to the deformation and the
surface load generated by the internal pressure.
Dotted lines indicate the initial shape. Bottom: A
free-body diagram of a buckled artery with pinned
ends. Q represents the lateral reactive force. N
represents the axial tension, and q(z) represents
the pressure-generated distributed lateral load.

bending moment M at axial location z can be de-
termined using the equations of equilibrium.

Q =
1
2

L∫
0

q(z)dz =
pπ2a2

L
C

Q̃ =
1
2

L∫
0

q̃(z)dz =
pπ2a2

L
C̃

(4)

and

M = Q · z−N ·C · sin
(πz

L

)
−

z∫
0

q(ξ )dξ(z−ξ )

M̃ = Q̃ · z− Ñ ·C̃ · sin
(πz

L

)
−

z∫
0

q̃(ξ )dξ(z−ξ )

(5)

Therefore, the incremental bending increases the
uneven surface area that generates an incremental
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distributed lateral load Δq(z) and an incremental
bending moment:

ΔM = (ΔQ)z− (Ñ ·C̃−N ·C) · sin
(πz

L

)

−
z∫

0

Δq(ξ )dξ(z−ξ ) (6)

Taking equations (3)–(5) into (6) gives

ΔM = (pπa2)(C̃−C) · sin
(πz

L

)

− (Ñ ·C̃−N ·C) · sin
(πz

L

)
(7)

On the other hand, the axial tension N and bend-
ing moment M can be obtained by integrating the
stress σz over the cross-sectional area A:

N =
∫
A

σzdA, M =
∫
A

(σzdA)(r cosϕ)

Ñ =
∫
A

σ̃zdA, M̃ =
∫
A

(σ̃zdA)(r cosϕ)
(8)

Where r is the radial coordinate of points in the
cross section, r ∈ (a,a+ t). Therefore,

Ñ = N +
∫
A

(Δσz)dA,

ΔM =
∫
A

(ΔσzdA)(r cosϕ)
(9)

where Δσz is the incremental axial stress.

The increase of deflection from xc to x̃c leads to
incremental radial, circumferential, and axial dis-
placements of point (r, ϕ , z), designated Δu, Δv
and Δw, respectively (Figure 3):

Δu = (C̃−C)cosϕ sin
(πz

L

)

Δv = −(C̃−C) sinϕ sin
(πz

L

)

Δw = −πr

L
(C̃−C)cosϕ cos

(πz
L

) (10)

Thus, the incremental axial stretch ratio Δλz

caused by the incremental bending is

Δλz =
∂ (Δw)

∂ z
=

π2r
L2 (C̃−C)cosϕ sin

(πz
L

)
(11)

Δxc
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ϕ

Figure 3: Schematic illustration of polar angle ϕ
and the relationship between the incremental ra-
dial displacement u, circumferential displacement
v and the incremental deflection Δxc of the central
axis. Dotted lines indicate the initial position.

The corresponding axial stress can be determined
by

Δσz = Et(Δλz) =
Etπ2r

L2 (C̃−C)cosϕ sin
(πz

L

)
(12)

where Et is the incremental Young’s modulus of
the artery. Therefore, by taking the incremental
axial stress of equation (12) into equation (9), the
incremental axial tension and bending moment
can be obtained:

Ñ = N = σ zA

ΔM =
Etπ2I

L2 (C̃−C) · sin
(πz

L

) (13)

where A is the cross sectional area A = π [(a +
t)2−a2], σ z is the average axial stress and

I =
∫
A

(r cosϕ)2dA (14)
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is the bending moment of inertia of the wall cross
section with I = π [(a + t)4 −a4]/4 for the cylin-
drical vessels.

Combining Equations (13) and (7) and reorganiz-
ing yields

p =
Etπ2

L2

(
I

πa2

)
+σ z

A
(πa2)

(15)

Therefore, arteries buckle when the internal pres-
sure reaches this critical pressure. When the wall
is thin I ≈ πa3t, and A ≈ 2πat, equation (15) be-
comes:

pcr =
Etπ2

(L/a)2

( t
a

)
+2σ z(

t
a
) (16)

This equation is the same as the previous buck-
ling equation (Han 2007), when the wall is linear
elastic.

3 Results

Theoretical studies were performed to determine
the effects of arterial wall dimensions, axial
stress, and axial stretch ratio on the critical buck-
ling pressure.

3.1 The effect of arterial radius and wall thick-
ness

The effects of arterial wall dimensions on the crit-
ical pressure are reflected/characterized by two
parameters: the slenderness ratio L/a and wall
thickness to radius ratio t/a. The relationship be-
tween the critical pressure and the slenderness ra-
tio L/a, and wall thickness to radius ratio t/a are il-
lustrated in Figure 4. At given modulus and axial
stress (or axial stretch ratio), the critical pressure
increases with decreased (L/a) ratio or increased
wall thickness to radius ratio (t/a). At fixed wall
thickness and length, increasing the radius re-
duces critical pressure. However, for arteries with
similar wall thickness to radius ratio, those ar-
teries with larger radii would have a higher crit-
ical pressure. It is also seen that the thick-walled
model and the thin-walled model give comparable
predictions when the wall thickness to radius ra-
tio is less than 0.2 (Figure 4 bottom). For porcine
carotid arteries under physiological pressure, the

ratio is 0.2 -0.3 and the thin-wall approximation
gives an error of about 10-15%.
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Figure 4: The critical pressure plotted against
slenderness ratio L/a (Top) and wall thickness to
radius ratio t/a (Bottom) at two given axial stretch
ratios. The thin dot lines are the thin wall model
approximations.

