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Coarse-grained Modeling and Simulation of Actin Filament Behavior Based
on Brownian Dynamics Method
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Abstract: The actin filament, which is the
most abundant component of the cytoskeleton,
plays important roles in fundamental cellular ac-
tivities such as shape determination, cell motil-
ity, and mechanosensing. In each activity, the
actin filament dynamically changes its structure
by polymerization, depolymerization, and sever-
ing. These phenomena occur on the scales rang-
ing from the dynamics of actin molecules to fila-
ment structural changes with its deformation due
to the various forces, for example, by the mem-
brane and solvent. To better understand the actin
filament dynamics, it is important to focus on
these scales and develop its mathematical model.
Thus, the objectives of this study were to model
and simulate actin filament polymerization, de-
polymerization, and severing based on the Brow-
nian dynamics method. In the model, the actin
monomers and the solvent were considered as
globular particles and a continuum, respectively.
The motion of the actin molecules was assumed
to follow the Langevin equation. The polymer-
ization, which increases the filament length, was
determined by the distance between the center of
the actin particle at the barbed end and actin parti-
cles in the solvent. The depolymerization, which
decreases the filament length, was modeled such
that the number of dissociation particles from the
filament end per unit time was constant. In ad-
dition, the filament severing, in which one fila-
ment divides into two, was modeled to occur at
an equal rate along the filament. Then, we sim-
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ulated the actin filament dynamics using the de-
veloped model, and analyzed the filament elonga-
tion rate, its turnover, and the effects of filament
severing on the polymerization and depolymeriza-
tion. Results indicated that the model reproduced
the linear dependence of the filament elongation
on time, filament turnover process by polymer-
ization and depolymerization, and acceleration of
the polymerization and depolymerization by sev-
ering, which qualitatively agreed with those ob-
served in experiments.
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1 Introduction

The actin filament, which is a double-helical
polymeric filament consisting of actin monomers,
plays important roles in fundamental cellular ac-
tivities such as shape determination, cell motility,
and mechanosensing (1-3). In each activity, the
actin filament dynamically changes its structure
by polymerization, depolymerization, and sever-
ing (4, 5). Because of the polarity of the actin
molecule, the two ends of the polymerized fil-
ament, termed as the barbed (plus) and pointed
(minus) ends (6), have different properties. The
actin filament elongates by the polymerization of
actin monomers at the filament ends. Polymer-
ization occurs mainly at the barbed end (7), the
rate of which is enhanced by actinrelated proteins
such as formin (8) and Arp2/3 complex (9). The
depolymerization induced by ADF/cofilin (10) is
a dissociation process of actin molecules from the
filament end, and plays important roles in the re-
cycling of actin molecules and in preventing the
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depletion of actin monomers (6). Severing short-
ens its average length and results in an increase
in the number of filaments, which is regulated
by ADF/cofilin and gelsolin (4, 11). Thus, these
three are fundamental phenomena governing actin
filament dynamics.

The actin filament dynamics occur on various spa-
tial and temporal scales ranging from the atom-
istic structure dynamics of the actin molecule to
the cellular system dynamics such as motility and
division (12). The atomistic structures of the actin
molecule at angstrom scale change its conforma-
tion in picoseconds (13). Actin molecules, whose
diameters are of nanometer scale (14), are moved
in the cytoplasm by random forces at nanosec-
ond scale. The actin filament, whose length scale
ranges from nanometer to micrometer, changes
its structures by polymerization, depolymeriza-
tion, and severing on a temporal scale from mi-
croseconds to seconds (15). Actin filaments in-
teract with other filaments through crosslinking
and bundling to form the network structures (16),
and the extension of network structures by poly-
merization causes, for example, cellular motility
whose velocity is at the scale of micrometer per
second (17). Thus, the actin filament dynamics
exhibit characteristic structure-function relation-
ships in various spatial and temporal scales.

