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Optimal Mass Distribution Prediction for Human
Proximal Femur with Bi-modulus Property

Jiao Shi∗, Kun Cai∗ and Qing H. Qin†,‡

Abstract: Simulation of the mass distribution in a human proximal femur is im-
portant to provide a reasonable therapy scheme for a patient with osteoporosis.
An algorithm is developed for prediction of optimal mass distribution in a human
proximal femur under a given loading environment. In this algorithm, the bone
material is assumed to be bi-modulus, i.e., the tension modulus is not identical to
the compression modulus in the same direction. With this bi-modulus bone mate-
rial, a topology optimization method, i.e., modified SIMP approach, is employed
to determine the optimal mass distribution in a proximal femur. The effects of
the difference between two moduli on the final material distribution are numeri-
cally investigated. Numerical results obtained show that the mass distribution in
bi-modular bone materials is different from that in traditional isotropic material.
As the tension modulus is less than the compression modulus for bone tissues, the
amount of mass required to support tension loads is greater than that required by
isotropic material for the same daily activities including one-leg stance, abduction
and adduction.

Keywords: Topology optimization, bi-modulus material, proximal femur, bone
remodeling.

1 Introduction

It is recognized that bone illness such as osteoporosis exists widely in aged people.
A person with serious osteoporosis is at risk of fracture of bone. Developing an ef-
ficient therapy of osteoporosis, in particular a method to improve the speed of bone
apposition, is therefore of great significance. To this end, it is useful to investigate
the relationship between mass distribution and the mechanical properties of either
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cortical or cancellous bone. It is noted that Wolff’s law [1] is a widely accepted
concept which states that the layout of trabecular bone (see the micro-structure of
a proximal femur shown in Figure 1) tends to align with the stress field. Thus,
researchers have considered that bone tissue in an optimal structure always uses
minimum mass to support maximum mechanical loads in accordance with Wolff’s
law

Wolff’s law has been experimentally and numerically investigated during the last
40 years [2-9]. One objective of these studies had been to reveal whether the bone
modeling process can finally attain a globally optimized structure. Hollister et al.
[10] gave a negative answer. The main reasons for this conclusion may be the use
of the coarse mechanics model of bone and the computational conditions of the
time. In contrast, an analytical parametric micro-structural model for trabecular
bone in proximal femur was presented by Fernandes et al. [11] according to the
homogenization theory and optimal densities and orientations were obtained by
topology optimization [12]. Kowalczyk [13] used an orthotropic material model to
simulate the remodeling process of cancellous bone and showed the optimal micro-
structures of bone tissues. Kim and Kwak [14] used a design space optimization
(DSO) method to give the optimal micro-structure prediction of the proximal femur.
Jang and Kim [15] quantitatively studied Wolff’s law with trabecular architecture
by a topology optimization method. They stated that topology optimization with
minimal structural compliance of femur and bone remodeling with strain energy
density (SED) distributed uniformly is equivalent. Cai et al. [16] presented a bionic
topology optimization method for continuum design according to Wolff’s law.

It should be mentioned that an obvious difference exists between the tension mod-
ulus and the compression modulus of either cortical bone or cancellous bone. Yet
this difference has not attracted much attention from researchers. In 2006, Zhu et
al. [17] investigated the tension and compression modulus of Takin femoral cor-
tical bone. Their results showed that the compression modulus of bone is about
5-6 times of the tensile modulus. This finding implies that bone shows clearly bi-
modular behavior. Recently, Cory et al. [18] and Nazarian et al. [3] also gave
support to the existence of the difference in other various bones. But there is still
no report of prediction of the bone remodeling process in the proximal femur with
bi-modulus behavior. The main purpose of the present work is to investigate the
optimal material distribution in the human proximal femur subjected to specified
loads (for example, load induced by physical motions). To this end, a material re-
placement method [19, 20] is developed to obtain the optimal material layout in the
proximal femur under a given environment.
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2 Material Properties

2.1 Bi-modular behavior of elastic material

The stress-strain curve of a bi-modular material is shown in Figure 2. The tension
modulus of material is ET = tanα , and the compression modulus is EC = tanβ .
The ratio between the two moduli is denoted by R = ET

