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A Global Numerical Analysis of the “Central Incisor /
Local Maxillary Bone” System using a Meshless Method

S.F. Moreira∗, J. Belinha∗,†,‡, L.M.J.S. Dinis∗,† and R.M. Natal Jorge∗,†

Abstract: In this work the maxillary central incisor is numerically analysed with
an advance discretization technique – Natural Neighbour Radial Point Interpolation
Method (NNRPIM). The NNRPIM permits to organically determine the nodal con-
nectivity, which is essential to construct the interpolation functions. The NNRPIM
procedure, based uniquely in the computational nodal mesh discretizing the prob-
lem domain, allows to obtain autonomously the required integration mesh, permit-
ting to numerically integrate the differential equations ruling the studied physical
phenomenon.
A numerical analysis of a tooth structure using a meshless method is presented for
the first time. A two-dimensional model of the maxillary central incisor, based on
the clinical literature, is established and two distinct analyses are performed. First,
a complete elasto-static analysis of the incisor/maxillary structure using the NNR-
PIM is evaluated and then a non-linear iterative bone tissue remodelling analysis
of the maxillary bone, surrounding the central incisive, is performed. The obtained
NNRPIM solutions are compared with other numerical methods solutions avail-
able in the literature and with clinical cases. The results show that the NNRPIM is
a suitable numerical method to analyse numerically dental biomechanics problems.

Keywords: Incisor, Bone Remodelling, Meshless Method, Natural Neighbour
Radial Point Interpolation Method (NNRPIM), dental biomechanics.

1 Introduction

In the current interdisciplinary dentistry field, the dental clinical treatment plan-
ning must account the aesthetics, the impact on function, the structure and the bi-
ology. Generally, when a large portion of the enamel covering the clinical crown
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has been destroyed, the enamel layer must be replaced with an artificial crown
(cap). This cemented extra coronal restoration, covering the outer surface of the
clinical crown, should reproduce the morphology and contours of the damage coro-
nal portion of a tooth, performing its function and protecting the remaining tooth
structure from further damage. In the artificial crown, the most frequently used
materials/combination of materials are: metal, metal-ceramic and ceramic [1]. In
this work three distinct materials are studied: feldsphatic ceramic and two micro-
ceramic-composite showing different viscosities. The two distinct commercial caps
built with light-cured micro-ceramic-composite are the commercial caps Gradia
Flow and Gradia Forte, whose material properties are usually declared by the man-
ufacture.

The prediction of the bone tissue remodelling due to the occlusal loads is also rele-
vant in the prosthesis placement planning and to assure the success of the associated
treatment. This advanced non-linear approach provides an opportunity to optimize
the prosthetic device, approaching the implant to the real human dentition [2].

The bone remodelling process was firstly empirically noticed by Wolff [3]. Within
this procedure the bone tissue progressively modifies its morphology in order to
adapt to any new external load. Since then, many increasingly sophisticated theo-
retical and numerical models have been developed, defining the stimuli as a func-
tion of strain or stress. The most popular were the models of Carter [4] and Cowin
[5]. Afterwards, using the Strain Energy Density (SED) optimization criterion,
Pettermann’s model was proposed [6]. This model combines the bone spatial dis-
tribution adaptation with the reorientation of the material axes and the stiffness
parameters. This work applies a SED based optimization algorithm to obtain the
bone tissue remodelling.

The remodelling algorithm considered in this research study uses a bone tissue phe-
nomenological law obtained from an experimental study [7], which has shown that
the law governing the cortical and trabecular bone behaviour should be the same
[8,9]. Thus, in this approach the bone tissue anisotropic material properties gradu-
ally vary through the model domain, respecting the proposed anisotropic material
law and the lower SED regions.

Since the last thirty years the Finite Element Method (FEM) has been used to anal-
yse the natural teeth and dental implants [10]. The simulation of dental implants
mechanical behaviour presents some difficulties. In order to obtain a realistic nu-
merical solution, the system model must consider some assumptions regarding the
modelling geometry, the material properties, the boundary conditions and the inter-
face between the bone and the implant [10]. It is important to note that the analysis
of the force transfer from the occlusal material to the bone tissue is essential in
order to reach the success on the implant design [10,11,12].
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Despite being the FEM the most frequently used numerical method in stress anal-
ysis in both industry and science [13], this work proposes the use of an advance
discretization meshless technique. Meshless methods seeking the weak form solu-
tion are more suited to solve demanding computational mechanics problems [14].
Within this class of meshless methods, one can find approximation meshless meth-
ods and interpolation meshless methods. The approximation meshless methods use
in the weak form approximation test functions [15,16,17]. The most evident dis-
advantage of these approximation meshless methods is the lack of the Kronecker
delta property. Thus, the treatment of the essential and natural boundary conditions
is not as straightforward as within interpolation numerical methods [18,14,19,20].

In the literature on can find several interpolation meshless methods [21,22,23,24,25,
26].

The numerical method used in this work, the Natural Neighbour Radial Point In-
terpolation Method (NNRPIM), combines the radial point interpolators (RPI) with
the natural neighbour geometric concept [18,27]. Although being a recent devel-
oped meshless method, the NNRPIM proved to be an efficient numerical method
in several demanding applications, such as material non-linearity [28] and large-
deformations [29], which can be very useful in biomechanics. The NNRPIM was
also successfully extended to the dynamic transient analysis [30,31,32] and the
static analysis of composite materials [33,34] and functionally graded materials
[35]. The NNRPIM was successfully applied in biomechanics with very promising
results regarding the micro-scale and macro-scale bone tissue remodelling analysis
[8,9]. The relevance of the previous referred fields in the numerical analysis of the
teeth-bone biologic structure highly increases the NNRPIM success expectations.

This preliminary and pioneer work aims to show that the NNRPIM is a suitable nu-
merical tool capable to analyse efficiently teeth-bone biologic structures, producing
high quality stress field distributions (in comparison with the FEM solution) and
predicting bone tissue remodelling solutions close to real clinical cases.

