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Fluid Structure Modelling of Blood Flow in Vessels

M. Moatamedi*, M. Souli’ and E. Al-Bahkali*

Abstract:  This paper describes the capabilities of fluid structure interaction
based multi-physics numerical modelling in solving problems related to vascular
biomechanics. In this research work, the onset of a pressure pulse was simulated
at the entrance of a three dimensional straight segment of the blood vessel like cir-
cular tube and the resulting dynamic response in the form of a propagating pulse
wave through the wall was analysed and compared. Good agreement was found
between the numerical results and the theoretical description of an idealized artery.
Work has also been done on implementing the material constitutive models specific
for vascular applications.
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1 Introduction

The study of the cardiovascular system dates back all the way to the beginning of
medical science with Hippocrates and Aristotle taking interest in the topic. Since
then the importance of the heart and blood vessels has developed into a science in
itself. According to the World Health Organisation (WHO) in 2002, alone there
were 16.7 million deaths globally related to various forms of cardiovascular dis-
eases (CVD) [1]. A large proportion of these cardiovascular diseases find their
origins in the blood vessels. Recently, interest in blood vessels has extended from
purely disease related topics to other issues such as blunt traumatic aorta rupture
(BTAR), which may occur in circumstances such as automotive accidents [2,3].
Although the incidence of such deaths is relatively low, but it is gaining interest as
it is something that can be avoided by increased understanding of the biomechanics
of the problem.

It is regarded that the progression of most vascular diseases is influenced by a com-
plex interaction of the biochemical and biomechanical factors. The exact mech-
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anisms of most of these diseases remain uncertain and are currently being exten-
sively studied. In recent years strong links between mechanical conditions in ves-
sels and certain diseases have been established. High nonlinearities associated with
the behaviour of blood vessels in the human body limit the practical application of
the analytical methods in their evaluation. Accurate measurement of mechanical
parameters in vivo using experimental methods is extremely difficult, if not impos-
sible. Much progress has been made using medical imaging equipment, however
challenges still remains. These factors have opened the door to numerical simula-
tions, which are able to give acceptable predictions of the mechanical behaviour of
blood vessels based on the minimal input information.

Numerical simulations are increasingly being used in all branches of the biome-
chanics and provide valuable information to understand the basic physics of var-
ious parts of the human anatomy. Computational fluid dynamics has extensively
been applied to examine the flow behaviour of blood through various parts of the
cardiovascular system. These simulations are gradually expanded to include results
for the wall shear stress distributions of the blood vessels [4]. Design and optimiza-
tion of medical devices and cardiovascular implants such as stents has been studied
using finite elements based multi-physics numerical techniques [5].

Blood vessels are highly elastic in behaviour. The influence of pulsating blood
flow is substantial on vessel walls. In many cases the approach of considering
the flow and structural responses independent of each other becomes insufficient
and use of fluid structure interaction becomes a necessity. Analytical solutions of
fluid-structure interaction problems related to the blood vessel have been around
for many years now. Moens [6] examined the propagation of flow vibrations on
elastic tube and Womersly investigated the dynamic response of an elastic tube
with a sinusoidal flow and defined an analytical solution for the flow field. Now the
availability of low-cost computing has led to the development of several numeri-
cal methods to study the fluid-structure interaction. Most numerical codes of fluid
structure interaction were created with having purely engineering applications in
mind, such as the study of aero-elastic effects in aircraft or the effect of underwater
explosions on submarine hulls, but now a days the fluid-structure interaction simu-
lations have diversified and found a large application in determining the correlation
between disease and physical phenomena.

Two types of fluid structure interaction methods are available are used in this apper,
Merge node method where the fluid mesh and structure mesh are sharing common
nodes at the coupling interface and Penalty method, which consist to a structural
Lagrangian mesh embedded into an ALE fluid mesh. For this research work the
fully coupled penalty method is employed, where the Lagrangian mesh moves
through the Eulerian mesh and interface springs are placed between penetrating
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nodes and the contact surface. Material models for use in biomechanics are, in gen-
eral, poorly catered for in commercial finite element codes. When desiring a more
accurate representation than that given by a linear elastic material model, the user
usually has to satisfy themselves with using a standard hyper-elastic or viscoelastic
model. Such models are usually insufficient for describing composite soft biologi-
cal tissue in its physiological state. If a more accurate model is desired by the user,
it has to be implemented through a user-subroutine. This paper also describes that
how such a user defined model can be implemented in any code development see
[7] and [8].

