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Simulation of a Single Red Blood Cell Flowing Through a
Microvessel Stenosis Using Dissipative Particle Dynamics

L. L. Xiao∗, S. Chen∗,†, C. S. Lin∗ and Y. Liu‡

Abstract: The motion and deformation of a single red blood cell flowing through
a microvessel stenosis was investigated employing dissipative particle dynamics
(DPD) method. The numerical model considers plasma, cytoplasm, the RBC mem-
brane and the microvessel walls, in which a three dimensional coarse-grained spring
network model of RBC’s membrane was used to simulate the deformation of the
RBC. The suspending plasma was modelled as an incompressible Newtonian fluid
and the vessel walls were regarded as rigid body. The body force exerted on the free
DPD particles was used to drive the flow. A modified bounce-back boundary con-
dition was enforced on the membrane to guarantee the impenetrability. Adhesion
of the cell to the stenosis vessel surface was mediated by the interactions between
receptors and ligands. Firstly, the motion of a single RBC in a microfluidic channel
was simulated and the results were found in agreement with the experimental data
cited by [1]. Then the mechanical behavior of the RBC in the microvessel stenosis
was studied. The effects of the bending rigidity of membrane, the size of the steno-
sis and the driven body force on the deformation and motion of red blood cell were
discussed.

Keywords: Dissipative particle dynamics, Red blood cell, Microvessel stenosis,
Deformation and motion.

1 Introduction

Red blood cells(RBCs) are small liquid capsules enclosed by a biological mem-
brane consisting of a lipid bilayer and an underlying protein cytoskeleton. The ma-
jor function of RBCs is to deliver oxygen to tissue and take away carbon dioxide to
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the lungs. During its 4-month life span, a RBC circulates a million times in human
body, often squeezing through narrow capillaries which are 3∼4 µm in diameter.
The RBC demonstrates extraordinary ability to undergoes severe deformation and
fluidity (see, e.g. [1]). Its deformability is mainly dependent on the membrane
mechanical properties. Variations in mechanical properties, especially in stiffness
and viscosity, often decrease RBC deformability, which might lead to compromised
blood flow through the microvascular system, [2-4], and trigger pathophysiological
effects such as anemia, [5], and sepsis [6]. A study on the deformation of the RBC
can lead to a better understanding of disease progression mechanisms and provide
valuable knowledge for the study of hemorheology.

A healthy human RBC has a biconcave shape with a diameter of 8 µm and a thick-
ness of 2 µm. As a consequence of RBC size and deformability, the nature of
blood flow changes greatly with the vessel diameter. The blood exhibits homoge-
neous non-Newtonian nature in large vessels and the size effect of the RBCs can
be neglected. However, in vessels with smaller diameters, such as arterioles and
venules, the size of a red blood cell is not negligible compared with the diameter
of the blood vessel, and it has to be treated as a discrete elastic object suspended in
plasma. Therefore, the detailed quantitative understanding of blood flow in micro-
circulation requires explicit modeling of RBCs.

Numerous efforts have been made to describe the red blood cell motion and de-
formation in capillary. Several RBC deformation models have been developed.
Pozrikidis [7] described the membrane of a RBC as a highly deformable two-
dimensional shell without thickness. Another representative model is the coarse
grained spring-based membrane network model developed by Pivkin and Karni-
adakis [8] and Fedosov et al. [9]. An example of a 3D implementation of the
spring network approach is the worm-like chain, in which the coarse grained spring
network exhibiting elastic and viscous response is consistent with the spectrin cy-
toskeleton structure, and bending stiffness is introduced in terms of the network
bending energy. In their study, constraints on the cell surface area and volume
are also imposed to ensure the area incompressibility of the lipid bilayer and the
volume incompressibility of the interior liquid.

On the other hand, numerical methods have sought to describe cell behavior and
deformation in a variety of flows. Pozrikidis [10] employed the boundary element
method to study the transient deformation of liquid capsules in shear flows. Shen
and He [11] employed the immersed boundary method together with lattice Boltz-
mann method to simulate the separation of RBCs at micro-vascular bifurcations.
Shi et al. [12] employed a lattice Boltzmann fictitious domain method to deal with
multiple cells behavior in flow. Zhang and Zhang [13] used a moving mesh tech-
nology to simulate the behavior of the RBC in microvessel stenosis. Fedosov et al.
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[14] used a dissipative particle dynamics with coarse-grained method to establish
the RBC model to study the effects of cell deformability and adhesive dynamics
of infected RBCs. Noguchi and Gompper [15] employed multiparticle collision
dynamics to simulate the shape transitions of RBCs in capillary flows.