This work is organized as follows. In section 2 a description of the meshless method
used is presented. In section 3 the bone tissue material law is presented. The bone
tissue remodelling algorithm is presented in section 4. The computer implementa-
tion of the maxillary central incisor is performed in section 5, where several elasto-
static and bone tissue remodelling analyses are studied. And finally, in sections 6
and 7, the obtained results are discussed and the final remarks and conclusions are
made.
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2 The Meshless Method

In order to discretize the problem domain, the NNRPIM only requires a nodal dis-
tribution. All the other numerical structures required to solve the problem (nodal
connectivity, numerical integration, shape functions, etc.) are constructed using
the initial nodal distribution. Thus, being a truly meshless methods, the NNR-
PIM is more appropriate to discretize highly irregular domains, such as biological
structures, than conventional mesh-dependent numerical approaches. Additionally,
comparing the NNRPIM with other meshless methods and the FEM, it was found
that the stress fields obtained with the NNRPIM are more accurate [18,27]. This
section briefly presents the main features of the NNRPIM formulation.

2.1 NNRPIM Discretization

The first step in a NNRPIM analysis is the discretization of the problem domain
Ω, bounded by a physical boundary Γ, in several randomly distributed nodes NNN =
{n0,n1, ...,nN} ∈ R2 with the following coordinates: XXX = {xxx0,xxx1, ...,xxxN}with xxxi ∈
R2, as it is represented in Figure 1(a) and (b). Then, using the natural neighbour
concept [36], the Voronoï diagram of NNN is built, which is the partition of the domain
defined by Ω in sub-regions VI , closed and convex. Each sub-region VI is associated
with the node I, nI , in a way that any point in the interior of the VI is closer to nI

than any other node nJ , where nJ ∈ NNN (J 6= I). The sub-regions Vk, k = 1 , ... , N,
are defined as “Voronoï cells” whose assemblage form the Voronoï diagram, Figure
1(c).

Afterwards, the NNRPIM uses the influence-cell concept to establish the nodal
connectivity [18,27,37,20]. This numerical structure is formed by a set of nodes
in the neighbourhood of an interest point xxxiii, allowing to determine the influence-
domain of that interest point xxxiii. In Figure 1(d) it is shown an example of the the
kind of influence-cells used in this work.

Additionally, after the definition of the Voronoï Diagram, Figure 1(c), it is possible
to construct a node dependent integration mesh, required to numerically integrate
the differential equation ruling the studied physical phenomenon. The area of each
Voronoï cell, AVj , of each node xxx jjj ∈ XXX , is subdivided in k sub-areas AVj

i , being
AVj = ∑

k
i=1 AVj

i . The distribution of the integration points inside each sub-area AVj
i ,

following the Gauss-Legendre quadrature rule, permits to obtain the integration
mesh for the Voronoï cell Vj. Repeating the process for the N Voronoï cells dis-
cretizing the problem domain it is possible to obtain the domain integration mesh,
being AΩ = ∑

N
j=1 ∑

k
i=1 AVj

i . In this work only one quadrature point was applied in
each one of the divisions.

It is important to mention that with this integration scheme it is possible to obtain
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a numerical integration mesh total dependent of the nodal mesh. Complete theo-
retical descriptions and mathematical proofs of the NNRPIM formulation can be
found in the literature [18,20].

2.2 Radial Point Interpolators

Within the NNRPIM the interpolation functions are constructed using the Radial
Point Interpolators (RPI). The classical RPI require a radial basis function (RBF)
and a complete polynomial basis [38], however previous works on the NNRPIM
showed that if the shape parameters of the RBF are chosen carefully the polynomial
basis can be removed from the formulation and substituted by a unity basis [18,20],
permitting to enhance the method computational efficiency.

A function u(xxx) defined in the domain Ω ⊂ Rd is assumed. Additionally it is con-
sidered an interest point xxxI ∈ Ω, possessing an influence-cell containing n nodes,
XXX I = {xxx1,xxx2, ...,xxxn} ∈Ω with xxxi ∈Rd and XXX I ∈ XXX . It is assumed that only the nodes
within the influence-cell of the interest point xxxI have effect on u(xxxI). The value of
function u(xxxI) at the point of interest xxxI is defined by,

u(xxxI) =
n

∑
i=1

[Ri (xxxI) · ai (xxxI)]+Cu ·b(xxxI) = RRR(xxxI) ·aaa(xxxI)+Cu ·b(xxxI) (1)

where Ri(xxxI) is the RBF and ai(xxxI) are non-constant coefficients of Ri(xxxI). The pa-
rameter Cu is the unity basis, being Cu = 1 and b(xxxI) is a non-constant coefficient of
Cu. Within the RBF the variable is defined by the distance rIi between the relevant
node xxxI and the neighbour node xxxi, rIi := |xxxi−xxxI|. In the work of Wang and Liu [38]
several RBFs are well studied and developed. Proposed initially by Hardy [39], in
this work it is used the Multiquadric (MQ) function, Ri(xxxI) = R(rIi) =

(
r2

Ii + c2
)p,

in which c and p are two shape parameters. It was found that c should be close to
zero, c ∼= 0, and p should be close to one, p ∼= 1. The optimal shape parameter c
and p values obtained in [18,20] are universal, meaning that both can be used in
the constructing of the interpolation functions regardless the studied phenomenon
[18,27,37,20]. Applying equation (1) to each node inside the influence-cell do-
main, considering sequentially each node as the interest point, and including an
extra equation ∑

n
i=1 ai(xxxI) = 0 to guarantee an unique solution [40], it is possible to

obtain the following equations system,
u1
u2
...

un

0

=


R(r11) R(r12) · · · R(r1n) 1
R(r21) R(r22) · · · R(r2n) 1

...
...

. . .
...

...

R(rn1) R(rn2)
. . . R(rnn) 1

1 1 · · · 1 0




a1(xxxI)
a2(xxxI)

...
an(xxxI)
b(xxxI)

⇔
[

uuus

0

]
=

[
RRR CCCu

CCCu 0

][
aaa
b

]
(2)
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being uuuS = {u1 u2 ... un}T the vector for the nodal function values for the nodes on
the influence-cell. Therefore, it is possible to obtain the non-constant coefficients
from equation (2),[

aaa
b

]
=

[
RRR CCCu

CCCu 0

]−1[ uuus

0

]
⇒
[

aaa
b

]
= MMM−1

[
uuus

0

]
(3)

Substituting in equation (1) the result from equation (3), it is possible to obtain the
interpolation function ϕ(xxxI) for an interest point xxxI ,

u(xxxI) = {R1(xxxI) R2(xxxI) · · ·Rn(xxxI)Cu}MMM−1 uuus = ϕ (xxxI)uuus (4)

The partial derivative of ϕ(xxxI) with respect to a generic variable ξ is defined as,

ϕ,ξ (xxxI) = {R1(xxxI) R2(xxxI) · · ·Rn(xxxI)Cu},ξ MMM−1 (5)

Notice that being Cu constant Cu,ξ = 0. The partial derivatives of the MQ-RBF with
respect to a generic variable ξ are obtained with,

R,ξ (ri j) = 2p
(
r2

i j + c2)p−1
(ξ j−ξi) (6)

In the literature [18,24,38,20] it is possible to find complete studies on the RPI
interpolation functions: construction procedure and properties.