2 Theory and Mathematical Description
2.1 ALE and Eulerian Formulation for the Fluid

Fluid problems, where interfaces between different materials such as air and water,
or, air and blood exist can easily modelled by using a Lagrangian mesh. However
for complex geometry, the distortion of the Lagrangian mesh makes this technique
difficult as many re-meshing steps are required for the calculation to continue. An
alternative method to use is the Eulerian or ALE formulation. This method in-
troduces two problems. The first problem is the interface tracking and the second
problem is the advection phase or advection of fluid material across element bound-
aries. To solve these problems, an explicit finite element method for the Lagrangian
phase and a finite volume method (flux method) for the advection phase are used.
We can refer to several explicit codes such LS-DYNA see [9] for a full description
of the explicit finite element method and ALE mesh motion.

An ALE formulation contains both pure Lagrangian and pure Eulerian formula-
tions. The pure Lagrangian description is the approach where the mesh moves with
the material, making it easy to track interfaces and apply boundary conditions.
Using an Eulerian description, the mesh remains fixed while the material passes
through it. Interfaces and boundary conditions are difficult to track using this ap-
proach; however, mesh distortion is not a problem because the mesh never changes.
In order to simplify the equations a relative velocity w = v — u is introduced, where
v is the fluid velocity and u the domain or mesh velocity. The governing equations
for the ALE formulation are given by the following conservation equations:

Mass Equation
ap I ap
= wsh (1)

Momentum Equation

The strong form of the problem governing Newtonian fluid flow in a fixed domain
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consists of the governing equations and suitable initial and boundary conditions.
The equations governing the fluid problem are the ALE description of the Navier-
Stokes equations:

8vi 8\/,-
Por ZGij,j-i-Pbi—PWiij 2

The stress tensor o;; is described as follows:

0ij = —p&ij+u(vij+vji) 3)

where n; is the outward unit normal vector on the boundary, and J;; is Kronecker’s
delta function.

Energy Equation
JE JE
P = GijVi,j-FPbiVi—PWjaTCj “)

Eulerian equations commonly used in fluid mechanics by the CFD community are
derived by assuming that the velocity of the reference configuration is zero and
that the relative velocity between the material and the reference configuration is
therefore the material velocity. The term in the relative velocity in equation 3 and
4 is usually referred to as the adjective term, and accounts for the transport of the
material past the mesh. It is the additional term in the equations that makes solving
the ALE equations much more difficult numerically than the Lagrangian equations,
where the relative velocity is zero. There are two ways to implement the ALE equa-
tions and they correspond to the two approaches taken in implementing the Eulerian
viewpoint in fluid mechanics. The first way solves the fully coupled equations for
computational fluid mechanics; this approach used by different authors can handle
only a single material in an element. The alternative approach is referred to as an
operator split in the literature, where the calculation, for each time step is divided
into two phases.

First a Lagrangian phase is performed where the mesh moves with the material.
In this phase the changes in velocity and internal energy due to the internal and
external forces are calculated. The equilibrium equations to be discretised and
solved are:

8v,~
py = 6,-‘,7.,-+pb,-, )

oE
pj = OjjVi j + pb,-vi. (6)
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In the Lagrangian phase, mass is automatically conserved, since no material flows
across element boundaries. In second phase an advection phase is performed,
where the transport of mass, momentum and internal energy across the element
boundaries is computed. This phase may be considered as remapping phase. The
displaced mesh from the Lagrangian phase is remapped into the initial mesh for an
Eulerian formulation, or an arbitrary distorted mesh for an ALE formulation.