To investigate the filament behaviors on various
spatial and temporal scales, developing mathe-
matical models of actin filament dynamics suit-
able for these scales is required. Many mathemat-
ical models of actin filament dynamics have been
developed. For example, on the atomistic struc-
ture dynamics scale, molecular dynamics sim-
ulations on a repeat unit of filamentous actin
molecules that bind ATP and ADP have char-
acterized the significant effects of the DNase I-
binding loop conformation on the structural and
mechanical properties of the actin filament (13).
On the scales ranging from molecular to filament
structure, a coarsegrained model of the actin fila-
ment has been developed from atomic-scale sim-
ulations to calculate its stiffness (18). On the fila-
ment dynamics scale, to investigate the elastic de-
formation modes of the actin filament, a molecu-
lar structure of the filament has been modeled as

an assemblage of substructures (19). On the scale
of filament structural changes, filament elonga-
tion has been described using a stochastic model,
and the enhancement of polymerization by sever-
ing has been simulated (15). On the scales rang-
ing from the filament structural changes to cellu-
lar motility, a set of partial differential equations
for diffusion and reactions of the sequestered actin
complexes, nucleation, polymerization, depoly-
merization, and capping has been developed to
obtain the relationship between the protrusion ve-
locity and the number of filament barbed ends
(20).

Moreover, polymerization, depolymerization and
severing, which constitute the actin filament dy-
namics, occur on the scales ranging from the dy-
namics of actin molecules to filament structural
changes with its deformation due to the various
forces, for example by the membrane and solvent.
Therefore, it is important to develop a new mathe-
matical model that captures these scales, in order
to better understand actin filament dynamics with
its deformation. The actin filament dynamics deal
with numerous interactions among actin filamen-
tous molecules, monomers, and solvent molecules
including water in the cytoplasm. Thus, it is
preferable to coarse-grain these molecules, in the
development of mathematical model describing
the spatial and temporal scales, using the Brow-
nian dynamics method (21, 22).

The purpose of this study is to develop mathe-
matical model of actin filament dynamics describ-
ing spatial and temporal scales ranging from the
actin molecular dynamics to filament structural
changes, focusing on the polymerization, depoly-
merization, and severing. To simulate the filament
dynamics over the spatial and temporal scales, the
actin molecules, filament structures, solvent, and
filament structural changes are coarse-grained and
modeled as follows. 1) The actin molecules are
considered as globules with mass and size. 2)
The actin filament is described as a linear chain
of globular particles with spring bonds. 3) A sol-
vent model is also described using the Brownian
dynamics method, in which the solvent for actin
molecules is considered as continuum, and the
mechanical effects from the behavior of solutes
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are assumed to be from random and dissipative
forces. And, 4) the filament structural changes are
modeled based on the polymerization distance,
depolymerization rate, and severing rate. Finally,
we simulate the actin filament dynamics and ana-
lyze the filament elongation rate, its turnover, and
the effects of filament severing on the polymeriza-
tion and depolymerization.

2 Description of model

2.1 Brownian dynamics method

In this study, atomistic structures of the actin
molecule are coarse-grained as globular particles
with a diameter l0 = 5.4 nm and the solvent as a
continuum, in which the rotation of the coarse-
grained actin particle in the solvent is not consid-
ered. Thus, the motion of the particle, existing at
position (rrr) with a mass (m), follows the Langevin
equation,

m
dvvv
dt

= fff − γvvv+ fff B, (1)

where vvv is the particle velocity in the solvent, fff
and fff B are the external and random forces acting
on the particle, and γ is a friction constant. The
friction constant γ is expressed by

γ =
kBT
D

, (2)

where D is a diffusion coefficient of the actin par-
ticle in the solvent, kB is the Boltzmann constant,
and T is temperature. The external force fff is a
conservative force determined from the potential
acting on the actin particle. Assuming an equi-
librium state, the random force will have no time
correlation, its time mean becomes zero, and its
variance becomes 2γkBT . Thus, the random force
fff B acting on the particle can be expressed by〈

f B
i (t)

〉
= 0 (i = 1,2,3), (3)

〈{
f B
i (t)

}2
〉

= 2γkBT, (4)

where the bracket < > denotes the time average.

2.2 Actin filament dynamics model

To eliminate the geometric complexity of the
double-helix structure, we approximate the actin
filament as a linear chain model. Filamentous
actin particles are bonded linearly, as shown in
Fig. 1A, in the elongation direction by linear
springs with a constant Ktensile [pN/nm] and equi-
libration distance leq [nm]. To match the filamen-
tous particle density along the length of our linear
model with that of the double-helix structure, in
this study, leq is set as 2.7 nm (= l0/2) (20). In
the bending direction, interparticles are bonded
by a linear bending spring with a constant Kbend

[pN·nm2], as shown in Fig. 1B. The length of the
actin filament Lfilament [nm] can be expressed by

Lfilament = NFactinleq, (5)

where NFactin [particles] is the number of filamen-
tous actin particles in a single filament. In this
study, we define that the filament consists of more
than two particles.