2.3 Discrete Equation System

Consider a closed domain Ω bonded by Γ. The equilibrium equations are expressed
by: ∇σσσ + bbb = 0 in Ω, where ∇ is the gradient vector, σσσ the Cauchy stress tensor
and bbb the set of external forces applied to the body. Applying the Galerkin weak
form, the following expression is obtained,

ψ =
∫
Ω

δεεε
T

σσσdΩ−
∫
Ω

δuuuT bbbdΩ−
∫
Γ

δuuuT tttdΓ = 0 (7)

where ttt is the vector of external forces applied to the natural boundary Γ, εεε is
the strain vector and uuu is the displacement field vector. The strain vector can be
represented as εεε = LLLuuu. In this work only small deformations and elasto-static as-
sumptions are considered. Therefore, with the Hooke Law it is possible to obtain
the stress field σσσ = cccεεε = cccLLLuuu, being LLL is a differential operator depending on the
deformation theory and ccc is the material constitutive matrix, which can be obtained
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inverting the compliance elasticity matrix, ccc = sss−1. The compliance elasticity ma-
trix sss for the general anisotropic material case is defined in equation (8), respec-
tively for the plane stress and plane strain formulations.

sssplane stress =

 1
E11

−υ21
E22

0
−υ12

E11

1
E22

0
0 0 1

G12


and

sssplane strain =


1−υ31υ13

E11
−υ12+υ31υ23

E22
0

−υ12+υ32υ13
E11

1−υ32υ23
E22

0
0 0 1

G12


(8)

being Ei jthe elasticity modulus, υi j material Poisson coefficient and Gi jthe dis-
tortion modulus in material direction i and j. It is possible to align the consti-
tutive matrix ccc with a new material referential Ox∗y∗ defined by iii∗ = {i∗x , i∗y} and
jjj∗ = { j∗x , j∗y} = {−i∗y , i

∗
x}, which are the versors of the new material referential.

Thus,

ccc∗ = TTT T cccTTT (9)

where the transformation matrix TTT is defined by,

TTT =

 cos2 β sin2
β −sin2β

sin2
β cos2 β sin2β

sinβ · cosβ −sinβ · cosβ cos2 β − sin2
β

 (10)

The angle β is the angle between the original material axis Ox and the new material
axis Ox∗: β = cos−1(iii · iii∗). Substituting εεε = LLLuuu in the first term of equation (7) and
considering equation (4) the following expression is obtained,

∫
Ω

δ(LLLϕI (xxx)uuuI)
Tccc(LLLϕI (xxx)uuuI)dΩ=

∫
Ω

δ (BBBuuuI)
T ccc(BBBuuuI)dΩ= δuuuT

I

∫
Ω

δBBBT cccBBBdΩ

uuuI

(11)

Repeating the procedure for the second and third term of the right side of equation
(7), it is obtained

∫
Ω

δuuuT bbbdΩ = δuuuT
I
∫

Ω
HHHbbbdΩ and

∫
Γ

δuuuT tttdΓ = δuuuT
I
∫

Γ
HHHttt dΓ. For

the n nodes constituting the influence-cell of interest point xI , matrices BBB and HHH
can be defined as,

BBB =


∂ϕ1(xxxI)

∂x 0 ∂ϕ2(xxxI)
∂x 0 · · · ∂ϕn(xxxI)

∂x 0
0 ∂ϕ1(xxxI)

∂y 0 ∂ϕ2(xxxI)
∂y · · · 0 ∂ϕn(xxxI)

∂y
∂ϕ1(xxxI)

∂y
∂ϕ1(xxxI)

∂x
∂ϕ2(xxxI)

∂y
∂ϕ2(xxxI)

∂x · · · ∂ϕn(xxxI)
∂y

∂ϕn(xxxI)
∂x

 (12)
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and

HHHT =

[
ϕ1(xxxI) 0 ϕ2(xxxI) 0 · · · ϕn(xxxI) 0

0 ϕ1(xxxI) 0 ϕ2(xxxI) · · · 0 ϕn(xxxI)

]
(13)

With back substitution in equation (7) it is possible to obtain the following linear
system of equations: ψ = δUUUT [KKKUUU − FFF ] = 0, which can be represented in the
following matrix form: KKKUUU =FFF , where KKK is stiffness matrix, UUU is the displacement
field vector and FFF is the vector of applied forces. Since the RPI shape function
possesses the delta Kronecker property, the essential boundary conditions can be
directly applied in the stiffness matrix [18,20].

After the determination of the displacement field using KKKUUU = FFF , the strain field
is obtained with εεε = LLLuuu and then, considering the Hooke Law, it is possible to
determine the stress field, σσσ = cccεεε . Afterwards it is possible to obtain the three
principal stresses σi for each interest point xxxI , det(σσσ −σiIII) = 0, and the three
principal directions nnni: (σσσ −σiIII)nnni = 0, being σσσ the Cauchy stress tensor and III the
identity matrix. The von Mises effective stress field can be obtained using the three
principal stresses σi,

σ̄ =

√
1
2

(
(σ1−σ2)

2 +(σ2−σ3)
2 +(σ3−σ1)

2
)

(14)

The strain energy density (SED) field for the considered load case is determined us-
ing the stress field and the strain field. The SED for the interest point xxxI is obtained
with,

U(xxxI) =
1
2
∫

ΩI
σσσ(xxxI)

T εεε(xxxI)dΩI (15)

