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Fluctuating Elastic Filaments Under Distributed Loads

Tianxiang Su∗ and Prashant K. Purohit∗,†

Abstract: Filaments under distributed loads are common in biological systems.
In this paper, we study the thermo-mechanical properties of an extensible thermally
fluctuating elastic filament under distributed forces. The ground state of the fila-
ment is solved first, followed by an investigation of the thermal fluctuations around
the ground state. We first consider a special case where the tangential component
of the distributed force τ is uniform along the filament. For the force-extension
relation in this case, we show that the filament is equivalent to one under end-to-
end applied force F = τL0/2 where L0 is the length of the filament. To study the
thermal fluctuations under more general distributed loadings, the filament is first
discretized into segments, and its energy is approximated up to quadratic order.
Then the partition function of the discretized filament, or chain, is evaluated using
multi-dimensional Gaussian integrals, from which free energy and other properties
of the filament are derived. We show that a filament under distributed loads suffers
larger thermal fluctuations than one with the end loads of the same magnitude. We
also show that our results for a discretized filament agree with continuum theory for
a continuous rod. Finally, we give some applications of our ideas to the stretching
and fluctuation of DNA in non-uniform microfluidic channels.

1 Introduction

The wormlike chain model, or the fluctuating elastic filament model, has been ex-
tensively used to describe the mechanical behavior of semi-flexible polymers like
DNA, actin and other long macromolecules [1, 2, 3, 4]. In particular, its force-
extension relation is usually fitted to the experimental data of stretched polymers
to extract their mechanical properties like the bending and stretching moduli [2].
Some authors have also used the model to predict the transverse fluctuations of the
polymers and compare the results with experiments and simulations [5, 6, 7]. To
account for the new and detailed results obtained using sophisticated experimental
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techniques, the fluctuating rod model is being continuously improved and general-
ized. For example, as the length scale at which people probe the mechanics of the
polymers becomes shorter and shorter, boundary conditions and heterogeneity of
the filament can not be ignored. To account for these effects, we have recently gen-
eralized the classical wormlike chain model to study polymers with heterogeneous
mechanical properties that are loaded under different boundary conditions [7].

Most of the studies so far consider only the behavior of a polymer under end-to-end
applied forces and torques. The reason for this may be that the majority of force-
extension measurements on macromolecules are carried out in optical tweezers,
magnetic tweezers, or atomic force microscopes (AFM), all of which apply forces
at the end of the polymer chains. But, there are many other cases where biological
filaments are subjected to distributed loads. For example, DNA in a nanofluidic
or microfluidic channel is subjected to distributed drag force applied by the sur-
rounding fluid flow. Molecular motors exert point loads, which are a special case
of distributed loads, to the long actin filaments in cells and muscles. Also, a uni-
formly charged polymer in a constant electric field behaves as if it is stretched by
a force that varies along the contour. The behavior of a filament under such dis-
tributed loads is not well understood. In fact, if one simply uses an end-to-end force
model to fit the extension data for a piece of DNA subjected to uniform flow, the
fitted drag coefficient is much lower than the true measured value [8]. A few groups
have tried to tackle this problem theoretically in recent years [11, 12, 13]. Some
of these works relied on phenomenological arguments [11], while some solved the
problem in the limit of a weak force field [12].

In this paper, we first calculate analytically the force-extension relation for a con-
tinuous filament under uniform distributed load. We show using Fourier series that
under uniform tangential force per unit reference length τ along the filament, it
suffers the same extension as one under end-to-end force of magnitude F = τL0/2,
where L0 is the contour length. However, a Fourier analysis of this kind is easy
to do only when τ is uniform. To consider more general loadings, we use our
theoretical framework [7] developed earlier to investigate the thermo-mechanical
properties of a discretized filament. In particular, we first find the ground state, or
the minimum energy state, for a filament under distributed loads. Then the ther-
mal fluctuation around this ground state is studied using a statistical mechanical
approach. In particular, the partition function is obtained analytically using multi-
dimensional Gaussian integrals. Once we get the partition function, the free energy
of the system is derived immediately, and the thermo-mechanical properties of the
system are calculated by differentiating the free energy. This method is capable of
reproducing the classical wormlike chain results [7]. Moreover, because of the dis-
cretization, it can easily deal with filaments with heterogeneous mechanical prop-
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erties. Here, we apply this framework to study the fluctuation of a filament under
distributed loads.