Figure 1: Schematics of actin filament model.
(A) Filamentous particles are bonded by linear
springs with a constant Ktensile and equilibrium
distance leq. (B) In the bending direction, inter-
particles are bonded by a linear bending spring
with a constant Kbend.

Figure 2 shows the actin dynamics model.
The actin filament has two polarized ends,
those are distinguished by the net polymeriza-
tion/depolymerization rates. In this study, focus-
ing on the net rates, each ends are individually
modeled as the polymerizing barbed end and de-
polymerizing pointed end. Severing is modeled to
occur at inter- particles, resulting in an increase in
the number of filaments by one for every severing.

2.3 Mathematical modeling of polymerization

Polymerization by bonding an actin monomer to
the barbed end is a fundamental process of fila-
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Figure 2: Schematic of actin filament dynamics model. We Figure 2: Schematic of actin filament dynamics
model. We modeled that polymerization occurs
only at the barbed end, depolymerization at the
pointed end, and severing at interparticles, result-
ing in an increase in the number of filaments.

ment elongation. In this study, we coarse-grain
the actin molecules as particles, and neglect the
chemical reactions at the molecular level. We,
therefore, assume that the polymerization sim-
ply depends on the distance between the filament
barbed end and an actin particle in the solvent.
We set an orthogonal coordinate system (O-x1,
x2, x3) (x1 ≥ 0) whose origin is set at the center
of the actin particle at the barbed end, and de-
note its base vectors by (eee1, eee2, eee3), where the
elongation direction is set along the x1 axis, as
shown in Fig. 3A. To express asymmetric acces-
sibility of the particle to the barbed end due to
the interference with the filament, we set the off-
set roff = l0 for the polymerization center from the
barbed end, as shown as Fig. 3B, where l0 is the
particle diameter. Thus, the polymerization oc-
curs when the distance satisfies the condition of
(r1− l0)2 + r2

2 + r2
3 < ∆2

p, where rrr(r1, r2, r3) is the
position of the actin particle and ∆p is the poly-
merization distance. Then, we model the poly-
merization by bonding the particles to the plus
end using the spring at the polymerization dis-
tance ∆p, and set ∆p empirically as 2.7 nm (= l0/2)
in this study.

2.4 Mathematical modeling of depolymeriza-
tion

Depolymerization is a phenomenon in which an
actin molecule dissociates from the pointed end

: Schematics of actin filament model. (A) 

Filamentous particles are bonded by linear springs with a 

. (B) In the 

bending direction, interparticles are bonded by a linear 

Figure 3: Schematics of polymerization model.
(A) Orthogonal coordinate system whose origin is
set at the center of the actin particle at the barbed
end, and its base vectors (e1, e2, e3), where the
elongation direction is set along the x1 axis. (B)
Distance between the barbed end particle and the
particle in the solvent.

and results in the shortening of the filament length
(23). Experiments on depolymerization have re-
vealed that the dissociation rate of actin molecules
from the pointed end per unit time is constant (6).
Thus, the rate of change in the filament length
Lfilament can be expressed as

dLfilament

dt
= leq

dNFactin

dt
=−leqkd, (6)

where the depolymerization rate kd [particles/µs]
is the dissociation rate of actin particles per unit
time. In this study, to prevent the filament from
disappearing, we assume that the depolymeriza-
tion occurs when the filament consists of at least
two particles.

2.5 Mathematical modeling of severing

Severing an existing filament into smaller ones
decreases its average length and increases its
number. We assume that the severing at the inter-
particle occurs at an equal rate along the filament
(15, 24, 25). Additionally, because we defined
that the filament consists of more than two parti-
cles, we assumed that the severing occurs except
for the interparticles at both ends. Thus, the sever-
ing rate at the inter-particle, ksev [1/µs], provides
the severing rate of a single filament, ksev - filament

[1/µs], which is described as

ksev - filament = ksev (NFactin−3) (7)

that linearly depends on the filament length.
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3 Numerical method

In this study, we assume that the actin filament
dynamics depend on a diffusion-limited reaction
(26), and the most dominant force for the mo-
tion of an actin particle is the random force.
Thus, assuming that the attractive force is negli-
gibly small, we use the repulsive term of the 6/12
Lennard Jones potential acting on the particles.
Here, we explain a method of numerical integra-
tion of the Langevin equation, and set a time step,
a potential coefficient, and spring constants.

