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Numerical Modeling of Skin Tissue Heating Using the
Interval Finite Difference Method

B. Mochnacki∗, Alicja Piasecka Belkhayat†

Abstract: Numerical analysis of heat transfer processes proceeding in a non-
homogeneous biological tissue domain is presented. In particular, the skin tissue
domain subjected to an external heat source is considered. The problem is treated
as an axially-symmetrical one (it results from the mathematical form of the func-
tion describing the external heat source). Thermophysical parameters of
sub-domains (volumetric specific heat, thermal conductivity, perfusion coefficient
etc.) are given as interval numbers. The problem discussed is solved using the
interval finite difference method basing on the rules of directed interval arithmetic,
this means that at the stage of FDM algorithm construction the mathematical ma-
nipulations are realized using the interval numbers. In the final part of the paper the
results of numerical computations are shown, in particular the problem of admissi-
ble thermal dose is analyzed.

1 Introduction

The domain of skin tissue can be treated as a heterogeneous one being the compo-
sition of layers corresponding to the epidermis, dermis and sub-cutaneous region
– Figure 1 [1]. The thicknesses of layers and also the thermophysical parameters
of sub-domains are individual personal traits and this fact suggests the application
of interval arithmetic methods at the stage of numerical modeling of the process
analyzed.

So, the considerations presented below concern imprecisely defined transient bio-
heat transfer problems, when in the mathematical description the uncertain parame-
ters are defined and treated as directed interval numbers (e.g. [2, 3, 4]). The base of
mathematical model is given by the Pennes interval set of equations supplemented
by the adequate boundary-initial conditions.
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Figure 1: Skin tissue

The numerical solution of the problem discussed gives, among others, the informa-
tion concerning the possibility of thermal destruction of the tissue. This process can
take place when the temperature corresponding to the surface between epidermis
and dermis exceeds the value of 44◦C. The thermal damage of the biological tis-
sue (burn degree) can be found using the first order Arrhenius equation (Henriques
burn integral [5, 6]).

The thermal energy supplied to the surface of the skin tissue (the thermal dose) can
be found using the formula

T D =

tp∫
0

∫
Ω

qB dΩdt (1)

where qB is the function describing the boundary heat flux, Ω is the surface of heat
flux action, t p is the exposure time. For t > tp on the surface considered the Robin
condition should be taken into account. In this paper the results obtained using the
interval FDM have been used to determine the admissible thermal dose at which
the tissue remains in a natural state.
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2 Governing equations

Thermal processes proceeding in the heterogeneous skin tissue domain can be de-
scribed by the following system of interval energy equations [1, 7]

[
c−e , c+e

] ∂ Te(r,z, t)
∂ t

=
[
λ
−
e , λ

+
e
]

∇
2Te(r,z, t)+ [Q−e (r,z, t), Q+

e (r,z, t)] (2)

where e = 1, 2, 3 corresponds to the successive layers of skin (epidermis, dermis,
subcutaneous region), [λ−e , λ+

e ] is the interval thermal conductivity, signs ‘–‘ and
‘+’ correspond to the lower and upper limits of interval number, [c−e , c+e ] is the
interval volumetric specific heat, [Q−e (x, t), Q+

e (x, t)] is the capacity of interval in-
ternal heat sources, Te(r,z, t), r,z and t denote the temperature, spatial co-ordinates
and time.

The capacity of interval internal heat sources is a sum of two components

[Q−e (r,z, t), Q+
e ] = [G−Be, G+

Be]cBe [TB−Te(r,z, t)]+ [Q−me, Q+
me] (3)

where [G−Be, G+
Be] is the interval perfusion coefficient, cB is the volumetric spe-

cific heat of blood, TB is the arterial blood temperature, [Q−me, Q+
me] is the interval

metabolic heat source.

