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Filamin: A Structural and Functional Biomolecule with
Important Roles in Cell Biology, Signaling and Mechanics

Hassan P. Modarres∗ and Mohammad R. K. Mofrad†

Abstract: Focal adhesions are the immediate sites of the cell’s adhesive inter-
action with the extracellular matrix and as such play a key role in mechanosensing
and mechanotransduction at the edge of the cell interface with its surrounding mi-
croenvironment. A multitude of proteins orchestrate this mechanochemical com-
munication process between the cell and its outside world. Filamin is a member
of focal adhesion protein machinery that also plays a key role in regulating and
bundling the acting filament network. A brief review is presented here on filamin
and its important protein partners with the aim to shed light on the role of filamin’s
protein-protein interaction network in cell mechanobiology.

1 Introduction

The cytoskeleton plays an integral role in cell shape and structure. It is crucial for
several biological functions of the cell, e.g. locomotion, division, protein sorting
and transport [1-7]. The cytoskeleton is an organized network of various biological
polymers. Of the three key components of the cytoskeleton, actin is the most ac-
tively studied, due in part to its highly dynamic nature and historical underpinnings
[8-10]. The actin cytoskeleton is composed of globular actin (G-actin) monomers
that form filamentous structures (F-actin), which in turn can create bundles and
networks of varying geometry [5]. The F-actin network topology is not random.
Rather, it is organized by specific actin binding proteins that serve to orient the
filaments and can physically modulate the mechanical strength of the cytoskeletal
network [11].

There are different actin cross-linking proteins that bind actin through a special
binding site called the actin-binding domain (ABD) [10, 12-15]. Filamin plays
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a primary role in this context and was one of the first actin-binding proteins dis-
covered [8-10]. The molecular structure of filamin has been investigated using
different methods such as electron microscopy, x-ray crystallography, florescence
resonance energy transfer, genetic mutations, and molecular dynamics [2, 9, 10,
16-19]. Filamin forms a high molecular weight dimer with an elongated flexible
v-shaped structure consisting of 2647 amino acids per monomer [8-10]. In addition
to its role in the organization of actin filaments, filamin interacts directly with more
than hundred cellular proteins of great functional diversity [8-10, 12, 17, 20-22].
Mutations of filamin is therefore expected to disrupt important processes in the cell
and have been linked to a variety of diseases in highly organized tissues such as
the brain, bone, and muscle, corresponding likely to distinct filamin interactions
[23-28].

Despite numerous reports on filamin’s biochemical activities and the structural and
mechanistic aspects underlying its functions [1, 2, 8-10, 12, 16], the regulation
of filamin and its many partners as well as the downstream effects have remained
elusive.

In this article, we will review important topics related to mechanobiology of fil-
amin. First, general and structural features of filamin are introduced. Focusing on
filamin A (FLNA), we will then discuss the role of this protein in focal adhesions
and present a brief report on the interactions of filamin with other protein partners
that bestow it with a set of diverse roles in the cell. Finally, we will present an
outlook for better understanding the role of filamin in cell mechaobiology.

2 The structure and overall properties of filamin

Filamin is an actin binding protein (ABP) initially isolated in macrophages [29].
Monomeric filamin contains 2647 amino acids with a molecular weight of 250
– 270 kDa, and Stokes radius of 12 nm [8, 10, 12, 21, 22, 30]. The molecular
structure of filamin is depicted in Figure 1. In addition, the structure of filamin
while crosslinking actin filaments is shown in Figure 2. Each monomer chain is
composed of three general sub regions: the head, backbone, and tail [8-10, 12, 17,
20, 21].

Filamin head or actin binding domain (ABD)

Filamin’s actin binding domain contains 274 residues and its amino acid sequence
is similar to α-actinin, β -spectrin, and dystrophin Dictyostelium abp-120ABDs.
ABD is composed of two calponin homology domains called CHD1 and CHD2
[8-10, 12, 17, 20, 21].

Filamin backbone

The backbone of filamin comprises 24 repeats, each of which contains approxi-
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mately 96 residues. The two sequences proximal to repeats 16 and 24 constitute
two hinges, which confer more flexibility to filamin and divide it into two domains;
rod domain 1 (repeats 1-15) and rod domain 2 (repeats 16-23) with 55nm and 15nm
lengths, respectively (Figure 1) [8-10, 12, 17, 20, 21, 30]. The majority of filamin
interacting proteins relate with repeats on rod domain 2. Some of the important
proteins interacting with FLNA and their corresponding filamin repeats are listed
in Table 1.