3.1 Numerical integration method

The motion of the actin particle follows the
Langevin equation in Eq. 1 derived from Brow-
nian dynamics. The relaxation time of the actin
particle by the dissipative force in the solvent,
which is defined as

∆tr =
m
γ

=
mD
kBT

, (8)

can be estimated as ∆tr = 0.17 ps from the molec-
ular weight of actin ∼ 42000 (27) and Eq. 2.
To simulate actin filament dynamics ranging over
a temporal scale from nanoseconds to microsec-
onds, it is preferable to use a time step ∆t that is
longer than the relaxation time ∆tr. Thus, the par-
ticle position rrr can be expressed as

r(t +∆t) = r(t)+
1
γ

f (t)∆t +∆rB, (9)〈
∆rB

i

〉
= 0 (i = 1,2,3), (10)〈(

∆rB
i

)2
〉

=
2kBT

D
. (11)

From Eqs. 10 and 11, ∆rrrB follows the normal
distribution, ρnormal (∆rB

i ), expressed as

ρnormal(∆rB
i ) =(

γ

4πkBT

)1/2

exp

{
− γ

4πkBT ∆t

(
∆rB

i

)2
}

. (12)

Following this normal distribution, ∆rrrBis given by

∆rB
i =

(
−4kBT

D
lnR1

)1/2

cos(2πR2), (13)

where R1 and R2 are independent random vari-
ables from the same rectangular density function
on the interval (0,1) (28).

3.2 Time step

For the numerical integration of the Langevin
equation in Eq. 9 with the conditions of Eqs. 10
and 11, the time step should be determined to sat-
isfy the following inequalities: the time step ∆t is
longer than the relaxation time ∆tr, and the mag-
nitude of the particle displacement |∆rrr| during the
time step is much smaller than a specific length of
the repulsive potential acting on the particles, in
which the diameter of the particle l0 is employed
as the specific length.

The particle displacement by random forces fff B

during ∆t satisfies equations:

〈∆rrr(t)〉= 0, (14)〈
{∆rrr(t)}2〉= 6D∆t, (15)

that is, the particle displacement during ∆t follows
the normal distribution with the mean zero and the
variance σ2 = 6D∆t. To prevent numerical insta-
bility in integration, it is necessary for the particle
displacement |∆rrr| during ∆t to be smaller than the
specific length of the repulsive potential that is the
particle diameter, l0. Thus, the time step ∆t is de-
termined under the condition, |∆rrr| = 3σ = 0.27
nm, which is much smaller than l0 = 5.4 nm. Sub-
stituting D = 10 µm2/s (20, 29, 30, 31), kBT =
4.1 pN·nm (14), and |∆rrr| = 0.27 nm into Eqs. 2
and 15, we can obtain ∆t = 135 ps, which is suffi-
ciently longer than the relaxation time ∆tr = 0.17
ps, enabling us to follow the motion of the actin
particle by solving Eq. 9 in every time step.

3.3 Potential coefficient

The repulsive potential Φ is expressed by

Φ(|rrri−rrr j|) = 4ε

(
l0

|rrri−rrr j|

)
, (16)

where ε is an energy coefficient, and |rrri− rrr j| is
a distance between the ith and jth actin parti-
cles. We determine the coefficient ε to satisfy
the condition that the interparticle distance never
becomes much smaller than the diameter, l0, by
the following procedures. As a function of the
coefficient ε , we calculate the average distance,
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<|rrri− rrr j|>, between two particles that approach
each other under directed random force. To sat-
isfy the condition <|rrri− rrr j|> = l0, we determine
the coefficient ε = 2.0×10−21J.

3.4 Spring constants for filamentous actin par-
ticles

The tensile stiffness of a single actin filament with
a length Lexp = 1 µm has been experimentally es-
timated as Kexp = 43.7 pN/nm (32). By model-
ing the actin filament with double-helical struc-
ture as a series of linear springs, the spring equi-
librium distance was set as 2.7 nm, as shown in
Fig. 1A. Thus, the tensile spring constant Ktensile

is determined as Ktensile = Kexp×(1 µm / 2.7 nm)
= 1.62×104 pN/nm.