Interval equations (2) should be supplemented by the boundary and initial condi-
tions. So, the skin surface (r ≤ R, t< tp) is subjected to an external heat source, for
t> tp the boundary condition of the 3rd type (the continuity of boundary heat flux)
is assumed, while for the others parts of the boundary the no-flux conditions are
taken into account

x ∈ Γ0, r ≤ R, t ≤ tp : q̄(r,z, t) =−
[
λ
−
1 , λ

+
1

]
∂T1(r,z,t)

∂n = q̄B

x ∈ Γ0, r ≤ R, t > tp : −
[
λ
−
1 , λ

+
1

]
∂T1
∂n = α

[
T (

1 r,z, t)−Ta

]
x ∈ Γ∞ : − [λ−e , λ+

e ] ∂Te(r,z,t)
∂n = 0̄

(4)

where q̄B is the given interval boundary heat flux, α is the heat transfer coefficient,
Ta is the ambient temperature, ∂Te/∂n is the normal derivative.

Between the successive sub-domains the continuity condition is assumed

x ∈ Γe :
{
−[λ−e , λ+

e ] ∂ Te(r,z, t)
∂ n = −[λ−e+1, λ

+
e+1]

∂ Te+1(r,z, t)
∂ n

Te(r,z, t) = Te+1(r,z, t)
(5)

The initial condition is also given

t = 0 : Te(r,z, 0) = T0e(r,z) (6)
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The equations (2) – (6) create the mathematical model of the process discussed.

The problem formulated has been solved by means of interval finite difference
method using the rules of directed interval arithmetic [7, 8]. In this arithmetic
the set of proper intervals is extended by the improper intervals: it is possible to
obtain the number zero by subtraction of two identical intervals and the number
one as the result of division [2, 4, 9]. The directed interval arithmetic seems to be
more effective at the stage of numerical algorithm construction.

3 Numerical algorithm

The domain considered is shown in Figure 2.

Figure 2: Domain considered

At first, the time grid is introduced

t0 < t1 < ... < t f−2 < t f−1 < t f < ... < tF < ∞ (7)

with a constant step ∆t .

The domain is covered by the regular geometrical mesh and the 5-points stars cre-
ated by the central node (i, j) and the adjoining ones are considered (Figure 3).
The ‘boundary’ nodes are located at the distance 0.5h or 0.5k with respect to the
real boundary (h,k are the steps of regular mesh in directions r and z), respectively.
This approach gives the better approximation of the Neumann and Robin boundary
conditions [10].

The final form of FDM equation (the explicit scheme) for the internal nodes is the
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Figure 3: Five-points star

following (the approach close to the algorithm presented in [7, 11] is used)

c̄ f−1
i, j

T̄ f
i, j− T̄ f−1

i, j

∆t
=

Φi, j−1

R̄ f−1
i, j−1

(
T̄ f−1

i, j−1− T̄ f−1
i, j

)
+

Φi, j+1

R̄ f−1
i, j+1

(
T̄ f−1

i, j+1− T̄ f−1
i, j

)
+

Φi−1, j

R̄ f−1
i−1, j

(
T̄ f−1

i−1, j− T̄ f−1
i, j

)
+

Φi+1, j

R̄ f−1
i+1, j

(
T̄ f−1

i+1, j− T̄ f−1
i, j

)
+
(
Q̄p
) f−1

i, j +
(
Q̄m
) f−1

i, j

(8)

where

R̄ f−1
i, j+1 =

0.5h

λ̄
f−1

i, j

+
0.5h

λ̄
f−1
i, j+1

, R̄ f−1
i, j−1 =

0.5h

λ̄
f−1
i, j

+
0.5h

λ̄
f−1
i, j−1

(9)

and

R̄ f−1
i+1, j =

0.5k

λ̄
f−1

i, j

+
0.5k

λ̄
f−1
i+1, j

, R̄ f−1
i−1, j =

0.5k

λ̄
f−1
i, j

+
0.5k

λ̄
f−1
i−1, j

(10)

are the thermal resistances between central node and the adjoining ones (the rules
concerning the mathematical operations defined for interval numbers must be taken
into account, of course). For example, the thermal resistance i, j +1 should be
calculated according to the formula (the example presented below is rather a simple
one)