2 Theory

q(s0)
τ(s0)
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x

Figure 1: A fluctuating elastic filament (extensible wormlike chain) under dis-
tributed forces. The origin of the x− y coordinate system is set at the head of
the filament, which is hinged. The other end of the filament is constrained to move
only in the x direction. One possible deformed configuration of the filament is
shown in dashed line.

2.1 Theory for a continuous elastic filament

Consider a semi-flexible polymer, or fluctuating elastic filament with stretching
modulus Ks and bending modulus Kb. One end of the filament is hinged at the origin
of the x−y coordinate system shown in Fig. 1, while the other end is constrained to
move only in the x-direction. The reference configuration of the filament (the state
under zero loads at zero temperature) is straight, lying on the x axis. The coordinate
of its center line is [x,y] = [s0,0]. Here s0 is the reference arc length with s0 ∈ [0,L0],
and L0 being the undeformed contour length. Under distributed tangential force
τ(s0) per unit reference length and distributed normal force q(s0) per unit reference
length, the filament deforms into [x,y] = [s0 + u,w], where u(s0) and w(s0) are
the tangential and normal displacements respectively. Axial strain develops in the
deformed filament and it can be expressed in terms of the displacements u(s0) and
w(s0) assuming moderate rotations as:

ε(s0) =
ds−ds0

ds0
≈ ∂u

∂ s0
+

1
2

(
∂w
∂ s0

)2

. (1)

Here ds is the infinitesimal deformed arc length, and we keep terms up to the order
of O(u,w2) in the approximation.
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The energy of the deformed filament, as a sum of its stretching, bending, and po-
tential energies, is:

E =
∫ L0

0

Ks

2
ε

2 ds0 +
∫ L0

0

Kb

2

(
∂ 2w
∂ s2

0

)2

ds0−
∫ L0

0
τu ds0−

∫ L0

0
q w ds0, (2)

where Ks and Kb are the stretching and bending moduli of the filament. They are
not necessarily constants and can be functions of the arc length s0 in the reference
configuration. As discussed by Odijk [3], rather than express the energies in terms
of the displacements u(s0) and w(s0), it is more convenient to use ε(s0) and w(s0)
as independent variables, because the total energy can be decoupled using these
two variables. This is true even when the filament is under distributed loads. Using
Eq. 1, u(s0) in Eq. 2 can be eliminated and the energy can be grouped into two
decoupled terms – one involving ε(s0) only, and the other involving w(s0) only:

E = Eε +Ew, (3)

where the expressions for the two energy terms are:

Eε =
∫ L0

0

[
Ks

2
ε

2− τ

∫ s0

0
ε ds0

]
ds0, (4)

Ew =
∫ L0

0

[
Kb

2

(
∂ 2w
∂ s2

0

)2

+
τ

2

∫ s0

0

(
∂w
∂ s0

)2

ds0−qw

]
ds0. (5)

The minimum energy configuration can be evaluated by setting the variations δEε =
0 and δEw = 0. The former variation gives the strain of the minimum energy con-
figuration:

εmin(s0) =
1
Ks

∫ L0

s0

τ(s0)ds0, (6)

while the latter variation yields a 4th order ODE for the transverse displacement
wmin(s0) of the minimum energy configuration:

(
Kbw′′min

)′′−(w′min ·
∫ L0

s0

τ ds0

)′
−q = 0, (7)

with hinged-hinged boundary conditions w(0) = w′′(0) = w(L0) = w′′(L0) = 0.
Here we use ′ to denote the derivative d/ds0. We note again that in deriving these
results, we do not assume the moduli Ks and Kb to be uniform. They can vary
along the filament. By specifying the distributed loads τ(s0) and q(s0), we can
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solve Eq. 6 and Eq. 7 to get εmin and wmin respectively. Then by using Eq. 1, we
can obtain the longitudinal displacement umin. Thus, the deformed configuration
of the filament, without taking thermal fluctuations into account, is known. This
minimum energy configuration is the ground state of the filament around which the
system is fluctuating.

