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Multiphase Porous Media Mechanics

G. Sciumè∗,†, S.E. Shelton‡, W.G. Gray‡, C.T. Miller‡, F. Hussain§,¶

M. Ferrari¶, P. Decuzzi¶ and B.A. Schrefler∗,¶

Abstract: Multiphase porous media mechanics is used for modeling tumor growth,
using governing equations obtained via the Thermodynamically Constrained Aver-
aging Theory (TCAT). This approach incorporates the interaction of more phases
than legacy tumor growth models. The tumor is treated as a multiphase system
composed of an extracellular matrix, tumor cells which may become necrotic de-
pending on nutrient level and pressure, healthy cells and an interstitial fluid which
transports nutrients. The governing equations are numerically solved within a Fi-
nite Element framework for predicting the growth rate of the tumor mass, and of
its individual components, as a function of the initial tumor-to-healthy cell ratio,
nutrient concentration, and mechanical strain. Preliminary results are shown.
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Nomenclature

Roman letters

b exponent in the pressure-saturations relationship
cg nutrient concentration in liquid (kg/m3)
cg

crit critical nutrient concentration in liquid for growth
cg

env reference nutrient concentration in the environment

Dgl
e f f effective diffusion coefficient

H Heaviside step function
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kαs absolute permeability tensor of the phase α

kα
rel relative permeability
l→t
M

growth
rate of growth term due to transfer of mass from fluid to tumor

gl→t
M nutrient consumption rate from liquid to tumor

pα pressure in the phase α

ε trNt reaction term in the tumor cells phase: generation of necrotic cells
Sα saturation degree of the phaseα

ts
e f f effective stress in the solid

vα velocity of the phaseα

Greek letters

aα adhesion
γ t

growth growth coefficient
γ t

necrosis necrosis coefficient
γg nutrient consumption
ε porosity
εα volume fraction of the phase α

µα dynamic viscosityof the phase α

ρα density of the phase α

σc coefficient in the pressure-saturations relationship
ωNt mass fraction of necrotic cells in the tumor cells phase

Subscripts and superscripts

crit critical value for growth
g nutrient
h host cell phase
l interstitial fluid
necr critical value for the effect of pressure on the cell death rate
s solid
t tumor cell phase
α phase indicator with α=t,h,l, or s

1 Introduction

Every year around 12 million new cases of cancer are diagnosed worldwide. With
a continuously aging world population, a surge in cancer incidence is anticipated.
Clearly treatment optimization is critical for improving the prognosis and quality of
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life, and for minimizing the economic impact. Patient-specific, multiscale compu-
tational models can help in predicting tumor proliferation and response to different
therapeutic regimens, and thus would offer an ideal prognostic tool. Our aim is to
advance in this direction.

We focus on solid tumors which can be considered as a multiphase system compris-
ing different, interrelated compartments with specific biological and biomechani-
cal properties. These would include a tumor region, composed of necrotic and/or
quickly dividing neoplastic living cells; a healthy tissue region; an extracellular
compartment for the tumor and for the healthy tissue; a fluid compartment, which
permeates the extracellular matrix; and a vascular compartment. These phases are
closely connected in space, over multiple scales.

Different computational models for predicting tumor initiation and proliferation
have been proposed in recent years; see for excellent overviews: Araujo and McEl-
wain (2009), Quaranta et al. (2005), Roose et al. (2007), Zaman (2007) and Lowen-
grub et al. (2010). Three main approaches can be identified: i) discrete, single cell
models; ii) continuum models; and iii) hybrid models. Discrete models are mostly
based on cellular automata, generally limited to a small number of tumor cells.
Therefore they can only capture the early initiation and growth of malignancy. Fur-
ther, subdomains are not representative of the whole domain (Perfahl et al., 2011).
Differently, continuous models describe the interacting fields by means of differ-
ential equations and can be effective in analyzing the long term development of
larger tumor masses. Finally, hybrid models combine elements of both approaches
and, to be effective, require a combination of ‘mature’ models of the discrete and
continuum types. We limit ourselves to continuum models.