In light of the complexity of cell motion and deformation in microvessels, numeri-
cal simulations on the mechanical behavior of RBCs under flow in microvessels
could serve as a valuable tool for quantifying the biomechanical parameters of
RBCs. Vahidkhah and Fatouraee [16] reported that increasing cell-cell adhesion
strength together with geometrical effects of the stenosed channel leads to the for-
mation of cell aggregates. Wang and Xing [17] explored the dependence of the
transitions from slipper like to bullet like shapes at the stenosed zone of the vessel
on the elastic properties of the erythrocyte membrane. In addition, due to increasing
applications of micro-fluidic devices in medical diagnostics, [18], cellular defor-
mation in confined environment has attracted much attention. Cells forced through
micro-fluidic constriction offer the potential means of quantifying cell mechanical
characteristics in vitro, [19]. Multiple parameters, such as transit time, elongation
and recovery time, in association with cell deformability can be quantified. For in-
stance, diseased cells such as cancer cells are known to have different stiffness and
elasticity compared to their healthy counterparts, [20-21]. Such differences could
be used to distinguish between normal and cancer cells.

In the present study, the behaviors of a 3D deformable RBC in a stenosed mi-
crovessel were simulated by DPD method together with the coarse-grained spring
network RBC model proposed by Pivkin and Karniadakis [8] and Fedosov et al.
[9]. The objective of this paper is to establish fundamental understanding of the
mechanisms of a single RBC through the micovessel stenosis. The deformation of
a single RBC in the microfluidic channel is firstly simulated and compared with
the experimental data cited by Li et al. [1]. Then, the microvessel stenosis with a
rigid tube with converging-expanding zone was constructed. The motion of the cell
passing through the microvessel stenosis was investigated. The effects of the vessel
size, the cell membrane properties and the body force on the behaviors of the RBC
through the microvessel stenosis were also analyzed.

2 Red blood cell model

A series of experiments have shown that RBCs subject to a transient shear flow re-
cover a biconcave shape after relaxing, in which the rim of the cell is always formed
by the same part of the membrane. These results suggest that there is an elastic en-
ergy stored in the membrane components that has a minimum when the RBC is
in discocyte state and that local components of the membrane are not strained in
the biconcave resting shape, [22-24]. Therefore, a healthy unstressed RBC has a
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biconcave equilibrium shape with the minimum energy and is described by

z =±D0

√
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[
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0
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(x2 + y2)2
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0

]
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Where D0 = 7.82µm is the average diameter, a0 = 0.0518, a1 = 2.0026, and a2 =
−4.491. The surface area and volume of the RBC are equal to 135µm2 and 94µm3,
respectively. The membrane network structure is generated by triangulating the un-
stressed equilibrium shape described by Eqn. 1. The initial biconcave cell shape is
first imported into the grid generation software GAMBIT to generate unstructured
grid, so the membrane is discretized into a number of triangle elements formed by
a series of nodes. The vertex coordinates of the triangle elements are regarded as
the membrane particles initial positions. Fig. 1 shows the network model of RBC,
the vertexes are connected by wormlike springs.

 
Figure 1: The network model of RBC.

The total energy of the network consists of an in-plane elastic energy, a bending
energy, a surface area energy, and a volume energy, [1,8,9]:

E({ri}) = Ein−plane+Ebending+Earea+Evolume, (2)

Where {ri} are a set of points with Cartesian coordinates, i = 1...Nv, Nv is the
number of the vertexes.

We employed the worm-like chain (WLC) model in combination with a power
function potential. The in-plane elastic energy is given by

Ein−plane = ∑
i=1,Ns

Us (li)+ ∑
i∈1,Ns

kp

(m−1) lm−1
i

(3)

Where Ns is the number of the springs; li is the length of the spring. The first term
stands for the in-plane spring energy and the second term expresses a stored elastic
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energy assigned to each triangular patch. kp is a spring constant and m is a specified
exponent, here we set it to 2.

The WLC energy is given by

UWLC =
kBT lmax

4p
3x2

1−2x3
1

1− x1
, (4)

Where x1 = l/lmax ∈ (0,1), lmax is the maximum spring extension, which is equal to
2.2 times equilibrium spring length for the WLC model, p is the persistence length,
kB is Boltzmann constant and T is temperature of the system, which is equal to
296K.

