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Investigation of Tissue Thermal Damage Process with
Application of Direct Sensitivity Method

Marek Jasiński∗

Abstract: In the paper the numerical analysis of thermal processes proceeding
in the biological tissue is presented. The tissue is subjected to the external heat
flux and 2D problem is taken into account. In order to determine the influence of
variations of thermophysical parameters of tissue on the value of Arrhenius injury
integral the direct approach of sensitivity analysis is applied. On the basis of tissue
damage fraction the thermal injury formation process is analysed. At the stage of
numerical realization the boundary element method is used. In the final part of the
paper the example of numerical simulation is shown.
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element method

1 Introduction

It is well-known that temperature elevation and thermal damage can dynamically
change the thermal distribution during coagulation by altering thermophysical prop-
erties of biological tissue. Consequently, parameters applied in bioheat transfer
model can be regarded as temperature-dependent or tissue damage-dependent. Spe-
cial attention in this field is dedicated to the changes in perfusion that accompany
necrosis. Such kind of processes are usually modeled by the so-called Arrhenius
injury integral in which the reaction rate increases exponentially with the tempera-
ture.

Using the concept of the tissue injury integral, Henriques [1] proposed model of the
skin burn prediction. This model has been later analysed and developed in many
works, e.g. in Torvi et al. [2] and Majchrzak et al. [3, 4]. Oden et al. [5] as
well as Zhou et al. [6] presented models concerning the tissue denaturation during
laser irradiation. The problem of relation between degree of tissue damage and
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the value of perfusion coefficient has been analysed in Abraham et al. [7], who
proposed the polynomial function modeling initially growth of blood flow caused
by vasodilatation and decrease of perfusion as the value of injury integral increase.
Glenn at al. [8] used the exponential function in order to investigate changes in
value of scattering coefficient during laser – tissue interaction.

The main assumption of the Arrhenius formula is that the damage of tissue is ir-
reversible, so even in the case of very little increase and lowering of temperature
the tissue remain damaged. On the other hand, when the temperature is moderate,
that is from 37˚C to 45–55˚C, the blood vessels in the tissue become dilated with-
out being thermally damaged. Taking these two facts into account, in current paper
special function based on approximation of Arrhenius integral and temperature was
accepted in order to model withdrawal of tissue injury.

Knowledge of the temperature distribution, degree of the tissue injury and value
of the perfusion coefficient allow ones to estimate the depth of the thermal dam-
age as well as the value of the tissue damage fraction corresponding to respective
zones in which different effects inducted by the thermal impulse occurred. It should
be pointed out that knowledge of the depth of tissue necrosis could be significant
information in some thermal therapies, such as prostate hyperplasia or cancer ther-
motherapy.

In the current paper the tissue is regarded as a homogeneous domain in which heat
transfer is assumed to be transient and two-dimensional. Mathematical description
of the processes proceeding in the tissue is based on the Pennes equation with
perfusion coefficient dependent on tissue necrosis, while the remaining thermal
parameters are regarded as constant values.

One of the problems connected with the application of mathematical model is the
sensitivity of the solution with respect to the parameters appearing in the govern-
ing equations. The sensitivity information may be used, among others, to analyse
the influence of the change of parameters on the final solution of the problem be-
ing considered. Such kind of problems have been analysed in Davies et al. [9]
and Jasiński [10], while Majchrzak et al. [11] presented sensitivity analysis of the
Henriques burn integrals mentioned above.

Additional tasks required to determine the sensitivity functions result from differ-
entiation of the assumed equation describing heat transfer in biological tissue with
respect to the parameter, which means that the number of additional sensitivity
tasks corresponds to the number of parameters with respect to which the sensitivity
analysis is done.

The basic problems, but also the additional problems resulting from the sensitivity
analysis, have been solved using the 1st scheme of boundary element method for
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transient heat diffusion.

2 Mathematical model

The 2D domain of homogeneous biological tissue of rectangular shape (Fig. 1.) is
considered, with boundary Γ0 subjected to an irregular external heat impulse. The
transient heat transfer in this domain is described by the Pennes equation in the
form [1 – 11]

x ∈Ω : cṪ = λT,ii +QV (1)

where λ [Wm−1K−1] is the thermal conductivity, c [Jm−3K−1] is the volumetric
specific heat, QV [Wm−3] is the internal heat source, while T = T (x, t) and Ṫ
denotes a temperature and its time derivative.

