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Abstract: The proportion of cells staining for the nuclear antigen Ki-67 is an important 
predictive indicator for assessment of tumor cell proliferation and growth in routine 
pathological investigation. Instead of traditional scoring methods based on the experience 
of a trained laboratory scientist, deep learning approach can be automatically used to 
analyze the expression of Ki-67 as well. Deep learning based on convolutional neural 
networks (CNN) for image classification and single shot multibox detector (SSD) for 
object detection are used to investigate the expression of Ki-67 for assessment of biopsies 
from patients with breast cancer in this study. The results focus on estimating the 
probability heatmap of tumor cells using CNN with accuracy of 98% and detecting the 
tumor cells using SSD with accuracy of 90%. This deep learning framework will provide 
an objective basis for the malignant degree of breast tumors and be beneficial to the 
pathologists for fast and efficiently Ki-67 scoring. 
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1 Introduction 
Ki-67, a protein that encoded by the MKI67 gene in human was first identified by 
Scholzer and Gerdes in the early 1980s [Gerdes, Lemke, Baisch et al. (1984)]. It is a 
hallmark to determine the growth fraction of a given cell population. Human Ki-67 
protein expression is highly associated with tumor cell proliferation and growth, 
especially for carcinomas of the prostate, the breast and nephroblastoma tumors 
[Scholzen and Gerdes (2000)]. Currently, a trained laboratory scientist can give a score of 
tumor cells stained by the antibody by experience in diagnosis [Li, Jiang and Chen 
(2015)]. However, this method may not only bring subjective errors, but also a 
tremendous workload in measuring Ki-67.  
Convolutional neural network (CNN), one of the essential tools for deep learning, is a 
feed-forward artificial neural network mostly based on convolutional layers and pooling 
layers. CNN is commonly used for image analyzing since LeNet by LeCun [LeCun, 
Bottou and Bengio (1998)]. After works of Krizhevsky [Krizhevsky, Sutskever, Hinton et 
al. (2012)], VGG [Simonyan and Zisserman (2014)], GoogleLenet [Szegedy, Liu, Jia et 
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al. (2015)] and Resnet [He, Zhang, Ren et al. (2016)], it exhibits superior performance in 
image classification, object detection and semantic segmentation [Zhao, Feng, Wu et al. 
(2017)]. Compared to classic feed-forward neural networks with similarly-sized layers, 
CNN has much fewer connections and parameters, and do not need feature extraction as 
it is trained.  
Unlike image classification, detection requires localizing object within an image. Deep 
learning model based on object detection can be divided into two stages [Girshick, 
Donahue, Darrell et al. (2014)]. One is to generate region proposals, and another is to 
classify the regions and provide a confidence degree for each object. Some related work 
contains Fast R-CNN [Girshick (2015)], SPP [He, Zhang, Ren et al. (2014)], Faster 
R-CNN [Ren, He, Girshick et al. (2015)], R-FCN [Dai, Li, He et al. (2016)] and Mask 
R-CNN [He, Gkioxari, Dollár et al. (2017)].  
Deep learning has achieved unprecedented performance on various tasks, especially in 
biomedical field. Wang et al. [Wang, Khosla, Gargeya et al. (2016)] segmented the whole 
breast cancer image into patches and provided tumor probability map based on patch’s 
classification. He obtained an area under the receiver operating curve (AUC) of 0.925 for 
the task of whole slide image classification and a score of 0.7051 for the tumor localization 
task. Saha et al. [Saha, Chakraborty, Arun et al. (2017)] built an automatic scoring system 
for Ki-67 using gamma mixture model (GMM) with expectation-maximization and deep 
learning approach with results of 93% precision, 0.88% recall and 0.91% f-score value. 
Additionally, end-to-end detecting approaches based on deep learning, such as SSD [Liu, 
Anguelov, Erhan et al. (2016)], YOLO [Redmon, Divvala, Girshick et al. (2016)] and RON 
[Kong, Sum, Yao et al. (2017)], can directly predict the size, location and label of an object 
without any intermediate steps. 
So, in case of scoring Ki-67, CNN and SSD can be induced to make the cell’s recognition 
processes more automatic and thus significantly minimize the risk of incorrect 
classification in the clinic.  
However, despite the attractive qualities of CNN, it is necessary to have much larger 
training sets. The practical analysis of Ki-67 shows that the limited labeled datasets might 
cause CNN to fall short, overfitting on the training set and producing poor accuracy on 
the test set. Generative Adversarial Networks (GAN) [Goodfellow, Pouget-Abadie, Mirza 
et al. (2014)], a novel way to train a generative model, has been successfully induced to 
generate more artificial samples for data augmentation to improve the efficiency of CNN 
[Zhang and Liu (2018)]. GAN consists of two adversarial models: a generative model 
which can be used to captures the tumor cells distribution, and a discriminative model 
which can be used to estimate the probability that tumor cells come from the training data. 
Therefore, GAN can be used to generate more labelled samples to improve the 
performance of classification in Ki-67 investigation. 