While the partition function and fluctuations of a discrete semi-flexible chain can
be evaluated under rather general loading conditions, which we will discuss in the
next section, it is difficult to compute the same quantities analytically for a contin-
uous filament unless the distributed load is uniform. Here we briefly discuss how
one can evaluate the average end-to-end extension of a continuous filament under
constant τ , by using a Taylor expansion of the path integral [9], and the Fourier
series method [2, 10] respectively for the small and large τ limits. For simplicity,
we also set the normal distributed force q = 0 for now.

In the small τ limit, the potential energy term involving τ in the Boltzmann factor
can be expanded using exp(x) ≈ 1 + x. After carrying out this exercise the Boltz-
mann weighted average end-to-end extension reads:

〈∆x〉 =
1
Z

∫
x(L0) · exp

(
−

Eb +Es− τ
∫ s

0 x ds0

kBT

)
D~r (8)

= βτ

〈∫ s

0
x(s0) · x(L0)ds0

〉
0
+O(τ2), (9)

where Z is the partition function, β = 1/kBT , Eb and Es are the bending and stretch-
ing energies respectively. The key step here is that, after the expansion, the potential
energy part in the Boltzmann factor is factored out and so the average 〈·〉0 in Eq. 9
is evaluated in a τ = 0 ensemble.

Now, the problem in the small τ limit is how to do the average in a τ = 0 ensemble.
To solve this problem, we recall that for a wormlike chain in a τ = 0 ensemble,
the correlation of its tangent angle θ satisfies: 〈θ(s) · θ(s′)〉 = exp(−|s− s′|/ξp)
[9], which can be used to evaluate 〈

∫ s
0 x(s0) · x(L0)ds0〉0 in Eq. 9, given x(s0) =∫ s0

0 cosθds0. Here ξp is the persistence length of the wormlike chain. The calcula-
tion is tedious but the final result for 〈∆x〉 turns out to be linear, as expected, in the
small τ limit:

〈∆x〉=
2ξpL0

DkBT

[
1−

ξp

L0

(
1− e−L0/ξp

)]
· τL0

2
+

τL2
0

2Ks
, (10)

with D being the dimension of space, i.e, D = 2,3 for a 2D and 3D chain respec-
tively. The last term in the above equation is the contribution of the pure stretching
term in the energy.
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When L0 >> ξp, the force-extension relation is simply:

〈∆x〉=
2ξpL0

DkBT
· τL0

2
+

τL2
0

2Ks
. (11)

One may recognize that the force-extension relation shown here for a filament un-
der small uniform τ is in exactly the same form as the relation for a filament under
small end-to-end force F , with F being replaced by τL0/2. Therefore, we conclude
that, as far as the force-extension relation is concerned, at small loads a uniformly
distributed tangential force is equivalent to an end-to-end force Feff = τL0/2.

In the large τ limit, on the other hand, where the approximation of the tangent
angle θ << 1 holds, one can use the Fourier series method to tackle the problem.
As usual, we expand the tangent angle θ = ∂w/∂ s0 in a Fourier cosine series:

θ(s0) =
+∞

∑
n=1

an cos
(

2nπs0

L0

)
. (12)

There is no a0 term here because the hinged-hinged boundary condition requires∫ L0
0 θds0 = 0. Plugging the Fourier series into Eq. 5, the energy of the filament

contributed by w becomes:

Ew =
+∞

∑
n=1

(
Kbπ2n2

L
+

τL2

8

)
a2

n. (13)

The equipartition theorem of statistical mechanics states that each quadratic mode
should have an average energy equal to kBT/2, which leads to:

〈a2
n〉=

kBT

2
(

Kbπ2n2

L + τL2

8

) , (14)