Eq. (1) is supplemented by boundary conditions:

x ∈ Γ0 :
{

q(x, t) = q0, t ≤ texp

q(x, t) = α(T −Tamb), t > texp
(2)

where q0 [Wm−2] is the known irregular boundary heat flux, α [Wm−2K−1] is the
convective heat transfer coefficient and Tamb is the temperature of surroundings,
while texp is the exposure time. Along the remaining parts of the boundary the
non-flux condition is accepted

x ∈ Γc : q(x, t) = 0 (3)

and the initial distribution of temperature is also known

t = 0 : T (x, t) = Tp (4)

The component QV comprises the information of the internal heat sources is de-
scribed as

QV = Qper f +Qmet = cBGB (TB−T )+Qmet (5)

where GB [(m3
blood /s)/(m3

tissue)], cB[Jm−3K−1] and TB correspond to the perfusion
coefficient, the volumetric specific heat of blood and the artery temperature respec-
tively, while Qmet [Wm−3] is the internal metabolic heat source.

2.1 Tissue injury

According to the necrotic changes in tissue, the blood perfusion coefficient is de-
fined as [7]

GB = GB(θ) = GB0 f (θ) (6)
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where GB0 is the initial perfusion coefficient, f (θ) is assumed as the polynomial
one in the form

f (θ) =
3

∑
j=1

m jθ
j−1 (7)

where θ corresponds to the tissue injury integral [7, 8, 10]:

θ(x) =
tF∫

0

Aexp
[
− E

RT

]
dt (8)

where A is the pre-exponential factor [s −1], E is the activation energy [J mole−1],
R is the universal gas constant [J mole−1K−1], t f is the time for which the tissue
injury integral is calculated while the criterion for tissue necrosis is:

θ(x)≥ 1 (9)

Additionally on the basis of the integral above the damage fraction FDis calculated
[5, 8]:

FD(x) = 1− exp(−θ) (10)

The damage of the tissue calculated on the basis of the Arrhenius integral (8) is
irreversible. In order to consider that tissue could get back to its native state after
the thermal impulse is ceased, the injury of tissue at point x selected from the
domain, for time t f is calculated according to the following algorithm:

1. if θ f−1(x)≥ θrecthen item 2, else item 3,

2. equation (8), go to item 9,

3. if T f (x)≥ T f−1(x)then item 2, else item 4,

4. if θ f−1(x) = 0then item 5, else item 6,

5. θ f (x) := θ f−1(x), go to item 9,

6. if coefficients of function θapp(x,T )are defined then item 7, else item 8,

7. θ f (x) := θapp(x,T f ), go to item 9,

8. approximation: definition of coefficients of function θapp(x,T ), go to item 7,

9. end of algorithm.
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The value described as θrec is defined as the recovery threshold. If the injury inte-
gral achieves the value equal or greater than θrec then injury of the tissue becomes
irreversible. The function denoted as θapp(x, T ) is introduce in order to modeling
of the withdrawal of the tissue injury. In current paper it is assumed as the lin-
ear function, and approximation using function θapp(x, T ) has been done between
(T 0,θ 0) and (T f−1,θ f−1) for selected points of domain considered, separately.

2.2 Sensitivity analysis – direct approach

To determine the influence of thermophysical parameters on the value of injury
integral, the direct approach of sensitivity analysis has been applied [12].

According to the rules of direct method the injury integral is differentiated with
respect to the thermophysical parameter ps, where ps = λ , c, GB0 or Qmet [13].
So, the variation of θ is as follows (c.f. Eq. (8))

∂θ

∂ ps
=

tF∫
0

A
EU s

RT 2 exp
[
− E

RT

]
dt (11)

where

Us =
∂T
∂ ps

(12)

is the sensitivity function.