2 Methodology 
2.1 Ki-67 in breast cancer 
Ki-67 is one of the essential biomarkers for evaluation of proliferation rate in breast 
cancer screening and grading. Ki-67 immunohistochemical image is shown in Fig. 1, 
which contains tumor cells, connected tumor cells, normal cells and background. In the 
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practical training process, the Ki-67 image is annotated into three patches (tiny image) by 
experienced researchers corresponding to normal cells, tumor cells and background. 

 

Figure 1: Cells in a Ki-67 

2.2 Cell’s heatmap on CNN 
CNN is a special kind of multi-layer neural network designed to recognize visual patterns 
directly from pixel images without feature’s extraction. In Ki-67 image, normal cell, 
tumor cell and background patches can be classified into probability heatmap according 
to steps in Fig. 2. The key processes of estimation include generating training dataset and 
then use CNN image classifier for pixel-wise classification to obtain probability heatmap. 

 
Figure 2: Cell classification overview 

First of all, in order to reduce the workload of manual image segmentation, RGB (red, 
green and blue) color model microscopic image is transformed to HSI (hue, saturation 
and intensity) model. Multi-channel threshold segmentation method combining 
component of intensity to coarsely segment tumor cell, normal cell and background 
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patches in Ki-67 image. Then, manual accurate segmentation and annotation are needed 
for tumor cell, normal cell and background patches by experts. The size of each patch is 
set to be 56*56, which is close to the size of cell in the Ki-67 image.  
Next, in order to expand the dataset, GAN method is applied to the training data set for 
higher accuracy. It contains two parts: Generator G which generates new samples and 
discriminator D which discriminates generated samples. It can be written as followed: 
𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷

 𝐸𝑥~𝑃𝑟[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑋~𝑃𝐺[log (1 −𝐷(𝑥))]                         (1) 

While training, generator can generate better samples due to the output of discriminator 
and the discriminator can be better through generated and real samples. Both of them will 
converge at Nash Equilibrium Point. After training these models, generator can be used 
to generate training dataset. 
The CNN classifier (Fig. 3) is like VGG but smaller. In this convolutional neural network, 
every basic structure contains two convolutional layers with 3*3 filters and a maxpooling 
layer with 2*2 filter. After then, the feature map will halve the size of image and double 
the number of hidden layers. Repeat this structure for three times, a flatten layer and a 
dense layer is added to reduce the number of features. At last, a softmax layer converts 
result into a probability for each class. 

 

Figure 3: CNN classifier 
Gradient descent is an optimization algorithm often used to train the deep learning 
models. Mini-batch gradient descent (MBGD) is a variation of the gradient descent 
algorithm that splits the training dataset into small batches that are used to calculate 
model errors and update model coefficients. MBGD chooses a small batch to train rather 
than the whole training set and exhibits good performance in speed and accuracy. In 
CNN classifier, cross entropy is defined as the loss function for training, which is shown 
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in Eq. ( 2). Here, n is the number of samples in a batch and m is the number of classes. 