/
EC. As the property of bi-

modular material is stress-dependent, it is highly nonlinear (or piecewise linear). In
deformation analysis, for the sake of convenience the material property is usually
approximated with a differentiable curve [21]. Recently, Cai et al. [19, 20], used the
piecewise linear (see Figure 2) relationship and the material replacement operation
to perform deformation analysis. In particular, the bi-modular material is replaced
by two isotropic materials and the selection between them is based on the stress
status at the corresponding point. It is a simplification of the method [22, 23], which
enable us to treat the material as an orthotropic material whose moduli (Ex and Ey

here) depend on the local stress state. Generally it can be treated as an isotropic
materials (if all principal stresses are positive or negative) or orthotropic material (if
the first principal stress σ1 and the third principal stress σ3 are in opposite sign. In
this case the Young’s moduli E1 and E3 may be different). Actually, the constitutive
of material should be transversely isotropic (a kind of orthotropic) in a general case.

Figure 1: Photograph and radiograph
of human proximal femur [24].

Figure 2: The stress-strain curve of a
bi-modular material, α 6= β .

2.2 Elasticity of porous material

For a porous material, the relationship between the elastic tensor and the relative
density is defined as

Dm, i jkl = ρ
p
mD0, i jkl (1)
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where Dm, i jkl is the elastic tensor of the porous material at the m-th point or in the
m-th finite element in structure, and its relative density is ρm ∈

[
0, 1.0

]
. p is a

material constant. In this work, p is taken to be 2, as suggested by [25]. D0, i jkl is
the elastic tensor of the corresponding solid material.

3 Optimization model

3.1 Formulations of topology optimization problem

During the past decade, the method of continuum topology optimization has been
considerably improved and has now become a highly efficient and well-established
computational tool for structural design. In contrast to the traditional optimiza-
tion method, the material in the design domain can vary arbitrarily in topology
optimization. So far, several popular topology optimization methods have been
published, including the homogenization design method (HDM) [12], the solid
isotropic micro-structures with penalization (SIMP) method [26, 27], the evolu-
tionary structural optimization (ESO) method [28], and the level set method [29],
widely used in various design fields.

In the present study, the modified SIMP method is employed to determine the rel-
ative density distribution of bi-modular bone in the proximal femur with a given
amount of mass. Making use of this method, the volume constrained optimiza-
tion model of a structure with minimal structural mean compliance under multiple
loading cases can be expressed as

min
{ρm}

c =
N

∑
i

wiUT
i KiUi =

N

∑
i

wi

M

∑
m=1

(
uT

mkmum
)

i

s.t. V =
N

∑
i

M

∑
m=1

(ρmvm)i− fv ·V0 = 0

KiUi = Pi , i = 1, 2, · · · , N

0 < ρmin ≤ ρm ≤ 1.0 , m ∈Ω

(2)

where the objective function c is the sum of the structural mean compliances under
N loading cases. wi is the weighted coefficient for the i-th loading case. M is the
total number of finite elements in the femur. {ρm} is the set of relative densities
of elements. Ui and Pi are the global nodal displacement and force vectors in the
i-th loading case, respectively. km is the modified matrix of km(the stiffness matrix
of the m-th element with isotropic material, which can be obtained using finite
element methods [30-34] by considering bi-modular material behavior. The global
stiffness matrix of the structure, Ki, corresponds to the local stiffness matrix {km}i
and the modified global stiffness matrix Ki of the structure corresponds to the local
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stiffness matrix
{

k̄m
}

i. um is the nodal displacement vector of the m-th element.
vm is the volume of the m-th element. fv is the allowable volume ratio of the final
structure. V0 is the total volume of design domain.

3.2 Update of elastic modulus of local material

In this work, the stress-strain relationships of bone material are defined through
Figure 2. The original bi-modular material shown in Figure 2 is replaced by two
isotropic materials. The material constitutive relation of the bi-modular material is
then determined by the local stress status, i.e., a different stress state may lead to a
different elastic tensor. On the other hand, the mechanical behavior of the structure
is determined by the distribution of the local stiffness, which is related to the SED
[19]. Therefore, the update of the elastic modulus of an element is obtained using
the following formulation:

Em =


ET , if (TSED > CSED)m
EC, if (TSED < CSED)m
max(ET , EC), others

(3)

where the TSED is the tension SED and CSED is the compression SED. These
values can be calculated using the equations

TSEDm = 1
4

N
∑

i=1

3
∑
j=1

(
σ ji +

∣∣σ ji
∣∣) · ε ji

CSEDm = 1
4

N
∑

i=1

3
∑
j=1

(
σ ji−

∣∣σ ji
∣∣) · ε ji

(4)

where σ ji (j=1, 2, 3) and ε ji (j=1, 2, 3) are the mean principal stresses and strains
of the m-th element, respectively.