Because calculation of the variation (11) requires knowledge of the sensitivity func-
tions (12) the Pennes equation (1) also is differentiated with respect to the parameter
ps, so

∂c
∂ ps

Ṫ + c
∂ Ṫ
∂ ps

=
∂λ

∂ ps
T,ii +λ

∂T,ii
∂ ps

+
∂QV

∂ ps
(13)

Because (c.f (1))

T,ii =
1
λ

[
cṪ −QV

]
(14)

so

cU̇s = λU s
,ii−

∂c
∂ ps

Ṫ +
1
λ

∂λ

∂ ps

[
cṪ −QV

]
+

∂QV

∂ ps
(15)

where

U̇s =
∂ Ṫ
∂ ps

, U s
,ii =

∂T,ii
∂ ps

(16)
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After the mathematical manipulations one can write the equation for sensitivity
problem as

x ∈Ω : cU̇s = λU s
,ii +Qs

V (17)

where

Qs
V =

[
cBGB0 f (θ)

λ

∂λ

∂ ps
− cB f (θ) ∂GB0

∂ ps
− cBGB0

∂ f (θ)
∂ ps

]
(T −TB)

−cBGB0 f (θ)Us +
(

c
λ

∂λ

∂ ps
− ∂c

∂ ps

)
Ṫ − Qmet

λ

∂λ

∂ ps
+ ∂Qmet

∂ ps

(18)

Eq. (17) is supplemented by boundary conditions in the form:

x ∈ Γ0 :

{
Qs(x, t) =− 1

λ

∂λ

∂ ps
q(x, t), t ≤ texp

Qs(x, t) = αU s− 1
λ

∂λ

∂ ps
q(x, t), t > texp

(19)

where

Qs =−λU s
,ini (20)

Finally, the change of injury integral due to the changes of the parameters ps is
estimated using the following formula

∆θ(x) =

√
n

∑
s=1

(
∂θ(x)

∂ ps
∆ps

)2

(21)

2.3 Numerical realization – boundary element method

The primary and also the additional problems resulting from the sensitivity analysis
have been solved using the 1st scheme of the BEM for 2D transient heat diffusion
[14 - 18]. So, the following equation will be considered

x ∈Ω : cḞ = λF,ii +S (22)

where F = F(x, t) denotes the temperature or functions resulting from the sensitiv-
ity analysis (c.f. Eq. (1) and (17)), while S = S(x, t) is the source function (c.f. Eq.
(5) and (18)).
For the time grid with constant time step ∆t the boundary integral equation corre-
sponding to transition t f−1→ t f is of the form

B(ξ )F(x, t f )+ 1
c

t f∫
t f−1

∫
Γ

F∗(ξ ,x, t f , t)J(x, t)dΓdt = 1
c

t f∫
t f−1

∫
Γ

J∗(ξ ,x, t f , t)F(x, t)dΓdt+

1
c

t f∫
t f−1

∫∫
Ω

F∗(ξ ,x, t f , t f−1)F(x, t f−1)dΩ+ 1
c

t f∫
t f−1

∫∫
Ω

S(x, t)F∗(ξ ,x, t f , t)dΩdt
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(23)

In equation (23) F∗ is the fundamental solution:

F∗(ξ ,x, t f , t) =
1

4πa(t f − t)
exp
[
− r2

4a(t f − t)

]
(24)

where r is the distance from the point under consideration x to the observation point
ξ , while

J∗(ξ ,x, t f , t) =−λF∗(ξ ,x, t f , t),ini (25)

and B(ξ ) is the coefficient from the interval (0, 1).

If the constant elements with respect to time are used then the boundary integral
equation (23) takes form

B(ξ )F(x, t f )+
∫
Γ

J(x, t f )g(ξ ,x)dΓ =
∫
Γ

F(x, t f )h(ξ ,x)dΓ+∫∫
Ω

J∗(ξ ,x, t f , t f−1)F(x, t f−1)dΩ+
∫∫
Ω

S(x, t f−1)g(ξ ,x)dΩ
(26)

where

h(ξ ,x) =
1
c

t f∫
t f−1

J∗(ξ ,x, t f , t)dt (27)

and

g(ξ ,x) =
1
c

t f∫
t f−1

F∗(ξ ,x, t f , t)dt (28)

In numerical realization the following discrete form of the equation (26) is consid-
ered