L(θ) = − 1
𝑛
∑ ∑ 𝑦𝑖,𝑗log (𝑝𝑖𝑗)𝑚

𝑗=1
𝑛
𝑖=1   (2)  

In the process of testing, a set of labelled patches (tiny images) is generated from the 
Ki-67 image, and classification of pixels can be represented by the classification of their 
nearby patches. After classifying the patch set, a probability heatmap can be formed by 
reversing the values of these patches to its original location. 

2.3 Cell’s detection on SSD 
Single shot multibox detector (SSD) is a unified framework for object detection in an 
image using a single deep neural network. It discretized the output space of bounding 
boxes into a set of default boxes over different aspect ratios and scales per feature map 
location. In order to quantity tumor cells and normal cells, SSD is used for cell detection. 
The workflow is shown in Fig. 4, which consists of generator and detector. 

 

Figure 4: Cell detection on SSD 
Generator uses the single cells images to generate artificial Ki-67 image with annotation. 
In this process, every cell scaled 56*56 should not be covered with others for avoiding 
distribution mismatch, but proper collision is allowed. Additionally, the ratio for each 
kind of classes should be balanced for higher recognition accuracy. 
During cell’s detection on SSD, the image is divided into several parts and predict 
(C+4)∗k∗m∗n values. (C+4)∗k filters for k anchors and C categories in one cell, 
(C+4)∗k∗m∗n outputs for an m∗n feature map. Different filters are applied to different 
scale/ratio anchors. The number of 4 means [cx; cy; w; h], indicating the location and 
size of an object. Each layer is connected to the output layer to extract features, which is 
useful for detecting small object. The loss function of detection which requires bounding 
boxes prediction and cell classification is as follows: 

 𝐿(𝑥, 𝑐, 𝑙,𝑔) = 1
𝑁

(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼 𝐿𝑙𝑜𝑐(𝑥, 𝑙,𝑔))                              (3) 

Here, 𝐿𝑐𝑜𝑛𝑓 reflect the loss of confidence for categories, which is shown as Eq. (4): 
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L𝑐𝑜𝑛𝑓 (x, c) = −∑ 𝑥𝑖𝑗
𝑝 log��̂�𝑖

𝑝�N
i∈Pos − ∑ log��̂�𝑖0�𝑖∈𝑁𝑒𝑔  𝑤ℎ𝑒𝑟𝑒 �̂�𝑖

𝑝 = exp�𝑐𝑖
𝑝�

∑ exp�𝑐𝑖
𝑝�𝑝

     (4) 

where, x is an indicator tells whether there exist an object and c are predicted classes. 
𝐿𝑙𝑜𝑐 means the loss of locations and boundary box sizes, which is shown as Eqs. (5-7): 
𝐿𝑙𝑜𝑐(𝑥, 𝑙,𝑔) =  ∑ ∑ 𝑥𝑖𝑗𝑘𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ} 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1�𝑙𝑖𝑚 − 𝑔�𝑗𝑚 �𝑁

𝑖 ∈𝑃𝑜𝑠     (5) 

𝑔�𝑗𝑐𝑥 =
𝑔𝑗
𝑐𝑥−𝑑𝑖

𝑐𝑥

𝑑𝑖
𝑤   𝑔�𝑗

𝑐𝑦 =
𝑔𝑗
𝑐𝑦−𝑑𝑖

𝑐𝑦

𝑑𝑖
ℎ                                 (6) 

𝑔�𝑗𝑤 = log �
𝑔𝑗
𝑤

𝑑𝑖
𝑤�   𝑔�𝑗ℎ = log (

𝑔𝑗
ℎ

𝑑𝑖
ℎ)   (7) 

Where, g is the ground truth box, d is the default box and l is the predicted box. 