3 Bone tissue material law

Commonly, the bone tissue is divided in two categories: the cortical bone, pre-
senting a higher apparent density; and the trabecular bone, showing a consider-
ably smaller apparent density. Although, from the micro-scale point of view, both
types show the same molecular arrangement, from the macro-scale perspective the
global mechanical behaviour differs. Several published studies show that the bone
mechanical properties depend on the bone composition and on the bone apparent
density [41-46]. One of the first works to consider the bone orthotropic behaviour
was the work of Lotz [47]. The phenomenological mathematical laws proposed by
Lotz permit to obtain the elasticity modulus and the ultimate compressive stress,
for both cortical and trabecular bone, in the axial and transversal direction using
only the apparent density, ρapp, as variable. More recently, the experimental study
performed by Zioupos et al. [7] reinforced the idea that the apparent density is a
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central property of bone tissue. Following Zioupos work, Belinha et al. [8,9] pro-
posed a new orthotropic mathematical law governing the mechanical behaviour of
the bone tissue, correlating the apparent density with the bone tissue mechanical
properties, unifying in the same mathematical law the cortical and trabecular bone
tissue. The curve proposed by Belinha et al. [8,9] for the elasticity modulus in the
axial direction possesses a 95% correlation with Zioupus experimental data,

Eaxial =
3
∑
j=0

a j · (ρapp)
j if ρapp ≤ 1.3g/cm3

Eaxial =
3
∑
j=0

b j · (ρapp)
j if ρapp > 1.3g/cm3

(16)

The curve for elasticity modulus in the transversal direction was obtained using the
Lotz’s curves [47] and is determined with,

Etrans =
3

∑
j=0

c j · (ρapp)
j (17)

being Ei the elasticity modulus in direction i. Using the same methodology, Belinha
et al. [8,9] combined in a single curve the cortical and trabecular mathematical
laws proposed by Lotz [47] for the ultimate compression stress σ c

i in both axial
and transversal directions,

σ
c
axial =

3

∑
j=0

d j · (ρapp)
j (18)

σ
c
trans =

3

∑
j=0

e j · (ρapp)
j (19)

Equations (16) to (19) are expressed in MPa and the apparent density ρapp is ex-
pressed in g/cm3. The coefficients a j, b j, c j, d j and e j are presented in Table 1.

Table 1: Curve coefficients
Coefficient j=0 j=1 j=2 j=3

a j 0.000E+00 7.216E+02 8.059E+02 0.000E+00
b j -1.770E+05 3.861E+05 -2.798E+05 6.836E+04
c j 0.000E+00 0.000E+00 2.004E+03 -1.442E+02
d j 0.000E+00 0.000E+00 2.680E+01 2.035E+01
e j 0.000E+00 0.000E+00 2.501E+01 1.247E+00
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4 Bone tissue remodelling

In this work it is assumed that the mechanical stimulus is the principal driving force
triggering the bone tissue remodelling process. The mechanical stimulus, which
can be described by the stress field and/or the strain field, permits to determine
iteratively the local density and the material orientation. The remodelling algorithm
used in this work [8,9] can be considered as an adaptation of Carter’s model for
natural neighbour meshless methods.

4.1 Remodelling methodology

Here, the bone tissue remodelling is numerically described by a nonlinear differ-
ential equation ρapp(xxx, t) : Rd+1 7→R. This temporal-spatial functional, discretized
along the one-dimensional temporal line and the d-dimensional space, is minimized
with respect to time,

∂ρapp(xxx, t)
∂ t

∼=
∆ρapp(xxx, t)

∆t
=

(ρmodel
app )t j+1− (ρmodel

app )t j

t j+1− t j
= 0 (20)

Notice that the NNRPIM procedure requires that the d-dimensions spatial domain
must be discretized in N nodes: XXX = {xxx1,xxx2, ...,xxxN} ∈ Ω. Additionally, using XXX ,
it is possible to determine the Q interest points: QQQ = {xxx1,xxx2, ...,xxxQ} ∈ Ω, being
xxxi ∈ Rd and QQQ∩XXX =∅.

As equation (20) shows, the temporal domain is discretized in iterative fictitious
time steps t j ∈ R, with j ∈ N, and the medium apparent density for the complete
model domain, at a fictitious time t j, is defined by (ρmodel

app )t j . Within the same
iterative fictitious time step, the medium apparent density of the model, ρmodel

app , can
be determined with,

ρ
model
app = Q−1

Q

∑
i=1

(ρapp)i (21)

In which (ρapp)I is the infinitesimal apparent density on interest point xxxI defined
by the functional ρI = g(σI),

g(σI) = min({σ−1
1 (ρI),σ

−1
2 (ρI),σ

−1
3 (ρI)}) (22)

Notice that σk are the three principal stresses obtained in the interest point xxxi and
σ
−1
k (ρI) are the inverse functions of σk(ρI) defined in equations (18) and (19).

Thus, for the principal stress σ1, it is possible to obtain the following expression,

σ
−1
1 (ρI) = σ

−1
axial(ρI) = ρaxial = 8.14×10−4 f1(σ1)+

235.3
f1(σ1)

−0.439 (23)
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and for the remaining principal stresses σk with k = {2,3},

σ
−1
k (ρI) = σ

−1
trans(ρI) = ρtrans = 1.34×10−3 f2(σk)+

3.34×104

f2(σk)
−0.669 (24)

the functions f1(σ1) : C 7→ R and f2(σk) : C 7→ R are defined as,

f1(σ1) = Re
(
−1.54×108 +4.47×107

σ1 +2.44×103
√
−2.31×109σ1 +3.35×109σ2

1

)
(25)

f2(σk)=Re
(
−1.25×1011 +1.68×108

σk +1.49×104
√
−1.88×1011σk +1.26×108σ2

k

)
(26)

The remodelling process suggested in this work is local, therefore the expressions
presented in equations (23) and (24) are only applied to the interest point xxxI with
SED values belonging to the following interval,

U(xxxI) ∈ [Um,Um +α ·∆U [∪ ]UM−β ·∆U,UM] , ∀U(xxxI) ∈ R (27)

being Um = min(UUU) and UM = max(UUU) and ∆U =UM−Um. The SED field of the
problem domain is defined by: UUU = {U(xxx1)U(xxx2) · · ·U(xxxQ)}. The parameters α

and β define the growth rate and the decrease rate of the apparent density. The
remodelling equilibrium is achieved when,

∆ρ

∆t
= 0 ∨ (ρmodel

app )t j = ρ
control
app (28)

The values of parameters α and β and the value of the control apparent density
ρcontrol

app vary with the analysed problem.

4.2 Remodelling algorithm description

The implemented iterative remodelling process, a forward Euler scheme, is pre-
sented in Figure 2.