A novel mathematical approach is proposed based on the Thermodynamically Con-
strained Averaging Theory (TCAT). This is a framework recently established for the
analysis of continuum and porous media, which is consistent over multiple scales.
TCAT (Gray and Miller, 2005, and Gray et al., 2012) provides a rigorous yet flex-
ible method for developing multiphase, continuum models at any scale of interest.
Many natural and engineered systems are characteristically multiphase, meaning
that two or more fluid and solid phases occupy a shared domain. More recently,
biological tissues also have been treated as continuum, multiphase systems.

We describe avascular tumor growth with TCAT and solve the resulting balance
equations numerically with the Finite Element Method. There are four coupled
mass balance equations and a linear (negligible advective nonlinearity) momen-
tum balance equation to be solved simultaneously; the chosen staggered scheme
conserves the coupled nature of the problem. The presentation of the model is fol-
lowed by results of modeling tumor growth of spheroids and a tumor cord and the
development of necrotic regions due to nutrient deficiency and/or to the pressure
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excess.

2 Materials and Methods

2.1 The physical Model

The tumor model here refers to the avascular stage where the tumor has not yet
developed its own vasculature. The model consists of four phases: one solid and
three fluids. The cells maintain tissue integrity by cell to cell contact, and the ex-
tracellular matrix (ECM) acts as a scaffold to give the tissue more structure and
rigidity. The ECM components of a tissue will be treated as a single solid phase
(s). The three fluid phases are the host tissue (h) composed of healthy cells, the
tumor tissue able to proliferate (t) composed of living and death tumor cells, and
the interstitial fluid (l) which carries dissolved nutrient to the cells and provides a
medium for intercellular signaling molecules to travel between cells. The intersti-
tial fluid is very different from blood, composed primarily of water and is assumed
to be incompressible. The necrotic areas develop because the tumor receives its
nutrition via diffusion from the outside, and once the tumor is larger than the diffu-
sion distance (about 100 µm) necrosis occurs beyond this distance from the outer
rim or the vessel wall.

2.2 The Mathematical Model

When modeling flow and transport in systems involving more than one phase, one
must consider the desired length scale in order to derive the relevant conservation
equations. The smallest scale at which the continuum hypothesis holds is called the
microscale or pore scale. At the microscale, a single (continuum) point contains a
large number of cells and/or molecules such that properties such as density, tem-
perature, and pressure of a phase are all defined. At the microscale the well-known,
classical conservation equations and thermodynamic expressions are written. How-
ever, the domains of interest are too large for the system to be modeled at the mi-
croscale. Alternatively, multiphase domains may be too complex to resolve certain
variables (frequently velocities) at the microscale across the entire domain. Thus,
many porous media models are formulated at a larger scale, called the macroscale.
The Thermodynamically Constrained Averaging Theory uses averaging theorems
to formally and consistently convert microscale equations to the macroscale. These
averaging theorems convert averages of microscale derivatives into derivatives of
macroscale averages and share some features of the well-known transport and di-
vergence theorems. The development of the balance equations is a rather lengthy
procedure and the reader is referred to Shelton (2011) and Sciumè et al (2012) for
a detailed discussion and the statement of the constitutive forms. The governing
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and constitutive equations of the model are given in the Appendix. The numerical
solution of the model and the computational strategy are discussed next.

2.3 The numerical model

The weak form of the governing equations is obtained by applying the standard
Galerkin procedure. The equations are then discretized in space by means of the
finite element method (Lewis and Schrefler, 1998). Integration in the time domain
is carried out with the generalized mid-point rule where an implicit procedure is
used. Within each time step the equations are linearized by means of the Newton-
Raphson method. The primary variables chosen are the saturation degree of the
tumor cells phase St , the saturation degree of the host cells phase Sh, the interstitial
fluid pressure pl , the ECM velocity vs and the mass concentration of nutrient in the
interstitial fluid phase cg.

For the solution of the equations a staggered scheme is adopted with iterations
within each time step to preserve the coupled nature of the system. The conver-
gence of such staggered schemes has been documented by Turska et al., (1994). In
particular for the iteration convergence within each time step, a lower limit of ∆t/h2

has to be observed. A similar limit is also met in the numerical solution of Poisson
type equations (Murthy et al., 1989). Both situations apply here.