R̄ f−1
i, j+1 =

0.5h

λ̄
f−1
i, j

+
0.5h

λ̄
f−1
i, j+1

=
0.5h[

λ
−
i, j, λ

+
i, j

] f−1 +
0.5h[

λ
−
i, j+1, λ

+
i, j+1

] f−1 =

[
0.5h
λ
−
i, j

,
0.5h
λ

+
i, j

] f−1

+

[
0.5h

λ
−
i, j+1

,
0.5h

λ
+
i, j+1

] f−1

=

[
0.5h
λ
−
i, j

+
0.5h

λ
−
i, j+1

,
0.5h
λ

+
i, j

+
0.5h

λ
+
i, j+1

] f−1
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(11)

In turn

Φ=
i, j−1

ri, j−0.5h
ri, j h , Φ=

i, j+1
ri, j+0.5h

ri, j h , Φ=
i−1, jΦ

=
i+1, j

1
k (12)

are the shape functions of differential mesh (ri, j is the radial co-ordinate of node
(i, j)).

Using the equation (8) the temperature at the point (i, j) for time level f can be
found under the assumption that the stability condition for explicit differential
scheme is fulfilled [10]. It should be pointed out that the equation (8) takes ef-
fect both in the case of ‘homogeneous’ stars and also when the nodes creating the
star belong to the different sub-domains (boundary condition (5)).

It can be shown that the only change of equation (8) for the nodes located close to
the external boundary for which the boundary condition (4b) is given reduces to the
redefinition of the adequate thermal resistance. If, for instance, the direction to the
external boundary corresponds to i, j+1 then

R̄ f−1
i, j+1 =

0.5h

λ̄
f−1

i, j

+
1
α

(13)

at the same time the ambient temperature plays a role of temperature T f−1
i, j+1. The no-

flux condition can be taken into account assuming very small value of heat transfer
coefficient, e.g. α = 10−10(R̄ f−1

i, j+1→ ∞).

The FDM equation for the nodes close to the external boundary for which the Neu-
mann condition (4a) is given takes a form (‘to boundary’ direction corresponds to
i-1, j)

c̄ f−1
i, j

T̄ f
i, j− T̄ f−1

i, j

∆t
=

Φi, j−1

R̄ f−1
i, j−1

(
T̄ f−1

i, j−1− T̄ f−1
i, j

)
+

Φi, j+1

R̄ f−1
i, j+1

(
T̄ f−1

i, j+1− T̄ f−1
i, j

)
+

(qB)
f−1
i, j Φi−1, j +

Φi+1, j

R̄ f−1
i+1, j

(
T̄ f−1

i+1, j− T̄ f−1
i, j

)
+
(
Q̄p
) f−1

i, j +
(
Q̄m
) f−1

i, j

(14)

As mentioned, the mathematical manipulations leading to the designation of tem-
perature field corresponding to time level f should be done according to the rules
of directed interval arithmetic.

4 Results of computations

The external heat flux is assumed in the form of the Gauss-type function

r ∈ [0,R] , t ≤ tp : qb (r,0, t) = q0 exp

[
− r2

2(R/3)2

]
(15)
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where R/3=σ is the standard deviation of a normal distribution of heat source, q0
is the factor corresponding to the maximum incident heat flux, tp is the exposure
time.

The knowledge of function describing the boundary heat flux allows one to find the
thermal dose, this means

T D =

tp∫
0

2π∫
0

R∫
0

q0 exp

[
− r2

2(R/3)2

]
· r dr dϕ dt (16)

in other words

T D =
2π (1− exp(−9/2))

9
tp q0 R2 ≈ 0.69 tp q0 R2 (17)