3.2 The relationship between the axial stress
(stretch ratio) and critical pressure

Model equation (15) shows a linear relationship
between the critical pressure and the axial stress
(or the axial stretch ratio if the wall is linear elas-
tic). However, the relationship is actually non-
linear for a given artery (even if the wall is lin-
ear elastic) if we consider the fact that the lumen
radius actually changes with lumen pressure. To
illustrate the nonlinear relationship between crit-
ical pressure and axial stress or axial stretch ra-
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tio, we simulated the critical pressure in arteries
with the Fung’s exponential stress-strain relation-
ship (Fung 1993):

σi = β (eα(λi−1)−1), i = θ , z,

λθ = (a+
t
2
)/(a0 +

t0
2

), λz = L/L0
(17)

Wherein α and β are material constants with val-
ues of 4.54 and 5.33 (kPa), respectively, and the
wall was assumed isotropic based on our exper-
imental data (Fierro et al. 2007; Han 2007).
Our simulation showed that the critical pressure
demonstrated a nonlinear increase with increas-
ing axial stress and axial stretch ratio (Figure 5).
The thin wall model under-estimated the critical
pressure in the higher axial stress or axial stretch
ratio range (Figure 5 Top and middle). Since the
lumen radius increases with increasing pressure,
ignoring the radius change and using a constant
radius would overestimate the critical pressure
especially in the higher axial stretch ratio range
(Figure 5 bottom). Compared to a constant radius,
the increase of lumen radius associated with pres-
sure increase actually reduces the critical pres-
sure. In general, increasing the axial tension or
axial stretch ratio would increase the critical pres-
sure and thus improve the stability of arteries, and
vise versa.

4 Discussion

This study developed the buckling equation for ar-
teries with a small initial curvature. The model
results demonstrated that the buckling pressure
changes dramatically with the axial tension or ax-
ial stretch ratio. These results significantly ad-
vance our knowledge of arterial buckling by con-
sidering thick-walled arteries with an initial cur-
vature and material nonlinearity. The main con-
clusions are in general agreement with our previ-
ous results.

4.1 Model limitations and applications

While the model equations were derived for
slightly curved arteries, the equations are appli-
cable to straight arteries by letting C = 0 in the
equations. In this case, the lateral load q(z), bend-
ing moment M, and lateral reaction force Q be-
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Figure 5: The nonlinear relationships between the
critical pressure and the axial stress (Top) and ax-
ial stretch ratio (Middle & Bottom) with the ma-
terial nonlinearity and changes in lumen radius
taking into account (see text for details). It is
seen that the critical pressure increases nonlin-
early with axial stress and axial stretch ratio.
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fore buckling given in equations (3) to (5) become
zero. Thus, the lateral loads only occur when the
arteries buckle. Nevertheless, buckling equations
(15) to (16) hold true for both straight and slightly
curved arteries. In addition, while the model
equations were derived for simple-supported ar-
teries, it can be generalized into other end re-
straints by using the “equivalent length” similar
to the Euler column buckling (Gere 2004). Thus,
the buckling equations can be applied to arteries
with various end restrictions.

The limitations of the proposed model include
the isotropic and homogeneous-wall assump-
tions. Arterial walls demonstrate a layered struc-
ture with different mechanical properties for the
intima-media and adventitia layers (Fung 1993).
The effect of this layered structure needs to be in-
vestigated in future studies. In this study, we ex-
amined only the incremental deformation at the
initiation of bent buckling, which was treated as
a small deformation with an incremental mod-
ulus at the stress level produced by the critical
pressure. Our simulations were based on the
isotropic assumption using Fung’s uni-axial ex-
ponential stress-strain equation. Arteries gener-
ally have large deformations with a 3-D nonlin-
ear stress-strain relationship. Further analysis is
needed to include the 3-D and large nonlinear de-
formation nature of the arterial wall.

Another limitation of the current model is that the
effect of contiguous tissue tethering was ignored
in the current model. The effect of tissue tether-
ing needs to be investigated in future studies. It is
worth noting that the lumen pressure used in the
model should be treated as the transmural pres-
sure.

4.2 Clinical relevance

Arterial buckling can lead to arterial tortuosity
in the long-term. Buckling alters the wall stress
distribution in the arteries and thus affects cellu-
lar function and causes uneven matrix remodel-
ing (Stein et al. 1994; Vorp et al. 1999) which,
in the long run, may lead to abnormalities in the
arteries. In fact, tortuosity has been observed in
rabbit carotid arteries after the axial tension was
reduced below the physiological level for a few

weeks (Jackson et al. 2005).

The stability of living tissues and organs is an im-
portant issue in maintaining their normal function.
The current model and critical load equation will
be very useful in determining the critical level of
the axial strain needed in arteries and veins in re-
constructive vascular surgeries and vascular graft-
ing in order to prevent tortuosity or kinking. In
addition, the buckling equation can be useful for
veins and other tubular biological structures, or-
gans, and organelles.
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