2.2 Coupling algorithm

The detailed description of finite element contact algorithms is not the goal of this
paper. However, since the coupling method described in this paper is based on the
penalty method for contact algorithms, the contact approach is a good introduction
to this method. In contact algorithms, a contact force is computed proportional to
the penetration vector, the amount the constraint is violated. In an explicit FEM
method, contact algorithms compute interface forces due to impact of the structure
on the fluid; these forces are applied to the fluid and structure nodes in contact in
order to prevent a node from passing through contact interface. An ALE or La-
grangian mesh is used for the fluid. The literature on contact algorithms is exten-
sive, but most of it is devoted to static problems. The literature devoted to contact
for dynamic fluid structure interaction problems is very limited: one of the prob-
lems encountered in these applications is the high mesh distortion at the contact
interface due to high fluid nodal displacement and velocity.

This problem is still unsolved since most of the ALE re-meshing algorithms in-
cluding the equipotential method are not efficient to maintain a regular mesh for
the calculation to continue. In contact algorithms one surface is designated as a
slave surface, and the second as a master surface. The nodes lying on both surfaces
are also called slave and master nodes respectively. For a fluid structure coupling
problem, for example fluid with an initial velocity impacting a structure, as de-
scribed in [10], the fluid nodes at the interface are considered as slave, and the
structure elements as master. The first approach for contact is the kinematic con-
tact, constraining fluid and structure nodes to the same velocity. Kinematic contact
conserves total momentum, but not total energy. The second approach, the penalty
contact, is different from the previous one. The penalty method imposes a resisting
force to the slave node, proportional to the penetration through the master segment.
This force is applied to both the slave node and the nodes of the master segment in
opposite direction to satisfy equilibrium forces.

=3 - = =3

Fy=kd and F;=—F )

The coupling technique described in figure 1 is based on penalty contact algorithm
used in structure mechanics, where a contact interface defined though the mesh sep-
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Figure 1: Coupling algorithm before and after penetration.

arates the fluid mesh from the structure mesh. Thus contact forces applied from the
fluid to the structure and conversely. In contact a master node is represented trough
a fluid node whereas in coupling the master node is a fluid particle represented
through its local coordinates in the fluid element.
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Figure 2: Contact algorithm before and after penetration.

3 Numerical Setup

Numerical setup used for this three dimensional fluid structure interaction study
was based on a tube of 80mm length with an internal diameter of 4mm and a wall
thickness of 0.12mm. The vessel wall was described as linearly elastic with a



Fluid Structure Modelling of Blood Flow in Vessels 227

density of 1075kg/m>, a Poisson’s ratio of 0.45 and an initial Young’s modulus
of 3MPa, values representative of blood vessels in the physiological state. The
fluid domain is defined as an incompressible Newtonian model of water, a realis-
tic assumption for modelling the blood. A density of 1000kg/m> and a viscosity
of 0.001Pa.s were therefore chosen. The problem was set-up in LS-DYNA with
68,480 elements describing the fluid domain, while the blood vessel wall was dis-
cretised using 4848 Belythchko-Tsay elements. Constraints were applied on the
vessel wall at the inlet section on translation in the direction of flow and in all
translational degrees of freedom at the exit. The onset of a sinusoidal pressure
wave was simulated at the vessel entrance by a linearly increasing pressure from
zero to 352Pa over a time period of 10ms.
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Figure 3: Boundary Conditions.
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Figure 4: Computational Mesh (Penalty Method).
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3.1 Numerical Validation

Performance of the fluid structure interaction related calculations of LS-DYNA
was evaluated by analysing the Moens-Korteweg wave speed described by Kuntz
and Menter [11]. The pressure pulse down the vessel wall is known as the wave
speed. The wave speed is highly dependent on the elastic behavior of the blood
vessel wall. The blood vessel was described as an elastic tube through which the
blood ejected by the heart, flows in the form of pressure and flow waves. The wave
propagates through the tube in the form of a radial displacement of the blood vessel
wall. Assuming blood as an in-viscid and incompressible fluid, flowing through a
thin vessel constrained in the direction of the flow; the Moens-Korteweg equation
[6] gives the resulting wave speed (c,):