By assuming that the filament under the stretch is
modeled as a homogeneous cylindrical structure
with a cross-sectional area A = πl2

0/4 and a length
leq, Young’s modulus E = 1.91×103 pN/nm2 was
obtained by

F =
EA
leq

∆leq = Ktensile∆leq, (17)

where F is an acting axial force and ∆leq is its
extension.

In the bending of a cylindrical structure, the bend-
ing moment M is described as

M = EIκ = Kbendκ, (18)

where I is the moment of inertia of the area given
by I = πl4

0 / 64, and κ is the curvature. Thus,
from Eq. 18, the bending spring constantKbend is
obtained as Kbend = 7.97×104 pN·nm2. The or-
ders of magnitude of E and EI = Kbend agree with
those obtained by previous experiments (33, 34).

The force and moment generated by the springs
are described as the external force term in the
Langevin equation, Eqs. 1 and 9, and the particle
positions are calculated by integrating the equa-
tion. When the time step ∆t = 135 ps is used, we
find that these spring constants, Ktensile and Kbend,
are too large to obtain the stable numerical inte-
gration of the Langevin equation. To avoid this
numerical instability, we reduce the spring con-
stants by 1/20 to Ktensile = 8.10×102 pN/nm and

Kbend = 3.99×103pN·nm2, which have negligible
effect on the polymerization, depolymerization,
and severing targeted in this study.

3.5 Simulation conditions

We use the periodic boundary condition in which
calculation cell sizes are 300 nm in the x1 direc-
tion and 100 nm in the x2 and x3 directions, as
shown in Fig. 4. As an initial state, an actin fila-
ment consisting of 20 actin particles with 54 nm
(= 20leq) length is arranged at the center of the
cell, and 180 actin particles (∼100 µM) are ran-
domly placed around the actin filament.

, we determine 

The tensile stiffness of a single actin filament with a length 

43.7 pN/nm (32). By modeling the actin filament with 

double-helical structure as a series of linear springs, the Figure 4: Snapshot of initial molecular configu-
rations. The calculation cell sizes are 300 nm in
the x1 direction and 100 nm in the x2 and x3 direc-
tions. An actin filament is arranged at the center
of the cell, and 180 actin particles (∼100 M) are
randomly placed around the actin filament.

4 Results

4.1 Filament elongation by polymerization

It has been reported that the elongation of an actin
filament by polymerization has a linear depen-
dence on time (6). To demonstrate this linearity,
we simulated the actin filament elongation using
the polymerization model developed in this study.

A change in the number of filamentous actin parti-
cles, NFactin [particles], was calculated for 500 µs
(∼3.71×106steps) from 10 different initial parti-
cle configurations, and Fig. 5 shows a snapshot of
the filament in its elongation under the fluctuation.
In Fig. 6, the change in the average number of fil-
amentous actin particles NFactin in time is plotted
by solid circles, in which the error bars represent
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Figure 5: Snapshot of the filament under the fluc-
tuations in elongation simulation at t = 500µs.

Figure 6: Change in number of filamentous par-
ticles in time. The solid circles indicate the sim-
ulated results, in which the error bars represent
the standard deviation. The solid line describes
the linear regression curve between NFactin and t,
which is obtained by the least-square method.

the standard deviation for 10 calculations. The
solid line indicates the linear regression curve be-
tween NFactin and t, which is obtained by the least-
square method applied to the average values cal-
culated at every 0.135 µs (1×103steps), that is,

NFactin (t) = kpt +NFactin (0) = 1.93×10−2t +20,

(19)

where kp is the polymerization rate [particles/µs].
The linearity between the filament elongation and
time observed in the experiment was reproduced
using the polymerization model proposed in this
study.

The elongation rate in the case of an actin
monomer concentration of 100 µM was exper-
imentally obtained as 1.16×10−3 molecules/µs
(6). Compared with this value, the gradient of
Eq. 19 simulated in this study was larger by ∼17

times. This difference might be due to the neglect
of actin molecular polarity and the discrepancy of
polymerization distance, ∆p.

4.2 Actin filament turnover

Actin filaments undergo turnover, which is the ex-
change of actin molecules from existing filaments
and the flux of molecules through the filament, by
polymerization and depolymerization (23, 35-37).
To demonstrate the turnover, we numerically in-
vestigated the relationship between the number of
filamentous actin particles NFactin [particles] and
depolymerization rate kd [particles /µs], and the
movement of the particle in the filament.