Three computational units are used in the staggered scheme as shown in Figure 1:
the first is for the nutrient mass concentration cg; the second to compute St , Sh and
pl; and the third to obtain the solid velocity vector. Once convergence is achieved
within a time step the procedure can march forward.

 

Figure 1: Solution strategy implemented in Cast3M

Note that there is a striking analogy between this model and the three fluids model



198 Copyright © 2012 Tech Science Press MCB, vol.9, no.3, pp.193-212, 2012

of concrete at high temperature (Gawin et al., 2002) and concrete at early ages
(Gawin et al., 2006). In all three cases we have one solid phase and three fluid
phases together with reactions and mass exchanges. The procedure has hence
been implemented in the code CAST3M (http://www-cast3m.cea.fr) of the French
Atomic Energy Commission taking advantage of the fact that recently the first au-
thor had implemented in the same code our model for young concrete (Gawinet al.,
2006) and previously the procedure for concrete at high temperature had also been
implemented there (Dal Pont et al., 2007).

3 Results

We focus on tumor growth, its validation with experimental results and on necro-
sis due to nutrient deficiency and/or to the pressure excess. As the predominant
nutrient we use glucose. These are preliminary results, and we consider a rigid
extracellular matrix.

First we investigate the growth of a tumor spheroid in vitro, where only tumor cells
in a rigid ECM are considered. During the growth of the spheroid the cells consume
nutrient due to their metabolism. Therefore when the spheroid increases its radius,
gradients in concentration of nutrient develop from the periphery to the center of
the spheroid. A decrease of nutrients at the center causes necrosis to start once the
nutrient concentration is below a critical value. The glucose deficiency is here the
main indicator of cells necrosis.

For simplicity consider a quarter sphere with cylindrical symmetry. The geometry
as well as the initial and boundary conditions are shown in Figure 2. The reference
pressure is the atmospheric one. The parameters used for the numerical simulation
are summarized in Table 1.

Table 1: Solution strategy implemented in Cast3M

PARAMETER SYMBOL VALUE UNIT
Volume fraction of ECM εs 0,1
Density of the phases ρα 1000 Kg/m3

Diffusion coefficient of glucose Dg 5.0e-10 m2/s
Permeability for the tumor cells’ phase kts 1.0e-19 m2

Adhesion of tumor cells at 2.e6 Pa/m
Coeff. γgrowth for the growth function γgrowth 1.00 Kg/(m3* sec)
Critical value of glucose concentration cg

crit 0,86 Kg/m3

The numerical results are compared in Figure 3 with those obtained in different in
vitro experiments (Yuhas et al.,1977, Chignola et al., 1995, Chignola et al., 2000).
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Figure 2: Geometry of the finite element mesh (left), initial conditions and bound-
ary conditions (right)

�

Figure 3: Numerical result compared with different in vitro experiments (symbols)
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Figure 4: Glucose concentration during 360 hours

 

Figure 5: Necrotic and living tumor cells at 360 hours
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�

Figure 6: Volume fractions of the cell populations after 240 hours

Figure 4 shows that the glucose concentration decreases at the center due to its con-
sumption. Note its progressive slight later increase due to gradient driven continued
diffusion to the center.

Figure 5 shows the volume fractions of the tumor cells and of the living tumor cells
at 360 hours. The difference between the continuous line and the dashed line is the
volume fraction of the dead tumor cells (i.e. the necrotic core of the spheroid).

The second example is similar to the previous one, but in this case the population
of host cells is also considered.