Using Parseval’s theorem, we obtain the expression for
∫ L0

0 〈θ 2〉ds0 from Eq. 14,
which finally leads to the force-extension relation of a chain under uniform τ:

〈∆x〉= L0−
kBT L0

4
√

KbτL0/2

[
coth

(
L0

√
τL0

2Kb

)
− 1

L0

√
2Kb

τL0

]
+

τL2
0

2Ks
. (15)

Here again the last term is the independent contribution from the stretching energy
Eε . Once again, we see that the force-extension relation, in the large τ limit, has
the same form as a wormlike chain under a large effective end-to-end force Feff =
τL0/2. Hence, we have shown that this equivalent relation holds for both small and
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large τ . Following Marko and Siggia [2], the force-extension relation for a filament
under uniform τ can be written as:

τLξp

2kBT
=

1
4

(
1− x

L0

)−2

− 1
4

+
x

L0
− τL0

2Ks
. (16)

From here on, we will focus on the large τ limit only because the filament under
small loads behaves as a linear entropic spring.

We saw in the above discussion that the Fourier series method works only when
τ is a constant. It is possible to deal with non-uniform distributed force if one ig-
nores the boundary conditions and applies the wormlike-chain constitutive law to
an infinitesimal segment on the continuous filament, and then integrates to recover
the end-to-end extension of the entire filament. In particular, let f (s0) be the in-
ternal force along the filament in the tangential direction. Balance of forces on an
infinitesimal segment ds0 reads (Fig. 2A):

f (s0 +ds0)− f (s0)+ τds0 = 0, (17)

which leads to ∂ f /∂ s0 = −τ , whose solution with boundary condition f (L0) = 0
is:

f (s0) =
∫ L0

s0

τ(s0)ds0. (18)

This tells us that, when τ > 0, the internal stress decreases from the fixed end to
the other end, which makes sense because τ is positive when pointing away from
the fixed end. On the other hand, the stretch λ (s0) = ε(s0)+1 for a 2D extensible
wormlike chain is [3]:

λ =
∂x
∂ s0

= 1− kBT
4
√

Kb f

[
coth

(
L

√
f

Kb

)
− 1

L

√
Kb

f

]
+

f
Ks

. (19)

Plugging Eq. 18 into Eq. 19, eliminating f and solving the ODE for x(s0), we can
obtain ∆x = x(L0)−x(0). Note that this procedure works regardless of whether τ is
a constant. In particular, if τ is uniform along the length of the filament, the result
is:

〈∆x〉= L0−
kBT
2τL0

log
[

sinhω

ω

]
+

τL2
0

2Ks
, (20)

where ω = L
√

τL0/Kb. Eq. 20 is not exactly the same as Eq. 15. This is because
to derive Eq. 20, we have ignored the boundary condition that leads to the force-
extension relation of a wormlike chain, and used it as the constitutive relation for
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an infinitesimal segment. However, we will show later (Fig. 2B) that the force-
extension curves from the two equations are close though not exactly the same.

The advantage of analyzing a continuous filament as we have done above is that
we get analytic closed form results. However, as we have already seen, the analysis
is either limited to special cases or relies on some additional assumptions that are
not easy to verify. To get the exact thermal fluctuations of a filament under general
distributed loads, it is convenient to first discretize it into segments. The partition
function of the system, which is a path integral for a continuous filament, becomes a
multi-dimensional Gaussian integral for a discretized filament or chain, and can be
evaluated easily [14, 7]. In the limit where the discretized segment length l0→ 0,
the number of discretized segments N → +∞, while L0 = Nl0 is kept constant,
the discrete chain becomes the desired continuous filament. Below, we discuss a
discrete fluctuating filament under distributed forces.