A change in the average number of filamentous
actin particles NFactin [particles] was calculated
for 500 µs (∼3.71×106steps) from 10 differ-
ent initial particle configurations using 3 differ-
ent depolymerization rates. The depolymerization
rates were set as kd= 0.00 [particles/µs], in which
depolymerization did not occur, kd= 1.93×10−2

[particles/µs], that was equal to the polymer-
ization rate kp obtained in this study, and kd=
3.86×10−2 [particles/µs], that was twofold the
polymerization rate kp.

s]. The 

linearity between the filament elongation and time observed 

in the experiment was reproduced using the polymerization 

 The elongation rate in the case of an actin monomer 

M was experimentally obtained as 

s (6). Compared with this value, the 

gradient of Eq. 19 simulated in this study was larger by ~17 

times. This difference might be due to the neglect of actin 

molecular polarity and the discrepancy of polymerization 

Figure 7: Change in number of filamentous parti-
cles in time. The solid circles, squares, and trian-
gles indicate the simulated results for kd = 0.00,
1.93×10−2, and 3.86×10−2 particles/µs, respec-
tively, in which the error bars represent the stan-
dard deviation. The solid, dotted, and dashed
lines describe the linear regression curve between
NFactin and t for kd = 0.00, 1.93 × 10−2, and
3.86×10−2 particles/µs, respectively.



168 Copyright © 2009 Tech Science Press MCB, vol.6, no.3, pp.161-173, 2009

In Fig. 7, the changes in the average number of
filamentous actin particles NFactin in time are plot-
ted by solid circles, squares, and triangles for kd

= 0.00, 1.93×10−2, and 3.86×10−2 particles/µs,
respectively, in which the error bars represent the
standard deviation. The lines indicate the lin-
ear regression curve between NFactin and t, which
were obtained by the least-square method applied
to the average of the simulation results calculated
at every 0.135 µs (1×103steps):

NFactin (t) = 1.93×10−2t +20

(kd = 0.00 particles/µs), (20)

NFactin (t) = 20

(kd = 1.93×10−2 particles/µs), (21)

and

NFactin (t) =−1.98×10−2t +20

(kd = 3.86×10−2 particles/µs). (22)

For kd = 0.00, because of no depolymerization,
Eq. 20 is identical to Eq.19, and the increase
in NFactin has a linear dependence on time. For
kd = 1.93×10−2, the linear regression curve in
Eq. 21 is equal to the initial condition (20 par-
ticles), because the depolymerization rate was set
to be equal to the polymerization rate. For kd =
3.86×10−2, NFactin decreased because the depoly-
merization rate was higher than the polymeriza-
tion rate. The magnitudes of dNFactin/ dt in Eqs.
20-22 agree well with the difference between kp

and kd, that is, kp − kd= 1.93×10−2, 0.00, and
1.93×10−2, respectively. Thus, the results indi-
cated that the change in the average number of fil-
amentous actin particles NFactin can be calculated
using the difference between the polymerization
and depolymerization rates.

To numerically observe the turnover process, the
change in the number of filamentous actin parti-
cles NFactin, the positions of the particle that was
initially at the barbed-end, and the barbed-end
particles are illustrated at every 13.5 µs (1×105

steps) in Fig. 8. The actin filament was schemat-
ically represented as a linear particle model. The
movement of the initial barbed-end particle is

shown in green, and the barbed-end particles are
in red.

Figure 8A (kd = 0.00) shows that the position of
the green particle (the initial barbed-end particle)
remained at the 20th from the pointed end par-
ticle, while the red particle (the barbed-end par-
ticle) moved forward by polymerization. In Fig.
8B (kd = 1.93×10−2), the position of the green
particle moved toward the pointed end, while
the average number of filamentous actin parti-
cles NFactin stayed around 20, which was equal
to that of the initial state. Thus, the result for
kd = 1.93×10−2 particles/µs indicated the tread-
milling phenomenon (23, 37). Figure 8C (kd =
3.86×10−2) shows that the green particle moved
toward the pointed end faster than that in kd =
1.93×10−2 and the total number of filamentous
actin particles decreased. From these three re-
sults, by using the polymerization and depolymer-
ization models, the action the filament turnover
process and treadmilling were reproduced.