First, the geometry and the most relevant biological structures are identified from
the available medical images. Then, it is possible to discretize the problem do-
main using the NNRPIM procedure. The nodal mesh is constructed, XXX ∈ Ω, and
the respective Voronoï diagram is obtained. Afterwards, the nodal connectivity is
determined and the integration mesh, QQQ ∈Ω∧QQQ∩XXX =∅, is constructed. The dis-
cretization procedure is concluded with the construction of the interpolation func-
tions and the enforcement of the essential and natural boundary conditions. Ending
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Figure 1: (a) Problem domain; (b) Discretization of the problem domain in several
nodes; (c) Obtained Voronoï diagram; (d) influence-cell.

Figure 2: Bone tissue remodelling algorithm
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the pre-processing phase, the material properties are allocated to the respective do-
main areas. Then, the iterative remodelling algorithm can be initiated.

The iterative loop begins with a trial linear analysis of the problem. The main pur-
pose of this first step is to obtain the principal directions of the stress field in each
integration point. With the principal directions field it is possible to align for each
integration point the material constitutive matrix with the principal direction of the
respective maximum principal stress, equation (9). Thus, in this first step of the
iterative loop, j = 0, it is considered an initial isotropic constitutive elastic matrix,
obtained with the compliance matrix presented in equation (8). The local stiff-
ness matrix for each integration point is constructed, equation (11), and afterwards
assembled into a global stiffness matrix KKK j.

The remodelling algorithm presented in this work permits to consider simultane-
ously several load cases, fff k

j. It is possible to determine the displacement field of
each load case, uuuk

j = KKK−1
j fff k

j, and then to establish the respective strain field εεεm
j

and stress field σσσm
j . Using the stress field σσσm

j the principal stresses, σσσ(nnn)m
j , and

directions, nnnm
j , are obtained, as well as the SED field UUUm

j , equation (15).

This procedure is then repeated for each load case considered and, in the end, the
variable fields obtained for each load case are weighted using equation (29). Con-
sidering a generic variable field ξ (which can be assumed as the displacement field,
the strain field, the stress field, etc.), the final weighted field value is determined by
an appropriate superposition of a number of relevant discrete load cases, l, weighted
according to the corresponding number of load cycles, m.

ξ j =
l

∑
k=1

m(k) ξ k
j

∑
l
s=1 m(s)

(29)

Afterwards, the interest points presenting the SED values within the range indicated
in equation (27) are identified and subjected to a density remodelling process. Be-
ing this a local remodelling process, all the other interest points outside the range
governed by equation (27) maintain the previous density.

Using the weighted principal stress field of the interest points presenting lower SED
values (determined using equation (29)) it is possible to determine with equation
(22) the individual new apparent density of these interest points. With the new
apparent density established the process moves forward the next iteration step.

Considering the updated apparent density field, the material properties are updated
in each interest point using equations (16) and (17). Then, the constitutive elastic-
ity matrix, defined in each interest point, is oriented using equation (9) applying
the principal directions obtained in the previous iteration step. This procedure per-
mits to align iteratively the material properties with the actualized load path. The
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process stops when the medium apparent density of the model, ρmodel
app , reaches a

controlled value, ρcontrol
app , or if two consecutive iteration steps present the same

medium apparent density, ∆ρ/∆t = 0. The control value is determined by the user,
based on clinical observations.

The inclusion of the NNRPIM meshless method in the remodelling analysis is an
asset and not just another way to obtain the stress and the strain field, since the ac-
curacy of the remodelling algorithm depends on the accuracy of the used numerical
method.

Notice that, although the constitutive material matrix of each interest point is ori-
ented with the principal directions obtained in the previous iteration step, only a
few interest points optimize their apparent density in each iteration step. Just these
few interest points with lower SED or higher SED, equation (27), are subject to the
density remodelling process, all the others maintain the previous density. With this
approach, the material properties orientation is continuously optimized and only a
small fraction of bone material have its density actualized at each time.

4.3 NNRPIM results interpretation

After the discretization of the solid domain Ω ⊂ Rd with an unstructured nodal
distribution, XXX ∈Ω, the Voronoï diagram is constructed VVV = {V1,V2, ...,VN}, being
Ω =

⋃N
i=1Vi. Recall that the integration points QQQ ∈ Ω, discretizing the problem

domain, are determined sequentially for each Voronoï cell Vi, which will permit to
produce k integration points, being: QQQVi = {xxx1,xxx2, ...,xxxk} ∈QQQ and QQQVi ⊂Vi, Figure
3(a).

Figure 3: (a) Voronoï cell with the quadrature points. (b) Theoretical trabecular
architecture of the sub-cell and homogenized apparent density. (c) Voronoï cell
with the integration points homogenized apparent densities.

The local apparent density, ρ(xxxJ)app, of every integration point xxxJ , is obtained in
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the end of each iteration step. Recall that the smallest dimensional partition of the
domain is the infinitesimal subdivision of each Voronoï cell Vi – the sub-cells AVi

J .
The Voronoï cell infinitesimal subdivision AVi

J is numerically represented by the re-
spective integration point xxxJ . Since the infinitesimal subdivision AVi

J is discretised
with only one point (the integration point xxxJ) inside the infinitesimal subdivision
AVi

J , it is not possible to obtain the detailed microscale trabecular arrangement rep-
resented in Figure 3(b), in which the bone volume, Ab, and the void volume, Av,
are clearly defined. Instead, for each AVi

J it is only possible to obtain the volume
porosity, p(xxxJ), and then the local apparent density ρ(xxxJ)app = ρ0(1− p(xxxJ)), be-
ing ρ0 = 2.1g/cm3 the compact bone density, Figure 3(b). As it is understandable,
decreasing the size of the infinitesimal subdivisions it will permit to increase the
detail of the analysis, however it will increase also the computational cost. As rep-
resented in Figure 3(c) each integration point will probably present a distinct local
apparent density. Additionally, it is possible to obtain the local apparent density of
each field node xxxi,

ρ(xxxi)app =

k
∑

J=1

_wJ ·ρ(xxxJ)app

k
∑

J=1

_wJ

(30)

where _wJ is the integration weight of an integration point xxxJ belonging to the
Voronoï cell Vi of the field node xxxi. Thus, the local apparent density field can be
defined directly on the nodes. This direct process is only possible due to the unique
characteristics of the NNRPIM.