N

∑
j=1

Gi jJ
f
j =

N

∑
j=1

Hi jF
f

j +
L

∑
l=1

PilF
f−1

l +
L

∑
l=1

ZilS
f−1
l (29)

where

Gi j =
∫
Γ j

g(ξ i,x)dΓ j (30)
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and

Hi j =


∫
Γ j

h(ξ i,x)dΓ j, i 6= j

−0.5, i = j
(31)

while

Pil =
∫ ∫

Ωl

T ∗(ξ i,x, t f , t f−1)dΩl (32)

and

Zil =
∫ ∫

Ωl

g(ξ i,x)dΩl (33)

The system of equations (29) can be written in the matrix form, namely

G ·q f = H ·T f +P ·T f−1 +Z ·Q f−1
V (34)

After the determining the “missing” boundary values of temperatures and heat
fluxes, the values of temperatures at the internal points ξ i for time t f are calcu-
lated using the formula (i = N+1, ..., N +L):

F f
i =

N

∑
j=1

Hi jF
f

j −
N

∑
j=1

Gi jJ
f
j +

L

∑
l=1

PilF
f−1

l +
L

∑
l=1

ZilS
f−1
l (35)

3 Results of computations

The domain of rectangular shape (c.f. Fig. 1) of dimensions 0.05×0.015 [m] is
considered. The interior of domain has been divided into 6000 internal constant
cells, while the external boundary into 320 constant elements.

In computations, the following values of tissue parameters have been assumed: λ

= 0.3 [Wm−1K−1], c = 3.647 [MJm−3K−1], GB0 = 0.00125 [(m3
blood /s)/(m3

tissue)] ,
Qmet = 245 [Wm−3], while for the blood cB = 3.9962 [MJm−3K−1] and TB = 37 ˚C.
The parameters of Arrhenius injury integral are: A = 3.1·1098 [s−1], E = 6.27·105

[J mole−1], R = 8.314 [J mole−1K−1] and θrec = 0.05, and the coefficients appearing
in the f (θ) function are as follows (c.f. (7)):

0 < θ ≤ 0.1 : m1 = 1, m2 = 25, m3 =−260
0.1 < θ ≤ 1 : m1 = 1, m2 =−1, m3 = 0

(36)

The values of these coefficients for the interval from 0 to 0.1 respond to the increase
of perfusion coefficient caused by vasodilatation, while for interval from 0.1 to 1
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Figure 1: Domain considered

they reflect blood flow decrease as the vasculature begins to shut down (thrombo-
sis).

In the boundary condition (c.f. Eq. (2)) the following values of parameters have
been assumed: α = 10 [Wm−2K−1] and Tamb = 20 oC, maximal value of the heat
flux q0 is assumed as 20 [kWm−2] while the exposure time is 30 seconds. Time
step ∆t = 1 [s].

The co-ordinates of the points are (c.f. Fig. 1): C1 (0.01575, 0.001875), D1 (0.03475,
0.000625), C2 (0.01575, 0.003125) and D2 (0.03475, 0.000875).

Fig. 2 shows the courses of temperature while Fig. 3 illustrates the courses of
injury integral θ at selected points of the domain considered. At two of these
points, this means C1 and D1, the value of injury integral is above the recovery
threshold θrec. At point C1 the maximal temperature about 70˚C causes that the
value of injury integral is much greater than 1 (as a matter of fact the value is much
greater than 10, what corresponds to the value of FD greater than 0.99), so the tissue
is fully damaged in this point while at point D1 the value of injury integral is 0.168
(with maximal temperature about 55˚C), which determines partly damaged tissue.
Arrhenius integral value at points C2 and D2 hadn’t reached the recovery threshold,
so the functions θapp (see algorithm in chapter 2.1) are defined for the stage of
lowering temperature.

In Fig. 4 the perfusion coefficient GB courses at selected points of the domain
considered are presented. On the basis of these results one can say that the injury
integral at selected points of the domain has influence on the value of perfusion
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Figure 2: Courses of temperature

 

Figure 3: Courses of injury integral θ
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Figure 4: Courses of perfusion coefficient GB

 

Figure 5: Changes of injury integral due to the changes of parameters ps
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coefficient GB. Both the effect of vasodilatation as well as shutting down the vas-
culature is clearly visible. According to the necrotic changes in the tissue domain
the perfusion coefficient is changing, decreasing to zero for the region in which
the injury integral is equal or greater than 1. At the points C2 and D2 the value of
perfusion coefficient decreases to the initial value in accordance with decreasing of
injury integral value. At point C2 the tissue returns to the healthy state after 383
seconds, while at point D2 – after 197 seconds.