The tumor is surrounded by the cells comprising the host tissue. Consequently, for
the spheroid to increase its radius, it has to push against the host cells or invade the
host tissue that occupies most of the ECM free space. The nutrient supply is more
difficult due to the presence of the host cells that reduce the effective diffusivity.
The geometry, the initial conditions and the boundary conditions are analogous to
the previous example; but in this case in the blue zone of Figure 2 the host cell
phase is present with a volume fraction equal to 0.2. The adhesion of the host cells
ah is assumed equal to that of the tumor cells at . In Figure 6 the volume fractions
of the host cell phase, of the host cell phase plus that of the tumor cell phase and
of the host cell phase plus that of the living tumor cell phase are plotted. Figure
6 shows the interaction between the two cell populations: the tumor spheroid due
to its growth pushes the host cell population and partly invades its space. In this
case both cell populations have the same adhesion. If the adhesion of the host
cells is lower , the growing tumor cells completely displace the host cells, while
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with higher adhesion the invasion in the host cell space is more important. This is
analyzed in more detail in Sciumè et al. (2012). Similar to Figure 5 the difference
between the continuous line “host & tumor cells” and the dashed line is the volume
fraction of the dead tumor cells.

Next case we simulate the growth of a tumor in the direct vicinity of the capillary
blood vessels. The region near the blood vessel is favorable for tumor growth
because the blood delivers nutrients to tumor cells. Therefore, in this case the
tumor develops along the vessels and, in contrast to the first two cases, necrosis
doesnot occur on the center of the tumor, but in the zones distant from the vessels.

Consider two capillary vessels with the tumor only on the left vessel as shown in
Figure 7. The distance between the two vessels is 300 µm.

 

Figure 7: Geometry and initial conditions of the third case

Only the tumor cell population and a rigid ECM are considered. A constant value
of the glucose concentration cg = 0.880 kg/m3, is imposed at the surface of the
capillary vessels. The boundary conditions for the third case are reported in Figure
8.

The example shows how a tumor can develop from vessel to vessel due to vascu-
larization of the organ tissue (see Figure 9).

A 3-D solution of this case depicts the development of the tumor along the vessels
as shown in Figure 10. This typical configuration is called a tumor cord.

Figure 11 shows the decrease of the glucose concentration in the extracellular
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Figure 8: Boundary conditions of the third case

 

Figure 9: 2-D solution: living tumor cells at 200 hours and 350 hours.
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Figure 10: 3-D solution: living tumor cells at 200 hours and 350 hours.

 

Figure 11: 3-D solution: glucose concentration at 200 hours and 350 hours.
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spaces caused by the presence of the tumor. Note that sustained diffusion partly
replenishes the nutrient level in the necrotic region because of lack of consumption
(see Figure 11, at 350 hours, between the two cords). Note the left-right asymmetry.

4 Discussion

A tumor growth model based on multiphase porous media mechanics is presented.
The governing differential equations have been obtained by means of the Ther-
modynamically Constrained Averaging Theory. These are mass balance equations
for each phase, ageneralization of Darcy’s law for the interstitial liquid and cell
populations, and closure relations that allow for adhesion of the cell phases. The
nutrient transport mass balance equation is a Fickian form. The solid deformation
can consider an elasto-viscoplastic behavior.

We have modeled the growth behavior of a spheroid in vitro within a rigid ECM.
The growth curve compares well with experiments and is compatible with Gom-
pertzian growth pattern in exponents (Casey, 1934). Nutrient deficiency at the cen-
ter of the growing spheroid causes the onset of necrosis and a typical ring of viable
tumor cells is obtained as observed in experiments (Mueller-Klieser, 1986). The
rate of growth function plays an important role in matching experimental data.
This deserves further attention. In these preliminary calculations, we have used
glucose as the prevalent nutrient. The role of other nutrients such as oxygen will be
investigated because its deficiency seems to be more critical in triggering necrosis.
Also, the role of products of metabolism such as ATP and lactate needs study. The
introduction of a host cell population in the previous example has shown that the
growing tumor mass invades and/or displaces the host cell population. The impor-
tant factor hereis the adhesion of the respective cell populations. Also this aspect
will be investigated further.

The modeling of the deformation of the ECM requires realistic boundary conditions
which must consider a higher scale (megascopic level) than that at which the tumor
is modeled (macroscopic level). This means that also the organ where the tumor
grows has to be taken into account. This aspect is under investigation.