In this work, the results showing the evolution of the trabecular architecture are
presented as grey tone isomaps, in which the dark-grey colour represents the con-
sidered maximum apparent density ρ0 = 2.1g/cm3 and the white colour represents
the minimum apparent density ρ0 = 0.1g/cm3 admitted in the analysis. All the
other grey tones in the middle represent transitional apparent densities. In each
isomap presented in this work it is also indicated the domain medium apparent
density, which is obtained applying equation (21). Figure 4 presents an example of
an apparent density field obtained with the NNRPIM bone tissue remodelling anal-
ysis. Apparently, the result obtained for a medium apparent density ρ0 = 1.2g/cm3

indicates a well-defined trabecular arrangement. However, as it is perceptible, the
presented trabecular arrangement is dependent on the domain discretization. If
more nodes were used in the analysis it would be possible to obtain a more accu-
rate trabecular architecture.
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Figure 4: Isomap representing the trabecular architecture of the maxillary bone

Figure 5: (a) Maxillary central incisive set for the two dimensional analysis. (b)
Nodal mesh and considered essential and natural boundary conditions.
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5 Results

5.1 Numerical model

In this work the used computational model of the maxillary central incisor was
based in the computerized axial tomography (CAT) scan performed by Poiate et al.
[48]. The problem domain and the main biologic structure considered are shown
in Figure 5(a). The problem domain was discretized in an irregular nodal mesh
with 4245 nodes, represented in Figure 5(b), respecting the domain differentiation
between the biologic structures indicated in Figure 5(a). In this work, all the pre-
sented numerical analysis are performed considering the plane strain assumption
[48].

As suggested in the literature [48], in the model upper domain boundary the nodal
displacements are blocked in both directions, Figure 5(b). Regarding the natural
boundary conditions, the literature [48,49] suggests the five loads Fi presented in
Figure 5(b), relatively oriented to the incisor longitudinal middle axis with corre-
spondent angles αi.

In order to compare the obtained NNRPIM results for the distinct studies, eight
interest regions of the model were considered, Figure 5(b). In the indicated regions
stress concentrations are expected, caused by the applied load and the model essen-
tial boundary conditions. In regions 1, 4, 6 and 8 are expected compressive stresses
and tensile stresses in regions 2, 3, 5 and 7.

5.2 Preliminary study

The first presented analysis regards a comparison study between the meshless method
and the FEM. The previously described 2D model is analysed considering the ma-
terial properties suggested in the literature [48], which are presented in Table 2 for
the biologic structures indicated in Figure 5(a).

Table 2: Mechanical properties of the anatomical structures.

Anatomical Structure Young’s Modulus (GPa) Poisson’s ratio
Pulp 0.0200 0.45

Dentin 18.6000 0.31
Enamel 41.0000 0.30

Trabecular bone 1.3700 0.30
Cortical bone 13.7000 0.30

Periodontal ligament 0.0689 0.45
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In this comparison study the same load suggested in the FEM study [48] is ap-
plied: a localized load FFF1 = F0 · {−cosθ ,sinθ}, being F0 = 100N and the angle
θ = 22.5+α1, as indicated in Figure 5(b). In this work, to eliminate local stress
concentration, the localized load F1 was distributed along 5 boundary nodes. The
effective stress distribution map obtained with the NNRPIM is presented in Figure
6.

Figure 6: von Mises effective stress field for the first stage of the analysis of the
central incisor

Table 3: Maximum principal stress results obtained for the analysis of the central
incisor.

σ1

(MPa)
Region

1
Region

2
Region

3
Region

4
Region

5
Region

6
Region

7
Region

8
CTRIA3 -9.800 17.000 57.100 -103.000 97.100 - - -
CQUAD8 18.400 33.800 68.500 -123.000 138.000 - - -
NNRPIM -12.836 27.672 65.741 -106.688 140.232 -86.753 160.368 -112.633

In Table 3 are presented the maximum principal stress obtained in regions 1 to 8
with the NNRPIM. The meshless results are compared with the results obtained
with a 2D linear triangular finite element (CTRIA3) and a quadratic quadrilateral
finite element (CQUAD8), [48].
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5.3 Influence of Material Properties

In this subsection the influence of the considered material mechanical properties is
analysed. First, it is studied the influence of the bone tissue mechanical properties
on the stress distribution. A literature survey was performed [48,50,51,52,53] and
five bone tissue material cases were established, differentiating the cortical and
trabecular tissue. The material mechanical properties of the selected bone tissue
material cases are presented in Table 4. The numerical model described in the
previous subsection was analysed for each bone tissue material case indicated in
Table 4. The mechanical properties of all other biologic structures are presented
in Table 2. In this analysis the same natural and essential boundary conditions
considered in the previous subsection were assumed.

Table 4: Distinct materials properties considered for the bone tissue.

Trabecular bone Cortical bone
Bone
case

Young’s
Modulus
E(GPa)

Poisson’s
ratio

Young’s
Modulus
E(GPa)

Poisson’s
ratio

reference

Bone 1 1.00 0.30 13.70 0.30 [50]
Bone 2 1.37 0.30 13.70 0.30 [48]
Bone 3 1.85 0.30 13.70 0.30 [51]
Bone 4 1.85 0.30 14.80 0.30 [52]
Bone 5 3.00 0.30 14.00 0.30 [53]

The obtained von Mises effective stress distribution is presented in Figure 7.

A more detailed examination of the results can be performed through the values
presented in Table 5 and Table 6, regarding the von Mises effective stress and the
maximum principal stress, respectively.

Next, it is studied the inclusion of restorative materials for the enamel, with the
objective to determine which material lead to the most homogeneous stress field.
The restorative materials properties were obtained in the literature [11], and are
presented in Table 7.

In the present analysis the considered bone tissue material properties are presented
in Table 4, identified as “Bone 1”. With the exception of the enamel and the bone
tissue material properties, all the other biologic structures identified in Figure 5(a)
assume the material properties presented in Table 2. The same 2D model described
in previous subsection is considered and the same boundary conditions are im-
posed. The model was analysed with the NNRPIM considering the four restorative
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Figure 7: von Mises effective stress field obtained for each distinct bone tissue
material case

Table 5: Results of the von Mises effective stress obtained for the distinct regions
for each bone case.

σe f

(MPa)
Region

1
Region

2
Region

3
Region

4
Region

5
Region

6
Region

7
Region

8
Bone 1 12.875 25.498 66.744 106.545 140.031 86.437 161.031 112.918
Bone 2 12.836 27.672 65.741 106.688 140.232 86.753 160.368 112.633
Bone 3 12.804 29.378 64.715 106.822 140.422 87.084 159.670 112.318
Bone 4 13.259 27.527 65.733 106.516 139.837 87.053 158.603 111.928
Bone 5 12.897 30.697 63.330 106.931 140.533 87.625 158.202 111.652

Table 6: Results of the maximum principal stress obtained for the distinct regions
for each distinct bone case.