Table 1: Some interacting proteins with FLNA and their corresponding filamin
repeats.

Protein Name Interacting Repeat Reference
GP-Ibα 17-19 [31]

L1A, L1D, L2, 3, 7 integrin 20-24 [32, 33]
Tissue factor 23-24 [34]

Dopamine D2, 3 receptor 16-19 [35]
(D)-Presenilin1, 2 21-24 [36]

Furin receptor 13-14 [37]
Calveolin 1 22-24 [38]

Kv4.2 potassium channel C-term [39]
RalA, RhoA, Rac1, Cdc42 24 [40]

SEK1 (MEKK, JNKK) 22-23 [41]
TRAF2 15-19 [42]

Trio 23-24 [43]
Androgen receptor 16-19 [44]

cvHSP 23-24 [45]
Granzyme B 20-24 [46]

Adapter Protein SH2B1 beta 17-23 [47]
Vimentin, protein kinase C-epsilon 1-8 [48]

Filamin tail or association/dimerization domain

The tail region, filamin repeat 24, consists of unpaired hydrophobic surfaces from
two filamin subunits that provide a domain to self associate leading to dimerization
of two filamin monomers. Hence this region is also called the dimerization unit
[8-10, 12, 17, 20, 21].

All of the mentioned subdomains are schematized in Figures 1 and 2.

In addition to sequence homology investigations, the crystal and solution structures
of some FLN subdomains have been studied. Solved structures for FLNA, one of
FLN isoforms, available in PDB repository, are summarized in Table 2.
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Figure 1: A schematic of the predicted dimeric structure of filamin. Each monomer
contains an actin-binding domain, containing two CH, 55nm rod domain1, with 15
Ig like repeats, a hinge connecting rod domain 1 to rod domain 2, and 15nm rod
domain 2, with 8 Ig like repeats. Hinge 2 connects rod domain 2 to domain 24, or
dimerization domain, and dimerization domain connects two monomers together.
The crystal structures of 6 repeats are also illustrated while their PDB IDs can be
found in Table 2.
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Figure 2: Illustration of the structure of a human FLNA. The figure also shows how
filamins crosslinks actin filaments into orthogonal networks in cortical cytoplasm.
At the N-terminus is the Actin Binding Domain (ABD), and is followed by the
Ig-like repeats (IgFLNA-R1-IgFLNA-R24).

2.1 Filamin isoforms: FLNA, FLNB, and FLNC

Studies on filamin have revealed three main isogenes: FLNA, FLNB, and FLNC
[15, 60-62]. In the filamin literature, different names have been used for filamin
isoforms; filamin-A, actin binding protein 280 (ABP-280), and filamin-1, for FLNA
[10, 17]; filamin-B, ABP-278/276, ß-filamin, and filamin-3 for FLNB [63, 64];
and filamin-C, γ-filamin, ABPL, and filamin-2 for FLNC [60-62, 65]. These three
isoforms have functional and structural similarities and differences [15, 60-62].
Structurally, all of these isoforms contain 24 Ig-like repeats. Both FLNA and FLNB
have two structural hinges (between repeats 15 and 16 and also between repeats 23
and 24), but there is only one hinge in skeletal muscle FLNC (between repeats 23
and 24). Additionally, there is a region with 82 amino acids between repeats 19
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Table 2: FLNA solved structures.
System PDB code Reference

Repeat 10 3RGH [49]
Repeat 16-17 2K7P [50]
Repeat 18-19 2K7Q [50]

Repeat 23 2K3T [51]
Repeat 19 to 21 2J3S [52]

Repeat 17 2AAV [53]
Dimerization domain (repeat 24) 3CNK [54]

ABD 2WFN [55]
ABD 3HOP [56]
ABD 3HOR [56]

ABD (mutant E254K) 3HOC [56]
Domain 17/GPIB alpha complex 2BP3 [53]

Repeat 21 bound to an N-terminal peptide of CFTR 3ISW [57]
Repeat 21/MIGFILIN complex 2W0P [58]

Repeat 21/INTEGRIN BETA2 complex 2JF1 [59]
Repeat 21/INTEGRIN BETA7 complex 2BRQ [17]

and 20 in FLNC, which is not present in FLNA and FLNB [60, 61]. Unlike the
ubiquitous expression of FLNA and FLNB, FLNC is muscle specific [62].