We derived the force corresponding to the in-plane energy at point o,

Fo-in-plane = ∑
j∈1,No−s

[−kBT
4p

4x3
1−9x2

1 +6x1

(1− x1)2 +
kp

l2
j
]
∂ l j

∂ro
(5)

Where No−s is the number of the springs connected to point o, ro is the position of
point o.

The bending energy is concentrated at the element edges according to the bending
potential

Ebending = ∑
i∈1,Ns

kbend [1− cos(θi−θ0)] (6)

Where kbend is a bending modulus; θi is the instantaneous angle formed between
the outer normal vectors of two adjacent triangles α , β sharing the ith edge; θ0 is
the spontaneous angle. cosθi = nα ·nβ , sinθi = ±|

∣∣nα ×nβ

∣∣, which “+” is satis-
fied with

(
nα −nβ

)
·
(
rα − rβ

)
≥ 0, where nα , nβ are the outer normal vectors of

triangle α and β , rα , rβ are the centroid vectors of the two triangles, respectively.

The displacement of point o not only directly affects the bending energy of triangles
connected to point o but also affects the bending energy of those outside triangles
related to this displacement. Fig. 2 illustrates the deformation caused by the dis-
placement at point o. Therefore, the force corresponding to the bending energy is
expressed by

Fo - bending =−
∂Ebending

∂ro
=− ∑

i∈1,No

kbend(sinθk cosθ0− cosθk sinθ0)
∂θk

∂ro
(7)

Where No is the number of triangles affected by the displacement of point o, θk is
the angle between the unit normal vectors of the triangles.
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(a)                                (b) 

 Figure 2: A contrast of the triangle network surrounding point o (a) before the
displacement (b) after the displacement.

The last two terms in Eqn. 2 are used to constrain the variation of the surface area
and the volume of the RBC. They are expressed as follows:

Earea =
ktot

area(A−Atot
0 )2

2Atot
0

+ ∑
j∈1,Nt

karea(A j−A0)
2

2A0
, (8)

Evolume =
kvolume(V −V tot

0 )2

2V tot
o

, (9)

Where ktot
area, karea and kvolume are constraint constants for global area, local area, and

volume; Nt is the number of the triangle elements; A and V are the instantaneous
membrane area and cell volume; Atot

0 and V tot
0 are their specified total area and

volume values, respectively. A j, A0 are the instantaneous and initial local area.
The nodal forces corresponding to the surface area energy and volume energy are
derived as follows:

Fo-area =−
∂Earea

∂ro
=− ∑

j∈1,No

[
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0 )
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0

+
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]
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Fo-volume =−
∂Evolume

∂ro
=− ∑

j∈1,No

kvolume(V −V tot
0 )

V tot
0

∂Vj

∂ro
(11)

Based on the analysis above, the force acting upon point o is expressed as follows:

Fo = Fo-inplane +Fo-bending +Fo-area +Fo-volume, (12)

For more details, please see references [8-9].
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3 DPD governing equations

DPD is a mesoscopic particle-based simulation method. Details of the DPD formu-
lation have been extensively described, [25-27]. Briefly, each particle represents a
molecular cluster rather than an individual atom, and can be thought of as a soft
lump of fluid. The DPD system consists of N point particles of mass mi, position
ri and velocity vi. DPD particles interact through three forces: conservative (FC

i j),
dissipative (FD

i j), and random (FR
i j) forces given by the authors’ names, should be

centered in the document.

FC
i j = FC

i j (ri j)r̂i j,

FD
i j =−γω

D(ri j)(vi j · r̂i j)r̂i j,

FD
i j =−σω

R(ri j) ·
ξi j√

dt
· r̂i j,

(13)

where r̂i j = ri j/ri j, ri j = ri− r j and vi j = vi−v j. The coefficients γ and σ define
the strength of dissipative and random forces, respectively. In addition, ωD and ωR

are weight functions, and ξi j is a normally distributed random variable with zero
mean, unit variance, and ξi j=ξ ji. All forces are truncated beyond the cutoff radius
rc, which defines the length scale in the DPD system. The conservative force is
given by

FC
i j (ri j) =

{
ai j (1− ri j/rc)

0
for ri j ≤ rc

for ri j > rc
(14)

where ai j is the conservative force coefficient between particles i and j.