3 Results and discussion 
The Ki-67 images come from http://pan.baidu.com/s/1mhGmS0S, a database of breast 
cancer Ki-67 immunohistochemistry. The 3,000 samples of each kind of classes (tumor 
cell, normal cell and background) identified by experts are augmented to 30,000 with 
generative adversarial networks (GAN) for improving the accuracy of classifier. In the 
experiment, 90% training samples and 10% validating samples randomly selected from 
30000 samples for each kind of cells. The network was trained on GPU (GTX1050) 
while the algorithms of tumor classification and detection were done using Python and 
Tensorflow.   

3.1 Classification and heatmap of tumor cells 
We use the batch size 64 and learning rate 1e-3. Fig. 5 shows the accuracy and loss for 
each step when training. The results converge reasonably well while step is approximate 
850 and epoch is 2. CNN classifier achieves an accuracy of around 98% and a loss under 
0.1. Back to original 3,000 samples, the classifier can still achieve 98.2% accuracy. 

 

(a) Accuracy per step          (b) Loss per step 
Figure 5: Paragraph selection model 

Then, moving every 10 pixels to get a 56*56 patch from a Ki-67 image, an unclassified 
Ki-67 image with a size of 1600*900 will result in 14,400 patches. After classifying by 
CNN, reverse these patches with annotation back to pixels to form a probability heatmap. 

http://pan.baidu.com/s/1mhGmS0S
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Fig.6 shows some examples of the probability map which directly reflects the 
distributions of cell. In the probability heatmap, tumor cell, normal cell and background 
are marked by green, blue and red respectively. The ratio of tumor cell can be an 
indicator of the Ki-67 expression. 

 
Figure 6: Examples of original images (above) and corresponding probability heatmaps 
(below) 

3.2 Detection of tumor cells 
In the process of generating artificial Ki-67 image for avoiding more samples required to 
be labelled by experts, the ratio for two cell classes is 0.5, scaling factor is 0.2 (scale 
single cell image to 1±0.2 times) and less than 20% image collision is allowed. Fig. 7 
gives an example of a generated Ki-67 image in cell detection training set (Fig. 7a). It 
contains 12 cells and overlap of cells is prohibited. Fig. 7b shows the bounding boxes of 
generated cells. 

      

(a) Generated Ki-67 image   (b) Generated image with bounding boxes 
Figure 7: Example of generated Ki-67 image 
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Training for 10 epochs, the SSD approach can provide a detector with 90% accuracy for 
generated Ki-67 images. In Fig. 8, green boxes are true object bounding boxes and blue 
boxes are predicted object bounding boxes.  

 

Figure 8: Example of cell detection 

Appling SSD approach on real Ki-67 image, the detector can orient most of the cells and 
classify them correctly as shown in Fig. 9. The tumor cells are in the red boxes and the 
normal cells are in the blue boxes. 
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Figure 9: Orientation of cells in Ki-67 

4 Conclusion and future work 
Two automatic analysis approaches of the Ki-67 expression are discussed in this study. 
The first one is to build a probability heatmap to indicate the expression of Ki-67 with an 
accuracy of 98% using CNN image classifier. The other approach is to detect tumor cells 
and normal cells using SSD with an accuracy of 90%. 
However, both approaches still have some shortages. The workflow of obtaining heatmap 
based on probability involves generating patch set, classifying these patches and 
reversing them with annotation back to pixels to form probability map and thus is very 
complex. Some of the newest methods, such as FCN [Long, Shelhamer and Darrell 
(2015)], Segnet [Badrinarayanan, Kendall and Cipolla (2017)] or Deeplab [Chen, 
Papandreou, Kokkinos et al. (2018)], may be good choices to generate heatmap with 
more effectiveness and efficiency. Object detection methods, such as Faster-RNN and 
YOLO v3 should also be considered to orient the cells in the future work to improve the 
accuracy. Additionally, in the augmentation of data set, the newly conditional adversarial 
net (cGAN) with some extra information, an extending model of GAN, outperform than 
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non-conditional adversarial nets [Mirza and Osindero (2014)]. Therefore, some aspects of 
the somatic of deep learning still needs to be further optimized. 
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