In the remainder of this review, we will focus on the FLNA isoform and illustrate
its important role in cellular function.

3 FLNA: Mechanosensing behavior in the focal adhesions and cytoskeleton

Many cellular functions, ranging from migration and proliferation to apoptosis de-
pend on cell adhesion to the extracellular matrix (ECM) and on mechanosensing
and mechanotransduction at this interface [1, 6, 66-70]. Cell adhesion to ECM be-
havior is regulated by a complex of more than 150 different types of proteins, col-
lectively called focal adhesions (FAs), which mechanically link ECM to cytoskele-
tal machinery [70-72]. Focal adhesion complexes are formed by ECM adhesion
receptors, such as integrin, which sense applied forces from ECM and transmit the
forces into the cell through the cell membrane, signaling molecules, such as FAK
and Src, and adaptor proteins, such as paxillin [73]. Cell anchorage to ECM is me-
diated by these focal adhesion proteins through physical coupling of integrins (as
the receptor of external forces applied to the cell) to the cytoskeletal proteins [70,



A Structural and Functional Biomolecule 45

71].

Filamin is a member of the focal adhesion protein machinery, and therefore acts
as a linker between the ECM and the actin cytoskeleton through integrins [1, 69-
73]. Interacting with several partner proteins such as integrin, filamin regulates cell
functions such as migration, proliferation, apoptosis, and mechanoprotection [1,
48, 66, 69, 74-79]. Actin and integrin are, therefore, the most studied interacting
proteins with filamin, that participate in the mechanotransduction pathway across
the focal adhesions.

3.1 Filamin and actin cytoskeleton

Several studies have addressed different aspects of filamin-actin complex including
their interaction [20, 22, 30, 80, 81], mechanical and rheological properties [82-
86], binding parameters [87, 88], and protein partners [14, 89-95]. Filamin is a
soluble protein and binds actin through a specific binding site (ABD) followed
by the gelation process [22, 30, 80]. It has been shown that the filamin ABD is
homologous to α-actinin, dictyostelium 120-kDa actin gelation factor, P-spectrin,
and dystrophin [20, 81].

The mechanical and rheological properties of filamin-actin complex and network
have been studied extensively. Actin network stiffness and dynamic moduli have
been observed to increase by the addition of filamin, even at small molar ratios of
filamin:actin of less than 1:100 [82, 83]. The rheological behavior of filamin-actin
networks strongly depends on filamin concentration [84]. Depending on the con-
centration of filamin, the network may take different architectures like crosslinked
filamentous patterns or highly heterogeneous bundle clusters [85].

Filamin partners play a major role in regulating the behavior of filamin-actin com-
plex, e.g. gelation rate, strength, and organization. CaM kinase phosphorylating
FLNA regulates its binding to actin filaments [90], tyrosine kinase p56lck increases
the actin crosslinking by phosphorylation of FLNA [91], and combination of α-
actinin and FLNA, rather than using FLNA alone results in enhancement of actin
network formation [14, 89, 94]. On the other hand, cyclin B1 and cyclin dependent
kinase 1 (cyclin B1/Cdk1) could reduce FLNA gelation activity on actin [92], and
Ca2+-calmodulin binds to the ABD of FLNA and triggers the dissolution of FLNA-
actin gels [96]. Key aspects of filamin-actin interaction are illustrated in Figures 2-
4.

3.2 Filamin and integrin

Integrin works as an adhesion receptor and plays major roles in cell-matrix mechano-
chemical communication, linking the ECM with cytoskeletal network [17, 97, 98].
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  Figure 3: Filamin-actin interaction. Binding of FilGAP to repeats 23 spatially

prevents β7-integrin from binding to repeat 21 (left panel). Deformation of FLNA
by mechanical stress makes the integrin binding site on repeat 21 exposed to bind
β7-integrin and spatially separating repeats 23 prevents FilGAP from binding two
repeat 23 on two FLNA monomers (right panel) (figure adapted with permission
from [108]).

 

Figure 4: A proposed model for integrin clustering by FLNA. Seven repeats on
each FLNA monomer mediate integrin clustering (figure adapted with permission
from [100]).
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Figure 5: The structure of IgFLNa-R19 to 21 with ser-2152 phosphorylation il-
lustrated in yellow. Each repeat is assigned a unique color. IgFLNa-R19 is pink;
IgFLNa-R20 is blue; IgFLNa-R21 is green. The phosphoser-2152 residue is shown
in orange, and the phosphate group is illustrated in yellow. See [19] for further
details.