The random and dissipative forces form a thermostat and must satisfy the fluctuation-
dissipation theorem in order for the DPD system to maintain equilibrium tempera-
ture T. This leads to:

ω
D (ri j) =

[
ω

R (ri j)
]2
, σ

2 = 2γkBT (15)

The choice for the weight functions is as follows

ω
R (ri j) =

{
(1− ri j/rc)

k for ri j ≤ rc

0 for ri j > rc
(16)

where k=1 for the original DPD method. However, other choices (e.g., k=0.25) for
these envelopes have been used, [28], in order to increase the viscosity of the DPD
fluid.

The time evolution of velocities and positions of particles is determined by the
Newton’s second law of motion

dri = vidt (17)
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dvi = ∑
j 6=i

(
FC

i j +FD
i j +FR

i j
)

dt +Fextdt (18)

Where Fext is the external force acting upon on the particle i.

The above equations of motion were integrated using the modified velocity-Verlet
algorithm, [29].

4 Model and physical units scaling

The scaling procedure relates the model’s non-dimensional units to physical units.
In order to keep the simulation system consistent with the real system, the physical
properties should be mapped onto the dimensionless properties in the model. The
length scale is adapted, [8-9]:

LS =
DP

0

DM
0

, (19)

Where the superscript M and P denote “model” and “physical”. The real RBC has
an average diameter DP

0 = 7.82µm and we define the RBC with diameter DM
0 = 7.82

in the model.

The energy scale is provided as follows

ES =
Y P

Y M (
DP

0

DM
0
)2 , (20)

where the Young’s modulus Y is employed for the given area constraint parameters
ktot

area and karea, [30]. Y Pand Y Mare set to 18.9µN/m and 392.453 respectively, [30].

The force scale is defined by

NS =
Y P

Y M
DP

0

DM
0
, (21)

The scaling between model and physical times is defined as follows

τ
S =

Y M

Y P
DP

0

DM
0

ηP

ηM , (22)

Where ηP is the physical fluid viscosity, the viscosities of plasma and cytoplasm are
set to 1.2×10−3Pa · s and 6×10−3Pa · s, respectively. Since k = 0.25 is employed
in Eqn. 16 and according to reference literature, [31], the model fluid viscosity is
defined by

η
M =

315kBT
128πγr3

c
+

512πγn2r5
c

51975
, (23)
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5 Boundary conditions

The cell membrane encloses a viscous fluid and is surrounded by the plasma. To
prevent mixing between the internal and external fluids, membrane impenetrability
is required. We perform reflections of the fluid particles at the triangular plaquettes
that form the RBC membrane. Fig. 3 shows a moving particle p and a triangular
element. In order to find out whether a specific particle will pass through a specified
element or not, we use the dot product of the element normal vector and the vector
connected the positions of the moving particle and one of the three vertexes of the
triangular element. If the product of dot products at initial time and next time step
is negative, the particle will be considered to cross the moving plane and then we
enforce the bounce-back reflection. The reflections are performed every time step
of temporal integration since in DPD each particle moves with constant velocity
within a single time step.

 
Figure 3: Sketch of a moving particle and a triangular element.

Another boundary condition, which should be focused on, is interaction between
the cell membrane and the microvessel stenosis. When the RBC approaches the
stenosis, it binds to the wall. However, when adhered RBC is exposed simultane-
ously to other forces stronger than the binding forces, the bonds break. Adhesion
of the RBC to the vessel is mediated by the interactions between receptors and
ligands which are the adhesion sites distributed on the surface of the cell and the
microvessel stenosis respectively, [14]. Bonds between receptors and ligands may
be formed if they are close enough to each other. As an approximation, we model
the attractive force with a linear spring attached to the RBC’s surface. During the
simulation the receptor or ligand interactions are considered every time step. The
formation and dissociation of bonds between receptors and ligands are determined
according to the probability.
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6 RBC in the microfluidic channel

In this section, two different sets of cases were considered. In the first one, a healthy
human RBC through a microfluidic channel is simulated and compared with the
experiment cited by Li et al. [1]. The experiment shows the shape evolution of an
RBC as it is squeezed through a 4µm× 4µm channel under a pressure difference
of 1.5mm of water. The computational domain in the present study is demonstrated
in Fig. 4.

 

Figure 4: Geometry of the computational domain in a three-dimensional microflu-
idic channel.

The length and height of the narrowest part of the channel are L=40µm and H=4µm.
The length, width and height of the whole channel are 72µm, 4µm and 32µm. The
membrane consists of 644 DPD particles and the number density of the cytoplasm
is n=10. The RBC is suspended in a solvent which consists of free DPD particles
with number density n=4. We enforce the periodic condition on the flow of x axis
direction. Three layers of wall particles are arranged on the channel surface to im-
plement the no-slip boundary condition. The channel wall is assumed to be rigid
and the plasma is assumed to be homogeneous, incompressible, and Newtonian
fluid. The dimensionless body force exerted on the particles in straight zone is 1.