4.3 Effect of severing on poly- and depolymer-
ization

Because the actin filament changes its structure
by polymerization, depolymerization and sever-
ing, we investigated the effects of severing on
poly- and depolymerization using the model de-
veloped in this study.

Changes in the average numbers of filament NF,
filamentous actin particles NFactin, polymerized
actin particles Np, and depolymerized actin Nd

were calculated for 500 µs (∼3.71×106steps)
from 10 different initial particle configurations.
Assuming that the filament severing occurs sta-
tistically once every 500 µs, the severing rate can
be set as ksev= 1.18×10−4 [1/µs] using Eq. 7. The
depolymerization rate is set as kd= 1.93×10−2

[particles/µs], that is equal to the polymerization
rate kp obtained in this study. Figure 9 shows
a snapshot of the filament after severing under
the fluctuation. The changes in the average num-
bers of filament NF and filamentous actin particles
NFactin are shown in Figs. 10A and 10B, respec-
tively. Figure 10A indicates that the average num-
ber of filament NF increases because of filament
severing. Figure 10B shows that the number of
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Figure 8: Change in number of filamentous actin particles NFactin in time. The positions of the particle
initially at the barbed end and the barbed end particles at every 13.5µs are illustrated for (A) kd = 0.00, (B)
1.93× 10−2, and (C) 3.86× 10−2 particles/µs, respectively, as a case study. The movement of the initial
barbed end particle is shown in green, and those of the barbed end particles are in red.

filamentous particles NFactin is almost 20, which
is equal to that of the initial state, because the
depolymerization rate was set to be equal to the
polymerization rate.

In Fig. 10C, the change in the number of poly-
merized actin particles Np is shown, in which the
solid line indicates the simulated result, and the

dotted line indicates the relation,

Np (t) = kpt = 1.93×10−2t, (23)

which was obtained from Eq. 19 under the as-
sumption of no severing. The change in the num-
ber of polymerized actin particles Np is propor-
tional to the number of filaments. Thus, consid-
ering the change in the number of filaments illus-
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Figure 10: Change in number of filaments and particles in time. (A) Change in average number of fila-
ment NF, (B) Change in average number of filamentous actin particles NFactin, (C) Change in number of
polymerized particles in time, and (D) Change in number of depolymerized particles in time.

Figure 9: Snapshot of the filament under the fluctuations in Figure 9: Snapshot of the filament under the fluc-
tuations in severing simulation at t = 500µs.

trated in Fig. 10B, the polymerized actin particles
Np can be expressed as

Np (t) =
∫ t

0
NF (τ)kpdτ

=
∫ t

0

{
NF (τ)×1.93×10−2}dτ,

Np (0) = 0,

(24)

which is plotted by the dashed line in Fig. 10C. A

comparison of the dotted line in Eq. 23 with the
dashed line in Eq. 24 shows that their gradients
match each other in the beginning, and then, the
dashed line becomes larger than the dotted line in
time. This trend can be explained as follows: the
increase in the number of the filament barbed ends
due to severing, as shown in Fig. 2, causes the
acceleration of the apparent actin filament elon-
gation rate and polymerization (38, 39). Because
the solid line (simulated result) agrees well with
the dashed line in Eq. 24 in Fig. 10C, the change
in the number of polymerized particles in time by
severing was reproduced in this simulation.

In Fig. 10D, a change in the number of depoly-
merized actin particles Nd is shown. The solid
line indicates the results in this simulation, and
the dotted line indicates the following relation:

Nd (t) = kdt = 1.93×10−2t, (25)

which was obtained under the assumption of no
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severing. The dashed line indicates the relation
given by the equation,

Nd (t) =
∫ t

0
NF (τ)kddτ

=
∫ t

0

{
NF (τ)×1.93×10−2}dτ, Nd (0) = 0,

(26)

which was obtained by considering the change in
the number of filaments. A comparison of the dot-
ted line in Eq. 25 with the dashed line in Eq. 26
shows that depolymerization is accelerated by an
increase in the number of filament pointed ends
as the number of filaments increases (10, 40). Be-
cause the solid line obtained in the simulation
agrees well with the dashed line in Eq. 26 in Fig.
10D, the change in the number of depolymerized
particles in time by severing was reproduced.