Focal adhesion proteins such as filamin, talin, tensin, plectin and α-actinin are im-
portant molecules that bridge between integrin and actin cytoskeleton [99].

Among filamin’s 24 repeats, seven repeats, namely repeats R4, R9, R12, R17,
R19, R21, and R23, have conserved the integrin-binding site (Figure 4) [100, 101].
Among these binding repeats, repeat R21 is known as a general integrin-binding
site [17]. Competing with talin, FLNA interacts with integrin directly through inte-
grin’s β tail [17, 33, 102, 103] and integrin’s Thr758 phosphorylation has inhibitory
effect on this interaction [59]. Effective regulation of the cytoskeleton requires a
cooperative balance between FLNAs and integrins. It has been proposed that a
sufficient number of integrin-FLNA binding leads to stabilization of cell-matrix
adhesion, whereas excessive binding results in inefficient actin remodeling and cell
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Figure 6: An illustration of the positions of the multiple stabilizing constraints on
repeat 21. Of all these 10 amino acids, 4 of them (2328, 2302, 2255, and 2278)
are proline. By stabilizing these C-terminal loops of Repeat 21, the structure was
increasingly stable during tension. See [19] for further details.

mobility [104]. Moreover, tight filamin-integrin binding has been linked to cell
polarization and transient membrane [105].

3.3 Filamin is a mechanosensor

Given the role of filamin in the focal adhesions, it is important to understand how
filamin responds to mechanical force and how its interaction with integrin and the
rest of focal adhesion machinery is regulated. It has been reported that wildtype and
FLNA-deficient cells show different responses to applied mechanical forces [106].
These observations could be related to the specific interactions of filamin with its
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Figure 7: FLNA-Protein interaction network extracted using the STRING database
[147].

binding partners like integrin [106].

Mechanical force application to cells has been observed to yield phosphorylation of
serine residues on filamin [66], FLNA upregulation [67] and exposure of integrin
binding sites [18, 19, 107] (Figures 5 and 6). Furthermore, mechanical strain on
FLNA-actin complex leads to unbinding of FilGAP, from repeat 23 of FLNA which
in turn results in β -integrin binding to FLNA [108] (Figure 3). After binding to
filamin, integrin mechanically stretches it by multisite binding mechanism [101]
(Figure 4). This complex can then sense the matrix tension and respond to it by
regulation of cell contractility [109].

In addition to its role under normal range of physiological forces, filamin plays
a crucial role in protecting the cell against intense forces that may harm the cell.
FLNA takes a ‘mechanoprotection’ role via reinforcing the membrane cortex by
actin accumulation and arrangement and destabilizing calcium-permeable channels



50 Copyright © 2014 Tech Science Press MCB, vol.11, no.1, pp.39-65, 2014

[66]. It has been shown that when strong forces are applied through integrins,
FLNA prevents the membrane depolarization resulting in cell mechanoprotection
[1].

3.4 Interaction of FLNA with other protein partners

To regulate important cellular functions such as cell migration, further protein part-
ners besides actin and integrin are associated with FLNA. For example it is reported
that in addition to FLNA and integrin β1, androgen receptor (AR) in the complex
of FLNA-AR- integrin β1 plays a role in cell migration by controlling the activity
of focal adhesion kinase (FAK), paxillin, and Rac [110]. Some of FLNA protein
partners and the functional role of their interaction with FLNA are listed in Table 3
and the protein-protein interaction network of FLNA interacting partners is shown
in Figure 7.

In addition to direct interactions with its protein partners, other biological roles
have been reported for FLNA, e.g. in regulation, modification and expression of a
number of proteins [44, 142-144] and DNA repair [122, 145].

Table 3: Important FLNA binding partners and the role of the interaction.
Protein name Function of interaction Reference

Glycoprotein (GP) Ib
alpha

Membrane skeleton architecture regulation and
maintenance of plasma membrane mechanical

stability under high shear condition.

[111-115]

GST-PTP-PEST Control of cytokinesis in mammalian cells [116]
Mig-2, migfilin Actin assembly and cell shape modulation [74]

SEK-1 SAPK regulation [41]
PKC Cell signaling [117]
Pak1 Pak1-induced cytoskeletal reorganization [43]

TRAF2 Inhibited TRAF2-induced activation of
JNK/SAPK and NF-κB by FLNA

[42]

NF-kappa B Inducing kinase (NIK) [118]
Adapter Protein

SH2B1 beta
Regulation of prolactin-dependent cytoskeletal

reorganization and cell motility
[47]

R-Ras Endothelial barrier function maintenance and
integrin-dependent migration regulation

[75, 76]

Vimentin and protein
kinase

Activation of beta 1 and cell spreading on
collagen.