At the stage of numerical computations a three-layered cylindrical skin tissue do-
main of dimension Z = 12.1 mm and R = 20 mm has been considered. Ad-
ditionally the following input data have been introduced: L1 = 0.1 mm, L2 =
2 mm, L3 = 10 mm (where e = 1, 2, 3 correspond to the successive layers of
skin – epidermis, dermis, sub-cutaneous region), λ 1= 0.235 W/(m·K), λ 2= 0.445
W/(m·K), λ 3= 0.185 W/(m·K), c1= 4.3068·106 J/(m3·K), c2= 3.96·106 J/(m3·K),
c3= 2.674·106 J/(m3·K), cB= 3.9962·106 J/(m3·K), TB= 37 ˚C, GB1= 0, GB2 =GB3=
0.00125 (m3blood/s)/m3tissue, Qm1 = 0, Qm2 = Qm3= 245 W/m3, initial tempera-
ture T10 = T20 = T30= 37 ˚C, ambient temperature Ta= 37 ˚C, α =10 W/(m2K). The
mean parameters of skin tissue sub-domains are taken from [1].

Thermophysical parameters of successive layers are assumed as the interval ones,
in particular

c̄e = [ce−0.05ce, ce +0.05ce] , λ̄e = [λe−0.05λe, λe +0.05λe] , e = 1, 2, 3.

Using the trial and error approach is calculated that the temperature at the point
(L1, 0) reached the critical value for the external heat flux 10 kW/m2 and exposure
time 1.042 s. For above parameters TD = 2.9 KJ. It should be pointed out that the
critical temperature of skin tissue equals 44◦C. This temperature can cause the burn
of tissue. The interval solution obtained is shown in Figure 4.

For the same thermal doses but the other values of boundary heat fluxes and expo-
sure times the differences between numerical solutions are visible. For example in
Figures 5 and 6 the solutions for which the critical temperature is not reached are
shown.

The next stage of investigations consisted in the designation of exposure time for
the given boundary heat flux to obtain the critical temperature, at the same time
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Figure 4: Heating/cooling curves at the points 1(L1, 0), 2(L1, R/4), and
3(L1, R/2)

Figure 5: Heating/cooling curves at the points : 1(L1, 0), 2(L1, R/4), and
3(L1, R/2) for the other boundary parameters and the same TD
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Figure 6: Heating/cooling curves at the points : 1(L1, 0), 2(L1, R/4), and
3(L1, R/2) for the other boundary parameters and the same TD

Figure 7: The admissible external heat flux parameters

the node 1 has been taken into account and c̄e = [ce−0.05ce, ce +0.05ce] , λ̄e =
[λe−0.05λe, λe +0.05λe] , e = 1, 2, 3.

The results of numerical simulations are shown in Figure 7, while the selected
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solutions – in Figures 8 and 9.

Figure 8: Heating/cooling curves at the points : 1(L1, 0), 2(L1, R/4), and
3(L1, R/2) for the selected boundary parameters and TD=10KJ

Figure 9: Heating/cooling curves at the points : 1(L1, 0), 2(L1, R/4), and
3(L1, R/2) for the selected boundary parameters and TD=3.6KJ
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5 Final remarks

The main aim of the research described in this paper was to present the possibili-
ties of interval arithmetic application at the stage of FDM algorithm construction.
In particular the non-steady bio-heat transfer proceeding in the non-homogeneous
domain of skin tissue has been discussed. The generalization of FDM allows one
to find the numerical solution in an interval form and such an information may be
important, among other, in the medical practice. The results obtained have been
compared with the classical FDM solution and this solution is located in the de-
signed intervals [7].

To verify the effectiveness and exactness of solutions obtained the problem of the
so-called admissible thermal dose has been selected. The testing computations
show that the same thermal dose does not assure similar thermal effects. The pro-
cess of tissue heating is determined first of all by the values of boundary heat flux
and exposure time, while resulting from these parameters values of thermal doses
are not an effective tool for the prediction of admissible tissue temperature appear-
ance. This problem requires the further studies, of course, but it seems that from
the physical point of view a such information is a significant one. The next stage of
research will be connected with the modeling of tissue heating including the insu-
lating properties of protective clothing [12] and also the application of the bio-heat
transfer model basing on the dual phase lag approach [13].
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