The RBC experiences severe deformation when it squeezing through the channel.
When the RBC enters the constriction, its leading end looks like being absorbed
into the narrowest channel. In order to squeeze through the channel with the smaller
size than the RBC’s diameter, the RBC folds itself to fit the constriction and is elon-
gated in the flow direction. When the RBC exits from the constriction, it recovers
biconcave shape. According to the contrasts between the experiment and simula-
tion, it is found that the conformations in different specified positions are nearly in
agreement, as shown in Fig. 5.
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 Figure 5: Deformation comparisons of RBC transiting through the microfluidic
channel between experiment and DPD simulation.

There exists a difference between the experiment and simulation on the time when
the RBC approaches the entrance of the constriction. It takes less time for RBC
to transit from the initial position to the constriction in the simulation. Maybe it
is relevant to the boundary condition enforced on the inlet and the experimental
condition. It demonstrates that the RBC model can be used to simulate the large
deformation in the confined environment.

7 RBC in the microvessel stenosis

RBC motion and deformation in microvessel stenosis are analyzed in this section.
The computational domain is demonstrated in Fig. 6. A single cell is placed inside
a tube with length of L=50µm and diameter of D=10µm, necking down to a local
diameter Dmin. The length of the stenosis is Lneck = 14.928µm. The axial distance
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between the front end of RBC and the entrance is represented by Yd . The length of
the RBC in the flow direction is illustrated by Lmax. A dimensionless body force
along the flow direction was exerted on each fluid DPD particle.

 
Figure 6: Geometry of the stenosed tube.

First, a single RBC is introduced at Yd = 6.25µm in a stenosed tube with Dmin =
6µm and 615 nodes are used to discretize the membrane. The cell deformation
experiences several stages through the vessel stenosis. Figs. 7(a)∼(b) show that
the RBC shape transits from biconcave to parachute in the straight tube. The cell
is significantly distorted as it moves through the narrow neck and the membrane
is drawn out forming slipper-like corrugations, as shown in Fig. 7(c). A bullet-
like shape develops when the cell approaches the neck region in Fig. 7(d). Figs.
7(d)∼(e) show that the RBC rotates and becomes quite horizontal while passing
through the stenosed zone. It exhibits the asymmetric behavior in the symmetric
flow, which is consistent with [32]. It begins relaxing when the cell exits the neck
region and a biconcave shape is recovered, as shown in Fig. 7(f). The time for
the process of the cell entering the converging zone is greater than that for the cell
exiting the expanding zone, as shown in Figs. 7(c)∼(d) and Figs. 7(d)∼(e). This
is mainly dependent on the shape of the RBC. The structure of the converging part
constrains RBC, so it flows slowly. The RBC has to change its shape to adapt the
geometry of the channel. The middle part of the RBC is stretched by the plasma to
fit the constriction of the channel and the energy stored in the membrane increased
the resistance force for RBC. However, during the period of RBC exiting from the
expanding zone, the constraint force by the tube stenosis become smaller with the
diameter increased. The energy of the membrane drives RBC to transit through the
stenosis.

In the next simulation, different values of the bending constant related to membrane
bending rigidity were employed to investigate the effect of the membrane stiffness
on the transit time of the RBC. Three dimensionless bending constants are used for
the investigation: 57.544, 28.772 and 5.7544 which are corresponding to bending
rigidity of 2.4× 10−18J, 1.2× 10−18J and 2.4× 10−19J, respectively, [30]. Fig. 8
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(a) t=0.0000s 

 

(d)t=0.5304s 

 

(b) t=0.0612s 

 

(e) t=0.7429s 

 

(c)0.1666s 

 

(f)0.7650s 

 Figure 7: Variation of the RBC shape in the microvessel stenosis.