E.h
o= M (8)

Where, E is the Young’s Modulus of a pipe of internal radius R, with a wall thick-
ness ¢, carrying a fluid of density p. Errors caused as a result of assuming a thin
tube in (1) can be estimated by using the Bergel correction [12], which accounts for
the thickness through Poisson’s ratio (v). The difference between the two is given
as:

AN (2-7)
(c0> CR-2y(1—v=212)+ 72 (1 —v—212) —21?] ©)

Where, 7 is the ratio of wall thickness and tube outer radius. Simplifying this
expression and incorporating it into equation (1), the wave speed (c’) becomes:

' E.h (10)
2R.p (1—1?)

Figure 5 shows the numerical results of pressure wave propagation along the test

tube at different time intervals. As pressure wave moves along the tube, the di-

ameter of tube gets change. The wave speed can be estimated by measuring the

progression of the radial displacement at number of locations along the tube over

time.

A comparison was made between numerical results and Moens-Korteweg theory
by varying the Young’s modulus. Radial displacement results at different locations
along the tube were extracted at 1ms time intervals from LS-DYNA and the wave
speed was evaluated from these by sub-routines written in MATLAB (MathWorks,
Natick, MA, USA).
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Figure 5: Propagation of pressure wave along tube at different time intervals.

When using the realistic value for water wave speed of 1465m/s, the time step
became extremely small and leads to high computational time. Considering that
the time over which the current simulation is run for is 10ms, the prospect of run-
ning a full cardiac cycle with a length of 1s, which is planned for future research,
would become prohibitive and inefficient in computational terms. Therefore, it was
decided to dramatically scale down this parameter. Initially a very low value of
15m/s was selected. Varying the speed of sound in a separate study, it was found
that displacement results converged at a value of 60m/s, a value that maintains
the practicality of solving vascular biomechanics problems of this nature. Using a
Pentium-IV PC running at 3 GHz with a random access memory of 1GB, the com-
putational time was just over 2 hours, significantly higher than the time required
when the model was run at a fluid speed of sound of 15m/s. Figure 4 shows the
numerical results obtained for the pulse wave speed, as from the current model in
LS-DYNA, as a function of Young’s modulus, with a comparison with the works
done by Moens-Korteweg (Eq. 10) [6] .()(Leiden 1878) and Kuntz and Menter
[11].

4 Vascular Material Models

The dynamic behaviour of blood vessels suggests them as non-linear structures
because they exhibit hysteresis, relaxation and creep, all characteristics of visco-
elasticity. The properties vary depending on proximity to the heart, age, individual
variation and health issues amongst other factors. Obtaining material properties for
use with numerical simulations can be complex and many researchers have experi-



230 Copyright © 2014 Tech Science Press MCB, vol.11, no.4, pp.221-234, 2014

12

10

s
\\

Wave apesd [mis]

Moens-Korteweg with Bergel correction

/

4 —
/ 4 Kuntz-Menter (ANSYS-CFX)

2 m  LSDYNA —

0 T T T T T T 1
0.00E+00 500605 1.00E+06 150E+06 200E+06 250E+06 3.00E+06 3.50E+06

Young's modulus[Ps]
Figure 6: Wave speed as function of Young’s modulus: Comparison of numerical
results and idealised theory.

enced difficulty in obtaining appropriate wall mechanics data for their models. The
usual method of obtaining the necessary data for material is by performing uniaxial
stress-strain tests on in vitro blood vessel segments. Many researchers had opted
for the more complex multi-axial experiments under the argument that these can
give the full tensorial relationship. However, even the simplest uni-axial tests can
be difficult to perform and require a degree of experience as well as specialised
equipment capable of acquiring the data.