The case of the tumor cord shows how availability of a nutrient source, in this case
a second blood vessel, attracts growing tumor cell population. Also the importance
of three-dimensional modeling is recognized: only such allows the investigation of
realistic in vivo situations. Clearly in this case also the host cell phase should be
included. Its presence slows down the growth of the tumor as will be shown in
Sciumé et al. (2012).

As far as the numerical aspects are concerned, the importance of the above men-
tioned lower limit of ∆t/h2 has to be assessed in more detail. Here the assessment
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has been carried out with numerical experiments.

5 Conclusions

We have modeled tumor growth in an ECM in the absence or presence of a host
cell population. The model equations are based on a TCAT formulation that ensures
consistency of the model dynamics and thermodynamics across length scales. The
nutrient is transported by the interstitial fluid which also yields the water needed
for cell growth. The availability of nutrient influences the growth pattern, while its
deficiency causes the development of a region of necrotic cells. Also the role of the
pressure on cell death is included in the model. The results and the comparison with
experimental data show that the adoption of multiphase porous media mechanics is
an appropriate tool for effective modeling of the complicated evolution of a tumor
and the development of a necrotic phase. The numerical model will now be exten-
sively validated with in vitro experiments and then applied to patient specific cases.
Glioblastom a multiforme (GBM) will be considered as a reference tumor for the
in vitro experiments and model validation, calibration and refinement. The prelim-
inary results are promising towards the development of patient-specific, multiscale
computational models to predict tumor proliferation and response to therapeutic
regimens.

Appendix: Balance and Constitutive Equations

The multiphase model of a cancer tumor requires conservation and constitutive
equations appropriate for each phase and accounting for interphase processes. Ele-
ments of those equations are provided here.

The ECM (s) is treated as a porous solid with a volume fraction εs=1- ε , where ε

is the porosity. The rest of the volume is occupied by the three fluid phases: the
tumor cells (ε t); the healthy cells (εh); and the interstitial fluid (ε l). The volume
fractions for all phases sum to 1

ε
s + ε

h + ε
t + ε

l = 1 (1)

From the definition of porosity and volume fractions the saturation degrees of the
three fluid phases can be defined as: Sα = εα/ε . For sake of simplicity we assume
that the densities of the phases are constant and equal (close to that of water):

ρ
s = ρ

h = ρ
t = ρ

l = ρ = const (2)

The primary variables chosen are the saturation degree of the tumor cells phase St ,
the saturation degree of the host cells phase Sh, the interstitial fluid pressure pl ,
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the ECM velocity vs and the mass concentration of nutrient in the interstitial fluid
phase cg.

The mass balance equations of the solid is

∂ (1− ε)
∂ t

+∇ · [(1− ε)vs] = 0 (3)

where vs is the solid phase velocity.

The mass balance equations of the tumor cell phase (t), the host cell phase (h) and
interstitial fluid (l) are respectively

∂ (εSt)
∂ t

+∇ ·
(
εStvs)−∇ ·

(
kt

relk
ts

µ t ∇pt
)

=
1
ρ

l→t
M

growth
(4)

∂
(
εSh
)

∂ t
+∇ ·

(
εShvs

)
−∇ ·

(
kh

relk
hs

µh ∇ph
)

= 0 (5)

∂
(
εSl
)

∂ t
+∇ ·

(
εSlvs

)
−∇ ·

(
kl

relk
ls

µ l ∇pl
)

=− 1
ρ

l→t
M

growth
(6)

where µα is the dynamic viscosity, kα
rel is the relative permeability which takes care

of the presence of the other two fluid phases (Sciumè et al., 2012), kαs is the ab-
solute permeability, pα is the pressure and ρ is the common density. The intrinsic
permeability tensor kls of the interstitial fluid phase is constant and isotropic. Ex-
perimental evidence confirms that cells would stay in contact with the ECM if the
mechanical pressure gradients exerted over the cell phase are smaller than a critical
value (Baumgartner et al. 2000, Shiang et al. 2010). For this reason, for the healthy
and tumor cells the intrinsic permeability tensors (i.e. khs and kts) are isotropic but
not constant, and are computed using the following equation

kαs = max
(

k̃αs
〈

1− aα

|∇pα |

〉
+

,
k̃αs

100

)
(α = h, t) (7)

where aα is the adhesion. This represents the fact that if cells adhere firmly to the
ECM, the phase permeability within the ECM is reduced. The minimum value of
the permeability (set equal to k̃αs/100) eliminates the indeterminacy in the case
|∇pα |< aα , contained in the approach of Preziosi and Tosin (2009).