σ1

(MPa)
Region

1
Region

2
Region

3
Region

4
Region

5
Region

6
Region

7
Region

8
Bone 1 -14.666 27.672 69.892 -122.948 146.873 -92.286 158.849 -115.911
Bone 2 -14.618 29.875 68.889 -123.110 147.086 -92.613 158.246 -115.634
Bone 3 -14.578 31.554 67.862 -123.262 147.287 -92.955 157.611 -115.325
Bone 4 -15.113 29.577 69.023 -122.914 146.653 -92.900 156.519 -114.920
Bone 5 -14.682 32.698 66.514 -123.384 147.399 -93.505 156.236 -114.662
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Table 7: Mechanical properties of the restorative materials considered.

Crown Material Young’s Modulus (GPa) Poisson’s ratio
Gradia Flow 7.40 0.22
Gradia Forte 13.00 0.22

Natural Enamel 41.00 0.30
Feldspathic Ceramics 69.00 0.30

Table 8: Results of the von Mises effective stress obtained for the distinct regions
considering distinct crown caps.

σe f

(MPa)
Region

1
Region

2
Region

3
Region

4
Region

5
Region

6
Region

7
Region

8
Gradia
Flow

13.355 25.302 67.829 66.268 142.594 98.099 170.553 121.449

Gradia
Forte

12.989 25.349 67.457 78.195 141.086 94.177 167.604 118.658

Natural
Enamel

12.875 25.498 66.744 106.545 140.031 86.437 161.031 112.918

Feldspathic
Ceramics

13.031 25.567 66.485 114.700 139.854 83.349 158.392 110.725

Table 9: Results of the maximum principal stress obtained for the distinct regions
considering distinct crown caps.

σ1 (MPa) Region
1

Region
2

Region
3

Region 4 Region
5

Region 6 Region
7

Region 8

Gradia
Flow

-15.223 27.604 71.049 -70.631 148.187 -103.899 168.413 -124.653

Gradia
Forte

-14.789 27.606 70.654 -87.645 147.072 -99.994 165.456 -121.802

Natural
Enamel

-14.666 27.672 69.892 -122.948 146.873 -92.286 158.849 -115.911

Feldspathic
Ceramics

-14.859 27.713 69.615 -131.736 147.008 -89.200 156.190 -113.654
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materials for the enamel presented in Table 7.

In Figure 8 are presented the obtained effective stress maps for the distinct analysis.

The local effective stress and the maximum principal stress results obtained for
each region indicated in Figure 5(b) are presented respectively in Table 8 and Table
9.

Figure 8: von Mises effective stress field obtained considering distinct materials for
the enamel crown

5.4 Maxillary bone tissue remodelling

The model presented in Figure 5 is used to study the bone tissue remodelling pro-
cess of the maxillary bone supporting the central incisive. The same computational
mesh with 4245 nodes, Figure 5(b), is used to discretize the problem domain and
the considered mechanical properties for the pulp, dentin, enamel and periodontal
ligament are indicated in Table 2. As in previous examples, in the model upper do-
main boundary the nodal displacements are constrained in both directions, Figure
5(b). Four load cases suggested in the literature [49] are considered in the present
analysis, which correspond approximately to the regular solicitation of the incisor
due to the daily mastication activity.

The four load cases are localized loads FFF i = F0 · {−cosθi,sinθi}, being the global
force F0 = 100N and the total angle θi = 22.5+αi, Figure 5(b). Load case 1 is
obtained considering i = 5, load case 2 considers i = 4 and load cases 3 and 4 are
obtained considering i = 3 and i = 2 respectively. In this work, to eliminate local
stress concentration, all the localized loads FFF i were distributed along 5 boundary
nodes.

For all studied examples, as required by the proposed remodelling algorithm, it is
considered an initial uniform density distribution ρmax

app = 2.1g/cm3 and a Poisson
ratio υ = 0.3. It is assumed ρcontrol

app = 1.0g/cm3 as the remodelling algorithm
medium bone density controlled value, which is in accordance with the range of
values suggested in the literature [54]. For the parameters from equation (27) ruling
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the growth and the decrease of the bone tissue it is considered: α = β = 0.01.

The bone tissue remodelling results are presented with a grey scale, in which the
dark-grey colour represents the considered maximum apparent density ρ local

app =

2.1g/cm3 and the light-grey colour represents the minimum apparent density ρ local
app

= 0.1g/cm3 admitted. All the other grey tones in the middle represent transitional
apparent densities. In each figure presented it is also indicated the bone model
medium apparent density, which is obtained applying equation (21). Firstly, each
one of the load cases are independently analysed. The results obtained for load case
1 are presented in Figure 9.

Figure 9: Obtained apparent densities distributions for load case 1 (i=5).

It is possible to observe the achieved apparent density distribution for four distinct
medium bone densities. The results regarding load cases 2, 3 and 4 are respectively
presented in Figure 10, Figure 11 and Figure 12. In each figure are shown four
distinct medium bone densities obtained with the respective load case.

In order to obtain a trabecular architecture similar to the real maxillary bone tra-
becular distribution surrounding the central incisor, it is necessary to consider si-
multaneously the four load cases. In this study, for each load case, 2500 cycles per
day were considered, totalising 10000 masticating movements per day. Notice that
in this work the remodelling algorithm weights each load case in the same propor-
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Figure 10: Obtained apparent densities distributions for load case 2 (i=4).

Figure 11: Obtained apparent densities distributions for load case 3 (i=3).
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Figure 12: Obtained apparent densities distributions for load case 4 (i=2).

Figure 13: Obtained apparent densities distributions for combination of all load
cases.
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tion with the number of associated cycles. Thus, in equation (29) it is considered:
mi = 2500 with i = {1,2,3,4}. The results for the four load cases simultaneously
applied are presented in Figure 13.

6 Discussion

6.1 Model limitations

The presented study present some significant limitations. The most evident limita-
tion is the use of a simplified two-dimensional model to simulate a three-dimensional
complex biological structure, such is the incisor/maxillary bone system.

Generally, when compared with the FEM, meshless methods are able to produce
variable fields more accurately. However, this extra precision comes with a price: a
high computational cost, which is mainly due to the large number of nodes required
to construct the high-order meshless shape functions and the higher number of
integration points needed to integrate the weak form, meshless methods.