2.2 Energy of a discretized elastic filament or semi-flexible chain

We use the following notations for a discrete chain. Ksi, Kbi are the stretching and
bending moduli of segment i of the chain. They can be different for different i, and
i ∈ [1,N]. The reference coordinate of the ith node of the chain is (xi, yi) = (il0,0),
so that the chain is straight lying on the x axis. Under distributed loads τi and
qi per unit length on the ith segment, the node moves to (xi, yi) = (il0 + ui, wi),
with (ui, wi) being the nodal displacements. The axial strain for each segment is
represented by the vector~ε T = [ε1, ε2, · · · ,εN ]. Furthermore, we define the discrete
version of the tangent angle θ(s0) = dw/ds0 as follows: θi = (wi−wi−1)/l0. We
wish to write the energy of the discrete chain in terms of the strains~ε and the angles
~θ = [θ1, · · ·θN ].
The discretized version of the energies (Eq. 4 and 5) are quadratic expressions
which can be written compactly in matrix form. In particular, the discretized ver-
sion of the energy term involving ε is (Eq. 4):

Eε =
N

∑
i=1

[
Ksi l0

2
ε

2
i − τil2

0

i

∑
j=1

ε j

]
, (21)

and it can be written compactly as:

Eε =
1
2
~ε T · [Kε ]~ε +~RT

ε ·~ε, (22)

with the N×N stiffness matrix being [Kε ]i j = Ksil0δi j, and the ith component of
the vector ~Rε being−l2

0 ∑
N
j=i τ j. Similarly, the energy term involving only w (Eq. 5)
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can be written in terms of ~θ :

Ew =
N

∑
i=1

[
Kbi

2l0
(θi−θi−1)

2 +
τil2

0
2

i

∑
j=1

θ
2
j −qil2

0

i

∑
j=1

θ j

]
(23)

=
1
2
~θ T · [Kθ ]~θ +~RT

θ ·~θ . (24)

We note that the stiffness matrix [Kθ ] is a sparse tridiagonal matrix.

Finally, to impose the boundary condition and to constrain the end of the chain such
that w(L0) = 0, we add a penalty energy:

Ep =
Kp

2
[w(L0)−0]2 =

Kp

2

(
N

∑
i=1

θil0

)2

(25)

=
1
2
~θ T · [Kp]~θ . (26)

Eq. 24 and Eq. 26 can be combined, and therefore, we can write the total energy of
the chain E = Eε +Ew +Ep as:

E =
{

1
2
~ε T · [Kε ]~ε +~RT

ε ·~ε
}

+
{

1
2
~θ T ·

[
Kθ p

]
~θ +~RT

θ ·~θ
}

, (27)

where
[
Kθ p

]
= [Kθ ]+ [Kp].

As for a continuous filament, the ground state of the discrete chain is computed
first by solving ∂E/∂εi = 0 and ∂E/∂θi = 0. These result in two linear sets of
equations:

[Kε ]~εmin =−~Rε ,
[
Kθ p

]
~θmin =−~Rθ , (28)

which are solved to determine the ground state around which the chain fluctuates.

We next consider the thermal fluctuation around the ground state. We define the
deviations from the ground state as ∆~ε =~ε−~εmin, ∆~θ = ~θ −~θmin. Then the energy
(Eq. 27) in terms of these deviation variables is simply:

E = Emin +
1
2

∆~ε T · [Kε ]∆~ε +
1
2

∆~θ T ·
[
Kθ p

]
∆~θ , (29)

where Emin is the ground state energy. Note that the linear terms disappear when
the energy is expressed in terms of the deviation variables.
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2.3 Partition function and free energy

For a semi-flexible chain, the elastic and potential energies are usually comparable
to the thermal energy kBT at room temperature, where kB is the Boltzmann constant
and T is the temperature in Kelvin, set to be 300K in this study. Therefore, the chain
does not stay in the ground state forever. Instead, it fluctuates and samples different
configurations, labelled as ν below, around the ground state with Boltzmann statis-
tics: Pν ∼ exp(−Eν/kBT ). Here Pν is the probability that a configuration ν with
energy Eν is sampled. The thermo-mechanical behavior of this fluctuating elastic
chain can be evaluated using statistical mechanics by computing the partition func-
tion Z, which is the sum of Boltzmann factors over all the allowed configurations.
In our case, the energy of the system has been written in a quadratic matrix form
(Eq. 29) and the partition function is:

Z =
∫ +∞

−∞

· · ·
∫ +∞

−∞

exp
(
− E

kBT

)
d (∆~ε) d

(
∆~θ
)

(30)

= e−βEmin ·

√
(2πkBT )N

det [Kε ]
·

√
(2πkBT )N

det
[
Kθ p

] , (31)

where β = 1/kBT and Kε and Kθ p are N×N matrices. From the partition function
Z, we get the free energy G of the system:

G = −kBT logZ (32)

= Emin +
kBT

2
logdet [Kε ]++

kBT
2

logdet
[
Kθ p

]
− kBT N log(2πkBT ). (33)

We note that G is the Gibbs free energy because the partition function (Eq. 31) is
evaluated for a fixed temperature, fixed loads ensemble. Therefore, we have:

dG =−S ·dT −
N

∑
i=1

ui ·d (τil0)−
N

∑
i=1

wi ·d (qil0) . (34)

By differentiating the free energy we can get the thermo-mechanical properties,
like the force-extension relation, of the chain.

2.4 Force-extension relation

Noticing that τN l0 and uN (distributed force on the last segment and longitudinal
displacement of the last node) is a conjugate pair with respect to the energy (Eq. 34),
we have:

〈uN〉=−
∂G

∂ (τN l0)
. (35)



Fluctuating Elastic Filaments Under Distributed Loads 225

In this paper, 〈·〉 denotes the usual ensemble average of all sampled configurations
weighted by the Boltzmann factor. The average end-to-end extension of the chain
is 〈∆x〉= 〈x(L0)− x(0)〉= 〈x(L0)〉= L0 + 〈uN〉, which turns out to be:

〈∆x〉= ∆xmin−
kBT
2l0
· ∂

∂τN

(
logdet

[
Kθ p

])
. (36)

where ∆xmin is the extension of the chain in the ground state without thermal fluc-
tuation. Here we have used the facts that L0− ∂Emin/∂ (l0τN) = ∆xmin, and also
that the stiffness matrix [Kε ] does not depend on the distributed loads τ . We note
that the last term in Eq. 36, which is proportional to the thermal energy kBT , is
the contribution of the average extension from thermal fluctuation. When T = 0
and there is no thermal fluctuation, 〈∆x〉= ∆xmin, as it should be, because the only
configuration sampled is the minimum energy state.

2.5 Thermal fluctuation around the ground state

For the quantities that do not have clear conjugate pairs, their fluctuations can be
evaluated directly from a Boltzmann weighted sum. The key is to use the following
multi-dimensional Gaussian integral formula [16]:

〈 f (~x)〉=
∫

f (~x) · exp
(
−1

2~xT · [A]~x
)

d~x∫
exp
(
−1

2~xT · [A]~x
)

d~x
= exp

(
1
2

N

∑
i, j=1

[A]−1
i j

∂

∂xi

∂

∂x j

)
f (~x)

∣∣∣∣
~x=~0

.

(37)

Here f (~x) can be some general polynomial functions which are weighted by the
Boltzmann factor in the numerator. The denominator on the left-hand-side is just
the partition function, which serves as the normalization factor to the weighted av-
erage. On the right-hand-side, the exponential operating on the differential operator
is understood as a power series: exp(a) = 1+a+a2/2+ · · · .
Using Eq. 37, the thermal fluctuation in strain can be evaluated. In particular, for
the strain ε , the mean deviation and mean square deviation from the ground state
are respectively:

〈∆εi〉 = 0 (38)

〈∆εi ·∆ε j〉 = kBT [Kε ]
−1
i j =

δi jkBT
Ksil0

. (39)

Similarly, the fluctuation in the angles ~θ is:

〈∆θi〉 = 0 (40)

〈∆θi ·∆θ j〉 = kBT
[
Kθ p

]−1
i j . (41)
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We see that the mean square thermal fluctuations around the ground state increase
linearly as we increase the temperature, and decrease as the we increase the me-
chanical stiffness of the system, in agreement with intuition.