l→t
M

growth
is the rate of growth term adapted from Preziosi and Tosin (2009)

l→t
M

growth
=

[
γgrowth

〈
cg

cg
crit
−1
〉

+
H
(

pt
crit − pt)](1−ω

Nt)εSt (8)
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where the coefficient γgrowth takes into account both the effect of the nutrient uptake
and of the consumption of water needed for cell growth; cg

crit is the critical value of
the nutrient concentration below which cell growth is inhibited. 〈〉+ indicates the
positive value of the argument of the Macaulay brackets, and H is the Heaviside
function; pt

crit is the critical pressure value above which there is no growth. ωNt =
εNt ρNt

ε t ρ t is the mass fraction of necrotic cells in the tumor cells phase (t).

Assuming that: i) there is no diffusion of either necrotic or living cells; ii) there is
no exchange of necrotic cells with other phases; the mass conservation equation for
the necrotic portion of the tumor cells phase reads

∂
(
ε tρωNt

)
∂ t

+∇ ·
(

ε
t
ρω

Ntvt
)
− ε

trNt = 0 (9)

in which ε trNt is the rate of generation of necrotic cellsand vt is the velocity of the
tumor cells phase. The previous hypothesis i) allows taking into account necrosis
without the introduction of an additional primary variable, but simply considering
ωNt as an internal variable of the model given by

∂ωNt

∂ t
=

1
εStρ

[
ε

trNt −
(

ω
Nt l→t

M
growth

)
−
(

εSt
ρvt
)
·∇ω

Nt
]

(10)

Eqn (10) is obtained expanding eqn (9) by use of the product rule, and substituting
in it the mass balance equation of the tumor cells phase. The rate of generation of
necrotic cells is given by

ε
trNt

=−

[
γ

t
necrosis

〈
cg

cg
crit
−1
〉
−
−δ

t
aH(pt − pt

necr)

]
(1−ω

Nt)εSt (11)

where γ t
necrosis is the rate of cell death, 〈〉− is the negative part of the argument of the

Macaulay brackets, pt
necr is the pressure above which the tumor stress has effect on

the cell death rate, and δa is the additional necrosis induced by a pressure excess.

The mass balance equation of the nutrient species in the interstitial fluid is

∂
(
εSlcg

)
∂ t

−∇ ·
(

εSlDgl
e f f ∇cg

)
=−

gl→t
M (12)

where Dnl
e f f is the effective diffusion coefficient depending on the available pore

space, (Sciumè et al., 2012) and
gl→t
M is the nutrient consumption rate.

gl→t
M depends

on the local nutrient availability (i.e. cg) and is given as

gl→t
M = γ

g
(

cg

cg
env

)
(1−ω

Nt)εSt (13)
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where γg is the maximum consumption of nutrient, cg is the local mass concen-
tration of nutrient (primary variable of the model) and cg

env is a constant value and
represents the environmental mass concentration of nutrient (in the vitro medium
for a test in vitro, or in the blood plasma for a case in vivo).

A pressure difference is considered between the interstitial fluid phase and the two
cells phases to preserve the immiscibility of the multi-phase system. The pres-
sure in the tumor cells phase and in the host cells phase is given by the following
constitutive equation

pt = ph = pl +σc tan
[

π

2

(
St +Sh

)b
]

(14)

where σ c and b are constants. The cells pressure essentially depends on the avail-
able pore space.

Finally the linear momentum balance equation of the solid phase in rate form reads
as

∇ ·

(
∂ ts

e f f

∂ t
− ∂ ps

∂ t
1

)
= 0 (15)

where ts
e f f is the effective stress tensor in the solid and 1 is the unit tensor. The

interaction between solid and the fluids, inclusive of the cell populations, has been
accounted for through the effective stress principle (Gray and Schrefler, 2007).
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