3.3 Update of relative density of porous bone

The optimality criteria method [35] is used to determine the increment of relative
densities of porous bone tissue in proximal femur. For a given element, say the
m-th element, the equation for updating relative density is written as

ρ
(k+1)
m =


max

{
ρmin, ρ

(k)
m − t

}
for ρ

(k)
m Γω

m ≤max
{

ρmin, ρ
(k)
m − t

}
ρ
(k)
m Γω

m others

min
{

1.0, ρ
(k)
m + t

}
for ρ

(k)
m Γω

m ≥min
{

1.0, ρ
(k)
m + t

} (5)

wheret is the maximum increment of the design variable (t = 0.1 is used in the
present study), and .ω is a constant (ω=0.5 in this analysis). Γm is defined by

Γm =

∣∣∣∣ ∂c
∂ρm

/(
λ

∂V
∂ρm

)∣∣∣∣(k) (6)
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where positive scalar λ is the Lagrangian multiplier which can be obtained using a
bi-sectioning algorithm, and

∂c
∂ρm

=
N

∑
i=1
−wi

(
fm ·

p
ρm
·uT

m · km ·um

)
i

(7)

with the modification factor for material replacement operation being defined as

fm = max

10−6,
SEDeffective

m

max
(

10-30, TSEDm +CSEDm

)
 (8)

In Eq (8), SEDeffective
m is the SED of the element defined by the original bi-

modular material and under the current stress state.

3.4 Flowchart of the present algorithm

Step 1 Build the finite element model of proximal femur and initiate parame-
ters of algorithm; let iteration number k=0.

Step 2 Perform structural analysis to obtain the detailed displacement, strain
and stress fields;

Step 3 For each element, update the modulus (Eq.(3)), calculate modification
factor (Eq.(8)), update the relative density (Eq.(5));

Step 4 If k >10 and
∣∣∣ ck−ck− j

ck

∣∣∣< 0.001 (j=1, 2, 3, 4), go to Step5;

Step 5 If k=40, go to Step 6; else k=k+1, go to Step 2;

Step 6 Stop.

4 Numerical results and discussions

In this section, two cases of bone tissues (one isotropic and the other bi-modular)
are considered to demonstrate the applicability, numerical accuracy, and effects
of the percentage of materials on material distribution. The commercial software
ANSYS [36] is adopted to provide numerical results of the deformation of the
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(a) load case 1 (b) load case 2 (c) load case 3 

 Figure 3: Three loading cases for daily activities: (a) One-legged stance, (b) ab-
duction, (c) adduction. The bottom of the femur is constrained in all directions.
(Red arrows show the distribution area of pressure and yellow arrows stand for the
directions of force components.)

proximal femur for optimization analysis. The finite element mesh used in this
work is shown in Figure 3.

In Figure 3, the upper part of the proximal femur is discretized with 9240 four-
node plane stress elements. The relative density of the bone varies within the range
of [0.05, 1.0]. The bottom is simply supported in all directions. In this study,
cortical bone with the elastic compressive modulus of 17.0 Gpa and Poisson’s ratio
of 0.3 is considered The modulus of the bone under tension is less than that under
compression. The ratio of tension modulus to compression modulus is assumed to
be R=0.2, 0.4, 0.6, 1.0(isotropic material). When R is not equal to 1.0, the material
is bi-modular. Three volume ratios of the proximal femur (35%, 41% and 46%) are
considered in this section.

Table 1: Forces in three load cases in the proximal femur model.

Load case Cycles/day
Abductor reaction force Joint reaction force

Magnitude/N Orientation/◦ Magnitude/N Orientation/◦

1 (one-legged
stance)

6000 703 28 -2317 24

2 (abduction) 2000 351 -8 -1158 -15
3 (adduction) 2000 468 35 -1548 56
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Table 1 lists the data of the forces and orientations applied to the femur. In total
10000 cycles, there are 6000 cycles of one-leg stance, 2000 cycles of abduction and
2000cycles of adduction. Hence, the three loading cases are then weighted by the
weighted coefficients 0.6, 0.2 and 0.2, respectively. The sign of each force compo-
nent is determined according to the assumed coordinate system. The orientation of
a force is defined by the angle between the force direction and positive x-axis. The
sign of the angle is positive if from positive x-axis to force direction is in the coun-
terclockwise direction. (see Figure 3). Negative force means compressive force
and positive means tensile force [15].