In experiments one typically measures the fluctuations in displacements. These
can be calculated directly from Eq. 37, or alternatively, using Eq. 39 and 41. In
particular, the fluctuation in the transverse displacement is:

〈∆wi〉 = l0
i

∑
m=1
〈θm〉= 0, (42)

〈∆wi ·∆w j〉 = l2
0

i

∑
m=1

j

∑
n=1
〈∆θm ·∆θn〉. (43)

Similarly, the fluctuation in displacement u can be obtained by using the fourth
moment of the multi-dimensional Gaussian distribution:

〈∆ui〉 = − l0
2

i

∑
m=1
〈θ 2

m〉, (44)

〈∆u2
i 〉 = kBT l0

i

∑
m=1

1
Ksm

(45)

+
l2
0
4

i

∑
m=1

i

∑
n=1

(
〈∆θ

2
m〉 〈∆θ

2
n 〉+2〈∆θm ·∆θn〉2 +4θ̄mθ̄n〈∆θm ·∆θn〉

)
. (46)

Here θ̄ is the angle for the ground state configuration. We note that while 〈∆wi ·
∆w j〉 is the fluctuation around the ground state, 〈∆ui ·∆u j〉 is not; because 〈∆wi〉= 0
and 〈∆ui〉 is not.

3 Results

We first show in Fig. 2 that the theories for a continuous rod and the theory for
a discrete chain yield the same result when τ is a constant along the arc length.
For large τ , the thermal fluctuations are already stretched out, so that the force-
extension curve is almost linear, due to elastic stretching.

We next focus on the results from the discrete model and compare the behavior of a
chain under distributed force and end-to-end force. Average end-to-end extension
of the semi-flexible chain 〈∆x〉 versus τ is plotted again in Fig. 3 in red solid line.
If we turn off the thermal fluctuations, the chain behaves just as a linear elastic rod
and the force-extension relation is shown in red dashed line in the same figure. To
make a comparison, we apply a point force F at the end of the chain. Under the
same net force: F = τL0, the chain under end-to-end force suffers larger extension
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Figure 2: Comparison between the continuous models and the discrete model. (A)
Force balance for an infinitesimal segment of a continuous rod. (B) Comparison
of the results for a continuous rod (Black curve: Fourier series method and Eq. 15;
Blue (almost overlaps with the black curve): method using force balance on in-
finitesimal segment and Eq. 20) and a discrete chain (red circles). The filament is
under constant τ along the arc length so that Fourier series method can be applied.
Here a 100nm chain is discretized into 1000 segments. The results match quite
well.
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Figure 3: Force-extension relations for a wormlike chain (1: red solid line) under
uniform distributed load τ with thermal fluctuations, (2: red dashed line) under
uniform distributed load τ without thermal fluctuations, (3: blue solid line) under
end-to-end force F = τL0 with thermal fluctuations, and (4: blue dashed line) under
end-to-end force without thermal fluctuations. The reference contour length of the
chain is L0 = 50nm. The persistence length is 5nm. The segment length is 0.5nm
with N = 100 segments.
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(Fig. 3 blue) than the one under distributed load. This is in agreement with result
from the Fourier series method for a continuous rod, which tells us the effective
end-to-end force for a distributed load is τL0/2, instead of τL0. Another way to
understand this result is by doing force balance on the chain. Under end-to-end
applied force, the stress along the chain is uniform: σ ≡ F/A = τL0/A, where A
is the cross sectional area of the chain. Under distributed force, on the other hand,
the stress along the chain varies linearly σ = τ(L0− s0)/A, and it is smaller than
the stress in the previous case everywhere except at s0 = 0. Therefore, it is not
surprising that a chain under end-to-end force suffers larger extension.

The fact that uniform distributed τ causes less internal tension in the chain than
the end-to-end force F = τL0 is also reflected in the transverse fluctuation profile
(Fig. 4). Because internal tension stiffens the filament, a chain with less internal
tension is expected to have larger thermal fluctuation. Indeed, our result shows
that the magnitude of transverse fluctuation is significantly larger for a chain under
uniform distributed force. Moreover, unlike the end-to-end force case, internal
tension is not a constant along the arc length when the chain is subjected to uniform
τ; therefore, the transverse fluctuation profile is not symmetric. The end of the
chain with less internal force has more fluctuations, as shown in Fig. 4.