5 Discussion

In this study, we developed the mathematical
model of actin filament dynamics, which can de-
scribe phenomena in the scale ranging from the
dynamics of one molecule to the filament struc-
tural changes. Then, we simulated the actin
filament dynamics to analyze filament elonga-
tion rate, filament turnover, and the effects of
severing on poly- merization/depolymerization.
The results indicated that the model reproduced
the linear dependence of filament elongation
on time, filament turnover process by poly-
merization/depolymerization, and acceleration of
polymeri- zation/depolymerization by filament
severing. And, even though the coupling of these
filament dynamics phenomena was not directly
formulated, the simulations naturally involved the
coupling effects. Our results qualitatively agreed
with those obtained in the experiments. Thus, the
developed model could be the basis of the model
that describes the actin filament dynamics from
the molecular-level behavior.

The mechanical behaviors of the actin filament
on various scales have been investigated through
modeling and simulation. For example, on the cell
migration scale, the relationship between actin fil-
ament dynamics and cell migration has been cap-
tured numerically using a finite element method

based on the model that combines actin dynam-
ics, attachment, and retraction (31). On the fila-
ment structural changes scale, the distribution of
actin filament length under the effects of polymer-
ization/depolymerization and severing has been
investigated using kinetic equations for the actin
filament dynamics (25). On the scale ranging
from the atomistic structural dynamics to fila-
ment structural changes, the barbed-pointed ends
asymmetry of polymeri- zation has been inves-
tigated by the Brownian dynamics method de-
rived from atomistic structures (7). In this study,
we focused on the scales ranging from the dy-
namics of actin molecules to filament structural
changes, and developed new model for the actin
filament dynamics. This model can be used to
calculate the change in the number of polymer-
ized/depolymerized actin molecules during actin
filament dynamics. And, because its mechanical
properties are modeled, actin filament deforma-
tion due to the random and external forces also
can be calculated.

Having developed the model of actin filament dy-
namics for an isolated single actin filament in the
scale ranging from the dynamics of a molecule to
filament structural changes, it would be possible
to extend to the higher-order structures formed by
bundling and crosslinking (41, 42). In addition,
by regulating the dynamics of actin-related pro-
teins as well as actin particles using the Langevin
equation with consideration of their interactions,
the mechano-biochemical coupling model of actin
filament dynamics could be developed. Further-
more, the developed model can be applied gener-
ally to the analysis of biological filamentous poly-
mers such as microtubules (43, 44) and DNA (45).

In developing the model, we have made some as-
sumptions and set some parameters empirically.
For example, the polymerization distance ∆p was
set without considering the actin molecular polar-
ity. The depolymerization and severing rates were
set to be approximately 104 and 107 times larger
than the experimental results (6, 46), respectively,
to accelerate depolymerization and severing to fit
the calculation time of 500 µs. To avoid the
numerical instability and to trace a phenomenon
over a long time period, the spring constants,
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Ktensile and Kbend, were reduced to 1/20 of the ex-
perimentally obtained results. The external force
acting on the particles was based on the repul-
sive potential in Eq. 16, assuming the diffusion-
limited reaction of the actin filament dynam-
ics. Moreover, depolymerization and severing,
which are regulated by interactions with biochem-
ical factors such as profilin, cofilin, and Arp2/3
complex (47, 48), were modeled phenomenolog-
ically. Even though the above assumptions were
used, the model could qualitatively reproduce ba-
sic characteristics such as the linearity of filament
elongation, turnover process, and severing effects
on the polymerization/depolymerization rates.

To describe actin filament dynamics in more de-
tail, our next challenge will be modeling the fila-
ment nucleation, annealing, branching, bundling,
and crosslinking. In addition, by taking into ac-
count biochemical factors such as profilin, cofilin,
and Arp2/3 complex, we will be able to investi-
gate their effects on the actin filament dynamics.
Furthermore, in combination with the models for
membrane dynamics and cell-substrate adhesion,
it would be possible to investigate cellular func-
tional activities (49, 50) such as shape changing,
cell division, and migration, from molecular-level
dynamics, using coarse graining modeling tech-
niques.

Thus, focusing on the scales ranging from the dy-
namics of the molecules to the polymer structural
changes using the Brownian dynamics simulation
would enable us to gain new ideas to contribute to
the research field of molecular and cellular biome-
chanics.
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