4.1 Numerical results for bone with isotropic material

   

(a) 35%, over 40 iterations (b) 41%, over 40 iterations (c) 46%, over 40 iterations 

 Figure 4: Isotropic material (R=1.0) distributions in proximal femur

Figure 4 displays the mass (relative density) distributions in a proximal femur when
the total amount of material is different. It can be seen from Figure 4 that the
material is placed mainly on the boundary of the lower part of proximal femur so
as to give a stiffer structure for a given percentage of mass. Near the top of bone, the
mass density also increases. Simultaneously, the distribution of material near the
bottom of the bone forms a stiffer boundary for supporting loads, which applies to
all three cases. Figure 4 also shows differences in mass distribution. In particular,
the mass distribution in the mid-section for connecting the two vertical boundaries
displays differences that are induced by the different percentages of mass specified.
The two vertical sides have different amounts of material in each of the three cases.

4.2 Numerical results for bone with bi-modular material

In this example, R is assumed to be 0.2, 0.4 and 0.6 to investigate the effect of R on
mass distribution in the femur. Figure 5 shows the distribution of relative density
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(a) 35%, 33 iterations (b) 41%, over 40 iterations (c) 46%, over 40 iterations 

 
Figure 5: Material distributions for different volume percentages with R=0.2.

of bi-modular material in the proximal femur for different percentages of material
and R=0.2 (i.e., the tension modulus is only 20% of the compressive modulus).
Obviously, the number of elements with mid-density (relative density between 0.05
and 1.0) is greater than that for the case of isotropic material (see Figure 4). It is
also seen from Figure 5 that the amount of mass near the left vertical side is much
greater than that near the right vertical side. It can be concluded from Figure 5 that
the material on the left side is mostly under tension state and the material near the
right side is under compression state. Therefore, more material is required near the
left side to support tension loads.

   

(a) 35%, over 40 iterations (b) 41%, over 40 iterations (c) 46%, 26 iterations 

 Figure 6: Material distributions for different structure with R=0.4.

Figure 6 presents a group of different material distributions in the femur for R=0.4.
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Figure 6 shows that the material in middle part of the femur connecting the two
sides is distributed differently in the three cases. For example, a higher percentage
of mass (volume ratio) leads to more material being distributed on two sides. The
reason is that the stiffness of femur will be improved obviously under current loads
when more material is layout on the two vertical sides. Meanwhile, the amount of
material under compression, i.e., near the right side, is nearly the same as that in
the left side (under tension), which is different from the situation shown in Figure
5. The difference is mainly caused by the value of R, e.g., R=0.2 in Figure 5 and
R=0.4 in Figure 6.

   

(a) 35%, over 40 iterations (b) 41%, 31 iterations (c) 46%, 20 iterations 

 Figure 7: Material distributions for different percentage amount of mass R=0.6.

When R increases to 0.6, the difference between the two moduli is reduced. There-
fore, the results are expected to be much closer to those in Figure 4 for the case of
isotropic material, compared with those in Figure 5 and Figure 6. But the difference
between Figure 7 and Figure 4 is still obvious for the mass distribution in the mid-
dle part of the femur. The similarity of the results in Figure 7b(with volume ratio
of 41%) and Figure 7c (with volume ratio of 46%) implies that more mass is layout
to connect the two vertical sides. Hence, the mass connecting the two vertical sides
is more important than that connecting the top and the right side of the femur.

5 Conclusions

As a difference exists between the tensile modulus and the compressive modulus
of either cortical bone or porous bone, it is important to investigate the effects of
that difference on the mass distribution in the human proximal femur. The numer-
ical results show that the mass distribution in a femur with bi-modular material
is significantly different from those with isotropic material only. The amount of
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mass near the two vertical sides (the left side is under tension and the right side is
under compression) is affected by the difference between the two moduli, i.e., R.
The topology algorithm developed here seems promising for determining optimal
mass distribution of bones with bi-modulus and may provide guidance in develop-
ing therapy for osteoporosis with exercise methods as well as other applications in
biomedical engineering. It should be mentioned that the real proximal femur is in
fact a three-dimensional structure. The present results by using plane stress model
are just showing the material layout in a longitudinal section of bone structure. In
our future work, the three-dimensional material layout in a proximal femur will be
considered.
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