shows the position of the front end of RBC plotted as a function of time. There
is nearly no difference on the time used to flow through straight tube for RBCs
of different bending rigidities. The time from the front end of RBC entering the
converging zone to the back end of RBC exiting from the expanding zone, for high
rigidity RBC is about 0.70s and for low rigidity RBC is about 0.65s. It provides
a quantitative understanding of the effect of bending rigidity on RBC transiting
through the microvessel stenosis.
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Figure 8: Variation of the position of the front end of RBC with the time at different
bending constants.
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At last, the effects of the driven force and the structural parameters of the stenosed
tube on RBC deformation flowing in microvessel stenosis are investigated. The
deformation of RBC in response to the external environmental factors is measured
by Lmax. Variation of RBC axial length with time at different values of driven force
of 1, 2, 4 in the microvessel with the minimal diameter Dmin = 4µm is illustrated
in Fig. 9. The distance of front end of the RBC from the inlet of the tube is 12µm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t(s)

2

3

4

5

6

7

8

9

L
m
a
x
(μ
m
)

Fext=1
Fext=2
Fext=4

 
Figure 9: RBC axial length variation with the time at different values of driven
force.

Fig. 9 shows that the higher the driven force, the greater the axial length of RBC at
the same time. But the RBC deformation is not linearly correlated with the driven
force. The slope of the curve represents the deformation rate of the RBC. The RBC
deforms quickly at the higher driven force. The driven force represents the blood
pressure difference. It takes less time for RBC to transit through the microvessel
stenosis under the high blood pressure difference.

Fig. 10 shows that the RBC is placed at Yd = 12µm in the stenosed tubes with
different sizes of Dmin and the dimensionless driven force is set to 2. By comparison
of the axial length in different tubes at the same time, it is found that the bigger
the size of Dmin, the smaller the axial length of RBC. It takes less time for RBC
in large size of stenosis to approach the same position in different size of tubes.
When the minimal diameter of the microvessel stenosis Dmin = 6µm is decreased
to Dmin = 4µm, the healthy RBC needs a longer time to stretch itself to fit the
narrowed vessel unless the blood pressure becomes higher by comparing Fig. 9
with Fig. 10.

The analysis about the effects of different factors on the deformation of RBC will
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Fig 10: RBC axial length variation with the time at different sizes 
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Figure 10: RBC axial length variation with the time at different sizes of Dmin.

provide the foundation for the study of thrombosis from the mechanical point of
view. The diseased RBC with high stiffness flows more slowly than the healthy
RBC in the microvessel stenosis. Gradually, the accumulation of diseased RBCs
forms in the microvessel stenosis and it would decelerate the microcirculation flow
and consequently contribute to microvascular obstruction. In addition, it takes a
longer time for the RBC deforming itself to transit through the tube stenosis with
smaller size. If it travels through a narrowing microvessel stenosis successfully as
in the healthy microvessel, the blood pressure must be increased. Clinical find-
ings have indicated that retinal arteriolar narrowing is an important indicator for
hypertension, [33], and is related to the risk of coronary heart disease, [34].

8 Conclusions

In the human blood circulatory system, macrovascular tissues represent only a
small fraction of the system, while microvessels with diameters of the same size
as RBCs number billion. In these capillaries, variations in mechanical properties
of human RBCs lead to a number of human disease.

In the present study, dissipative particle dynamics method, as a mesoscopic numer-
ical simulation technique combined with a coarse-grained spring network model
of membrane, is employed to investigate the deformation and motion of a single
RBC transiting through the microvessel stenosis. To confirm the feasibility of the
method and the model, a RBC motion through the microfluidic channel was sim-
ulated and compared with the experiment. The deformation obtained in the sim-
ulation is consistent with the experimental results, which demonstrates the RBC
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model has the basic capability to simulate behavior of large deformation in blood
flow. Furthermore, the mechanical behavior of a single RBC in a rigid tube with
stenosis was simulated. The results demonstrate that the RBC flows slowly when
it enters the converging zone and it takes a long time for RBC to change in shape.
However, less time is used for RBC exiting from the expanding zone. The RBC
exhibits parachute-like shape in the straight tube and deforms into slipper shape or
even bullet in order to fit in the narrowest zone. The relationship between RBC de-
formability and relative parameters such as the bending rigidity of cell membrane,
driven force and the size of the stenosis was also investigated. When the bending
rigidity of the membrane is raised, the fluidity of the RBC decreases. The RBC
exhibits a large deformation if acted upon by the greater driven force, and has the
longer transit time when the tube stenosis size is smaller.

For future studies, the model could be improved to account for the viscoelastic
effects of the vessel walls. DPD method could be employed to implement the inter-
actions between the flow and the deformable vessel walls. Moreover, the flow field
and pressure field are required to investigate in detail. Currently, we intend to ex-
tend our simulations from a single RBC deformation to multiple RBCs aggregation
deformation.
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