A range of elastic, hyper-elastic and viscoelastic constitutive models have been
proposed for representing various soft tissues. The predominant form in literature
seems to be under the assumption of hyper-elasticity, i.e. described in the form
of a strain energy density function. Strain energy density functions are convenient
as they provide a direct relationship between the strain parameters and resulting
stresses. One of the most popular constitutive models for describing soft tissue was
introduced by Fung [13]. This model is expressed as an exponential form strain
energy density function.

w:%[exp(b(h—S))—l] (1)

Where, 1 is the shear modulus, b is a positive material constant, /; is the first
invariant of the right Cauchy-Green stress tensor and is defined as /; = tr(C). The
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right Cauchy-Green tensor can be obtained from the deformation gradient matrix:
C=F'F (12)

Another common way to express strain energy density functions is through various
forms of the standard neo-Hookean model:

w:%m—y (13)

Biological tissues are made up of cells, extra cellular matrices and large amounts of
water lodged in between. The extra cellular matrices are made up of fibres, such as
the proteins elastin and collagen, and a ground substance. A blood vessel is no dif-
ferent and is composed of three main layers; the intima, media and adventitia. Each
of these has a different composition of the basic building blocks as well as fibre ori-
entations. As a result we have three very different layers in terms of mechanical
behaviour which have to be treated differently to a certain extent.

4.1 Holzapfel Material Model

Holzapfel [14] presented a constitutive model for modelling the mechanical re-
sponse of individual arterial layers along with a method of extracting the necessary
data from quasi-static uniaxial extension tests. The underlying assumptions of this
model are that the structure is that of an isotropic ground matrix with two embed-
ded families of collagen fibres and is of homogenous composition. The Holzapfel
model is based on a strain-energy function which accounts for the isotropic (Y;so)
and orthotropic (WorrHo) contributions of the artery material individually. The
strain energy function is expressed in terms of Green-Lagrange strains in the cir-
cumferential (E;;) and axial directions (Ep):

W = Wiso(Ei1,E»n) + Worrao(Ei1,Ex) (14)

The isotropic contribution assumes the form of a standard neo-Hookean material
and is defined as:

Viso(Er1,Exn) = % {2(E11 +En)+[2En +1)(2En+1)]' = 1} (15)

The orthotropic contribution is expressed as a Fung-type function:

Vorrno(E11,Ex) = Clexp(Q) — 1] (16)
Where Q is defined as:

Q = c11E} + cpE11Ex + cnE3, (17)
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Where, C is a stress like parameter and c11, ¢22 and c12 are non-dimensional
material parameters, all obtained by experiment. The circumferential and axial
components of the second Piola-Kirchoff stress tensor can be fund simply:

_ oW (Ey1,E»)

S11 9E.,

(18)

_ dW(E,En)

S = JExs (19)

Noting that S33 was assumed to be zero during the derivation, as can be seen, the
model is two-dimensional in formulation; however Holzapfel points out that it is in-
herently 3D for isochoric deformations without shearing. Since the model does not
include shear stresses its usage is limited to simple stress-strain tests and axisym-
metric pressure loadings. These constitutive equations have been implanted into
material user subroutine in LS-DYNA and tested by a single element validation.

4.2 Implementing Holzapfel constitutive material models.

The validation study is based on a single cube element Imm in dimension. A
constant displacement was applied to nodes on opposite sides of the element in
the positive and negative x direction. The validation was performed using material
data for the tunica intima and tunica media as published by [14,15]. Numerical
results of the strains in the circumferential and axial directions were compared with
experimental data. Numerical strain predictions were seen to be reliable. Results
for the intima layer closely followed experimental values (Figure 7) , while some
differences are seen between the two sets of results for the media.

5 Conclusion

The implementation of fluid-structure interaction methods for blood vessel appli-
cations has been investigated in this research work. Much effort was invested to
setup and validate the numerical simulations for use in research linked to blunt
traumatic aortic rupture. Good agreement was found between the numerical results
and the theoretical description of an idealized artery. A material constitutive model
for blood vessels has also been implemented in LS-DYNA in an attempt to improve
the quality of numerical simulations and better understanding of flow in blood ves-
sels. Numerical simulations from ALE and FSI methods can be included in shape
design optimization with shape optimal design techniques, see [16], and material
optimisation, see [17,18]. Once simulations are validated by test results, they can
be used as design tool for the improvement of the system structure being involved.
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