Next, as a practical application of our methods, we analyze the stretching and fluc-
tuations of a piece of DNA in a linear microfluidic channel and a constant-strain-
rate channel, both of which have been fabricated in experiments [15]. For a linear
channel, the channel width varies as w(x) = ax+b, where a and b are two constants.
On the other hand, a constant-strain-rate channel has a shape w(x) = a/(1 + x/b)
(Fig. 5A). Since the fluid velocity is inversely proportional to the channel width
w, a polymer confined in the channel experiences drag force τ = dtv(x) that varies
along its arc length. Here dt is the drag coefficient per unit length and it is set to
dt = 1.2pN ·ms · µm−2 [15] in our calculation. Fig. 5B and C show respectively
the extension and fluctuations of the polymer in fluid flow. With the same entrance
width (width on the leftmost side) and exit width (width on the rightmost side), a
constant-strain-rate channel is narrower in most of its middle region compared to a
linear channel. Therefore, a polymer suffers larger drag force and less transverse
fluctuations in a constant-strain-rate channel. This leads to a larger end-to-end ex-
tension. In Fig. 5C, we also compare the fluctuations of a hinged-hinged polymer
(dashed line) and a hinged-free polymer, whose right end is not constrained on the x
axis. The fluctuation for the hinged-free polymer is larger than that for the hinged-
hinged polymer, as expected. In this study, we neglect the entropic force due to the
non-uniform channel width.

Finally, in Fig. 6, we show the transverse fluctuation of a chain subjected to uniform
τ plus a point load in the middle. The figure shows that the point load stretches the
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Figure 4: Transverse fluctuation of a chain under uniform distributed τ = 5pN/nm
(red), and under end-to-end applied force F = τL0 (blue). Under distributed force,
the chain has larger thermal fluctuations with an asymmetric fluctuation profile.
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Figure 5: DNA in non-uniform microfluidic channels. (A) A piece of DNA con-
fined in a linear channel and a constant-strain rate channel. Both channel types have
been fabricated in experiments [15]. (B) The velocity in the non-uniform channel is
inversely proportional to the channel width. Therefore, given the velocity v f at the
exit (rightmost) end, the entire velocity profile inside the channel is known, which
then leads to the drag force τ = dtv along the polymer. Here the end-to-end exten-
sion of the polymer is plotted against v f . As we increase the flow velocity, the strain
along polymer increases, resulting in a larger end-to-end extension. Red: DNA in
a linear channel. Blue: DNA in a constant-strain-rate channel. Dashed/Solid lines:
extension with/without the contribution of thermal fluctuations. (C) Transverse
fluctuations along the polymer arc length. Red and blue for DNA in a linear and
a constant-strain-rate channel respectively. Solid line is for a DNA with one end
hinged and the other end free to fluctuate. Dashed line is for the same DNA with
both ends hinged on the x aixs.
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left half of the chain and reduces the fluctuation there.
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Figure 6: Transverse fluctuation of a chain under uniform distributed τ plus a point
load F in the middle. The left half of the chain has less fluctuation because the
stretching of the point loads reduces the thermal fluctuations.

4 Conclusions

We analyze the thermoelastic behavior of a fluctuating elastic filament under dis-
tributed loads in this paper. We obtain, by means of a Fourier analysis on a con-
tinuous filament, analytic results when the polymer is under uniform distributed
load. We find that a filament under uniform distributed load τ per unit reference
length can be viewed as one under an effective end-to-end force of τL0/2 if we
are only interested in the force-extension relation. However, to get the fluctua-
tions of a filament under general loadings, we need to first discretize the filament
and approximate the path integral for the partition function as a multi-dimensional
Gaussian integral. Once the partition function is calculated, all other quantities can
be obtained by differentiation using standard thermodynamic techniques. As an
illustration, we apply our methods to DNA under non-uniform distributed loads as
is the case for DNA stretched by flow fields in microfluidic channels.
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