In Fig. 5 the changes of injury integral due to the changes of parameters ps based
on the sensitivity analysis are shown (c.f. Eq. (21)). It is visible that the 10%
changes in parameters values cause the maximal changes in value of injury integral
at points D1 and C2 (0.26 and 0.245 respectively). At point D2 the changes are
much smaller (up to 0.045), while there are almost no changes at point C1 (point at
which the tissue is fully damaged).

Analysis of the dynamics of tissue thermal injury formation process is based on
the damage fraction FD(c.f. Eq. (10)). Five intervals of values for FD have been
distinguished (for the sake of convenience denoted as tha):

• tha 1: [0, 0.01),

• tha 2: [0.01, 0.05),

• tha 3: [0.05, 0.63),

• tha 4: [0.63, 0.99),

• tha 5: ≥ 0.99.

The values in intervals are interpreted as:

• 0.01: up to this value the tissue is in its normal state so the value could be
named as the border of thermally untouched tissue,

• 0.05: the border of vasodilatation – arise from the polynomial function for
GB(c.f. Eq. (36)); at this value of FD the perfusion coefficient has maximum,

• 0.63: corresponds to the criterion of tissue necrosis (c.f. Eq. (9)),

• 0.99: could be treated as the criterion of complete tissue destruction.

In Fig. 6 the concept of tissue thermal injury formation analysis is presented. At
first, the comparison of tha intervals achieved on element in domain considered for
two successive time steps is made. Next, only elements which changed intervals are
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Figure 6: The concept of tissue thermal injury formation analysis

Figure 7: Number of elements achieving individual intervals (LHS – algorithm
presented in chapter 2.1, RHS – Arrhenius injury integral (c.f. equation (8))

selected. Finally, bar chart with number of elements achieving individual interval
is drawn.

The results obtained by this method are presented in Fig. 7. The results are shown
for algorithm presented in chapter 2.1 as well as for the Arrhenius injury integral
expressed by Eq. (8). One could see that for t >texp some elements are classified
into tha 1 accordingly to the process of recovery of tissue, while for t <texp there
are no differences. Additionally, these data could be very easy recalculated into
cross-section area of the wound using the field of single internal element (for the
geometrical grid assumed in the paper: 1.25×10−7 [m2]).

Moreover, it should be pointed out that the values of maximal changes of injury
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Figure 8: The thermal injury formation process

Figure 9: Proliferation of the thermal injury
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integral at the points D1, C2, D2 presented in Fig. 5 are crucial from the point of
view of tha intervals. Depending on the value of injury integral (and in consequence
on the damage fraction FD) the points could be classified into different tha interval.

Summarizing the number of elements which swapped from one interval to another
one in successive time intervals we can obtain knowledge of the dynamics of for-
mation process and proliferation of the thermal injury. These results are presented
in the Fig. 8 and Fig. 9. As previously, the results are shown both for algorithm
presented in chapter 2.1 and the Arrhenius injury integral expressed by equation
(8). Although the processes of formation for both cases presented in the picture
are very similar, the differences of proliferation of thermal injury are clearly vis-
ible. Furthermore, there is difference in time of formation of the wound. From
the thermal point of view the injury is formed within 96 seconds for Arrhenius in-
jury integral and within 158 seconds for the algorithm of tissue injury calculation
proposed in current paper.

4 Conclusions

The sensitivity analysis in combination with tha intervals and new algorithm of
tissue injury calculation seems to be a quite convenient means of analysis of thermal
injury formation process and could give more precise data about depth and cross-
section area of injury. It could be very important especially in cases of controlled
coagulation process like e.g. in some thermo therapies.

The proposed algorithm of tissue injury is closer to the real conditions of coagula-
tion process in living tissue than the classical Pennes equation with constant values
of thermal parameters; however, the thermal wave model of bioheat transfer could
be also taken into account.

At the stage of sensitivity analysis use of the adjoint approach is also possible.
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