Despite being possible to analyse three-dimensional structures using the NNR-
PIM [18,29,28], the authors of this work do not possess presently the computa-
tional power to analyse a three-dimensional model of the complete teeth and max-
illary support bone system, using the same level of discretization used in the two-
dimensional model presented in this work.

Since a two-dimensional model is being used, some simplifications had to be made.
For instances, all the considered load cases are acting only in the Oxy plane, ne-
glecting any Oz component. Regarding the essential boundary conditions, as sug-
gested in the literature [48], in the model upper domain boundary the nodal dis-
placements are blocked in both directions, aiming to simulate the maxillary im-
mobility, induce by the lack of relative displacements of the maxillary bone with
respect to the incisor in the rest position.

6.2 Elasto-static analysis

The direct comparison between the stress distribution obtained with the NNRPIM,
Figure 6, with the FEM results available in the literature [48], permit to confirm
that the NNRPIM results are considerably smoother, as it was already theoretically
demonstrated in previous NNRPIM works [18].

Regarding the obtained localized stress values, the results presented in Table 3
show that the NNRPIM results are very close to both FEM solutions. Additionally
it is important to refer that the NNRPIM solution was obtained with a 4245 nodal
mesh and the CTRIA3 FEM and CQUAD8 FEM solutions were obtained with
computational meshes with 9259 nodes and 24868 nodes respectively, showing that
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the NNRPIM is capable to obtain good results with a lower discretization level.

In this work, the bone surrounding the incisor was analysed in a preliminary step
as a homogeneous material with two distinct bone tissues: cortical bone and tra-
becular bone. Five combinations of bone tissue were analysed. The objective is
to analyse the influence of the bone tissue material properties on the incisor/bone
biomechanical system.

In Figure 7 it is possible to visualize that the variation of the bone tissue material
properties do not produce significant visible changes in the distinct obtained von
Mises effective stress fields. Nevertheless, it is interesting to compare in Table 4
the results obtained with the bone tissue material cases: 1, 2, and 3, since within
these three material cases the cortical bone maintains the material properties and
the trabecular bone varies the material properties. Notice that the increase of the
trabecular bone rigidity leads to higher stress values on the periodontal ligament,
region 2, and to lower stress values on the incisor neck, region 1 and 3. It was also
observed that the variation of the trabecular bone tissue mechanical properties do
not seem to induce relevant changes in the obtained stress values for the remaining
studied regions. Comparing bone tissue material cases 3 and 4 it is possible to ver-
ify that the increase of the cortical bone rigidity leads to higher stress concentration
in the incisor neck, region 1 and 3, and to lower stress values on the periodontal
ligament, regions 2 and 7. It is also possible to observe in Table 5 and Table 6
that bone tissue material case 1 induces the highest stress values in the incisor neck
regions. Additionally, the material properties of bone case 1 are in accordance with
the bone tissue material law proposed by Belinha et al. [8,9], equations (16) and
(19).

Regarding the comparison analysis between distinct restorative materials for the
enamel, which results are presented in Figure 8, Table 8 and Table 9, notice that
when restorative materials with higher rigidity are considered for the artificial e-
namel, lower stress values are obtained in the root/dentine interface, regions 5, 6
and 8, and in the periodontal ligament on region 7. The decrease of the cap rigidity
leads to higher stress values in the incisor neck, region 3. The results indicate that
restorative material showing a higher elasticity modulus induce higher stress levels
in the artificial cap and lower stress levels in all the other biologic structures

6.3 Bone tissue remodelling analysis

After considering simultaneously the four load cases suggested in the literature
[49] (assuming for each load case 2500 masticating movements per day), the final
solution obtained with the remodelling approach proposed in this work show an
apparent similarity with the central incisor sagittal plane CT-scan images, which
can be found in the literature [48], Figure 13.
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Demonstrating that with the proposed numerical approach it is possible to predict
the same trabecular triangular area in the incisor posterior zone and the superior and
inferior maxillary cortical layer. These results indicate that the combination of the
NNRPIM with the remodelling algorithm permits to achieve the internal trabecular
bone structure if the correct mechanical cases are known.

7 Conclusions and Final Remarks

In this work an advanced discretization meshless technique, the Natural Neighbour
Radial Point Interpolation Method, was extended for the first time to the numerical
analysis of the teeth-bone biologic structure. A complete elasto-static analysis of
the incisor/maxillary structure using the NNRPIM was studied and afterwards it
was analysed the bone tissue remodelling of the maxillary bone in the incisor sur-
roundings. Both analyses used a two-dimensional model of the maxillary central
incisor, based on the literature. The results obtained with the NNRPIM were com-
pared with other numerical method solutions available in the literature and with
clinical cases.

Regarding the elasto-static analysis, the results permit to conclude that the NNR-
PIM, when compared with the finite element method (FEM), presents very close
results and smoother stress fields.

The elasto-static analysis also permitted to conclude that the increase of the trabec-
ular bone rigidity leads to higher stress values on the periodontal ligament and to
lower stress values on the incisor neck. The opposite was verified with the increase
of the cortical bone rigidity.

For the restorative material study, it can be concluded that restorative materials
showing a higher elasticity modulus induce higher stress levels in the artificial cap
and lower stress levels in all the other biologic structures.

In the literature, it is possible to find research works [55] indicating that the bone
tissue remodelling process may be trigger by the inflammatory response in the pe-
riodontal tissues caused by the application of a mechanical stimulus. Thus, since
the bone tissue remodelling responds indirectly to the stress/strain state on the pe-
riodontal ligament, it is expected to induce a higher bone tissue remodelling with
restorative materials showing lower elasticity modulus.

The used bone tissue remodelling algorithm, which imposes a gradient transition
from the initial isotropic cortical assumption to the final anisotropic trabecular ar-
rangement, is simple to apply and depends mainly on the strain deformation energy
density (SED) field in each interest point (integration point). The inclusion of the
NNRPIM in the remodelling analysis, instead of FEM, is an asset and not just an-
other way to obtain the SED field, since the accuracy of the remodelling algorithm
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depends on the accuracy of the used numerical method.

The obtained results show that the proposed bone anisotropic material law permits
a gradient transition between the cortical bone stage and the trabecular bone condi-
tion. It was also found that the developed remodelling algorithm combined with the
NNRPIM accuracy permits to predict correctly the secondary trabecular structures,
which are very important in the stability of the principal structures.
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