[48, 119, 120]

Cyclin
D1/Cyclin-Dependent

Kinase 4

Cell migration [77]
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Protein name Function of interaction Reference
BRCA1, 2 DNA repair [121, 122]

Stress signalling
kinases MKK7 and

MKK4

Regulation of JNK activation [123]

CCR2B Controlling CCR2B internalization and spatial
localization

[124]

Mu Opioid Receptor Activation of MAP kinase p38 [125]
Pro- prion Facilitating FLNA Interaction with integrin beta

1, and Contributes to Melanomagenesis
[126-128]

Kv4.2 Colocalization of Kv4.2 with FLNAat filopodial
roots

[39]

Smad proteins Regulation of transforming growth factor-beta
signaling

[129]

Calcium-sensing
receptor

Organizing cell signaling [130, 131]

Glycoprotein Ib-α Regulating adhesion and signalling mechanisms
in platelets

[113, 114, 132]

Pacemaker channel
HCN1

Contribution to localizing HCN1 channels to
specific neuronal areas

[133]

Dopamine D2 and D3
receptors

Linking Dopamine D2 and D3 receptors to the
actin cytoskeleton

[134]

Metabotropic
glutamate receptor

type 7

Physically linking the metabotropic glutamate
receptors to the actin cytoskeleton

[135]

Calcitonin receptor
(CTR)

Recycling of the internalized CTR [136]

Inwardly rectifying
potassium channel,

Kir2.1

Regulation of Kir2.1 surface expression [137]

FAP52 Actin organization regulation [78]
PEBPβ PEBPβ regulatio [138]
SHIP-2 Regulation of cortical and submembraneous actin [139]

E3 ubiquitin ligase
specificity subunit

ASB2 al

Degradation of filamins [140]

Beta-Arrestins
(betaarr)

Regulation of ERK activation and actin
cytoskeleton reorganization

[141]

IKAP Regulation of actin cytoskeleton organization [93]
GAPA Remodeling the actin filaments [95]
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4 Conclusion

Filamin is one of the key focal adhesion and cytoskeletal proteins with important
structural and functional roles in cyto mechanics and cell-ECM adhesive interac-
tions. Filamin is a non-covalently associated dimer with three isoforms: FLNA,
FLNB, and FLNC. It consists of an actin-binding domain, a backbone of 23 re-
peats, and a tail, repeat R24, at which the dimerization occurs. Filamin engages
in important interactions with cytoskeletal proteins, like F-actin, and focal adhe-
sion proteins, such as integrin, and as such plays an effective role in the overall
mechanobiological function of the cell.

Despite extensive progress in our understanding of filamin family, many aspects of
this important protein have remained unknown. Further research is necessary to
better establish the role of filamin in cell biology and mechanics.

Mutations in filamin have been linked to important human diseases [146]; hence
a deeper understanding of this protein family is needed. Ultimately, finding the
mechanisms in which these mutations lead to such diseases may lead to design
of therapeutic interventions. Computational methods like bioinformatics, normal
mode analysis, molecular dynamics simulation, and multi-scale modeling approa-
ches may be instrumental to achieving this goal. A first step toward this objective is
to understand the role of each structural repeat (see Figure 1) and to find out what
molecules may interact with filamin at each of these specific sites. This calls for a
well-planned set of experimental and theoretical investigations to carefully explore
each of filamin’s interaction sites. New computational tools and techniques must be
devised and implemented to enable the prediction of binding sites based on struc-
ture and/or sequence. If more than one molecule interacts with the same site on
filamin, it would be necessary to find the competitive or cooperative conditions and
behavior among partner molecules. Finding a comprehensive list of filamin inter-
acting partners, their role in cell, and their relationship to other filamin interacting
proteins will make it possible to create a relationship (or ‘interactome’) network
between filamin and its partners. This calls for the development of coarse-grained
models of wildtype and mutated filamin and its interaction partners. These mod-
els will enable simulations of large-scale systems containing filamin interacting
with other partners in detail for longer time scales in comparison to those currently
available with molecular dynamics. Such ’systems biomechanics’ models are nec-
essary for understanding the bidirectional mechanochemical pathways that link the
extracellular microenvironment to the nucleus [148].
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