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Abstract: Adrenocorticotrophic hormone (ACTH), a 39-amino acid peptide 
hormone, has been reported in the appreciation of the proliferation of vascular 
smooth muscle cells (VSMCs), however, the mechanism in molecular scale 
supporting the appreciation remains to be elucidated. In this study, we observed 
that the protein expression levels of ACTH at 24 h after exposure to 15% cyclic 
stretch were significantly higher than that after 5% cyclic stretch. When VSMCs 
were treated with 1000 nM ACTH directly, Oct-1 and lamin B1 expression were 
both up-regulated associating with each other, and the presence of Oct-1 was found 
shuttling between the cytosol and nucleus. When we silenced Oct-1 expression 
with RNA interference, the proliferation of VSMCs decreases significantly, which 
also validates a dominant contribution of Oct-1 in ACTH-induced VSMC 
proliferation. We further screened the target molecules of Oct-1 related to the 
proliferation with ingenuity pathway analysis (IPA), and found that superoxide 
dismutase 1 (SOD1) was significantly induced by ACTH stimulation yet 
suppressed by Oct-1 interference. All these findings in the present study highlight 
a new molecular mechanism that ACTH up-regulates Oct-1 expression and 
activates the protein expression of downstream target SOD1, finally induces the 
VSMC proliferation. The present work proved Octamer transcription factor-1 
(Oct-1) as a key transcription factor in the mechanical regulation of VSMC 
proliferation, which in turn, provide a new target for the treatment of hypertension. 
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1 Introduction 
Hypertension is one of the most serious cardiovascular diseases. During the progression of 

hypertension, the mechanical strains on the arterial wall increase abnormally, which induces the remodeling 
of vascular vessels through the mechanotransduction of proliferation, apoptosis, and migration of vessel 
cells, and the variations of extracellular matrix components as well [1-4]. As we know, the vascular smooth 
muscle cells (VSMCs) in arterial wall bear most of the cyclic mechanical stress [5] among all vascular cells, 
and aberrant proliferation of VSMCs was often observed under hypertension [6].  

The adrenocorticotrophic hormone (ACTH), a 39-amino acid peptide hormone synthesized and 
secreted primarily by the pituitary gland [7] when the precursor peptide proopiomelanocortin (POMC) is 
processed by prohormone convertase 1/3 (PC1/3) [8], whose main function is to stimulate glucocorticoid 
production in the adrenal glands. It also modulates both diurnal secretion of glucocorticoids and acute 
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release of glucocorticoids as part of stress response [9]. Since glucocorticoids are critical for survival, which 
affect the transcription of up to 20% of the expressed human genome [10], it is reasonable that many studies 
have reported that ACTH plays an important role in the transcription of peripheral tissues. For example, 
ACTH in leukocytes affects the anti-inflammatory properties [11]. It also promotes chondrogenic nodule 
formation and induces transient elevations in intracellular calcium levels in rat bone marrow cell cultures via 
melanocortin receptor type 2 (MC2R) signaling [12]. Furthermore, ACTH could regulate blood pressure by 
promoting the synthesis of aldosterone under stress conditions [13]. Our previous study also suggested that 
ACTH could be synthesized by VSMCs and be involved in abnormal cell proliferation when subjected to high 
cyclic strain [14]. Usually, specific kinds of transcription factors are required to regulate the expression of 
specific protein molecules when tissues or cells are stimulated by hormones, growth factors, or others. 
However, the transcription factors in VSMC proliferation due to ACTH stimulation still remains unknown. 

Octamer Transcription factor-1 (Oct-1) belongs to the family of Pit-Oct-Unc (POU) proteins whose 
members contain highly conserved DNA-binding domain POU. Proteins of the POU family are generally 
involved in transcriptional regulation and cellular differentiation, and are often found in proliferating 
eukaryotic cells. Thereafter, Oct-1 transcription factor is intensively literatured in the transcriptional 
regulation of a variety of genes related to cell cycle, development, and hormonal signals [15,16]. In recent 
years, suppression of AMPK phosphorylation has been reported to promote Oct-1-directed miR-451a levels 
and osteoblast differentiation, and an miR-451/AMPK feedback loop has been shown to allow glioblastoma 
multiforme (GBM) cells to adapt to metabolic stress through direct activation of miR-451 transcription by 
Oct-1 [17,18]. In addition, activation of the LOX-1 receptor, by either intravenous infusion of oxLDL or 
an HCD, induces a switch in endothelial signal transduction from the protective Oct-1/SIRT1 pathway to 
prothrombotic ERK1/2 pathway with the suppression of Oct-1 expression and lack of SIRT1 activation, 
thus increases tissue factor activity and enhances thrombus formation and vascular occlusion in vivo [19]. 
The POU2F1 gene encoding the Oct-1 protein can be activated at very early stages of embryonic 
development, and gets involved in the regulation of many genes such as “housekeeping” genes including 
snRNA and histone H2B genes, and those specific for the immune, endocrine, and nervous systems [20].  

As previous studies have showed that ACTH induces proliferative effects in VSMCs [14], and Oct-1 
is involved in the proliferation of HeLa and MCF-7 cells and in hormonal signals [21]. In the present study, 
we assumed Octamer transcription factor-1 (Oct-1) as a key transcription factor in the mechanical 
regulation of VSMC proliferation. The rest of the paper investigated whether Oct-1 is involved in VSMC 
proliferation, and how it mediates ACTH-induced VSMC proliferation with certain molecular mechanisms. 

2 Materials and Methods 
2.1 Cell culture and Cytokine Stimulation  

Animal care and experimental protocols strictly abided by the Animal Management Rules of China 
(Documentation 55, 2001, Ministry of Health, China), and the study was approved by the Animal Research 
Committee of Shanghai Jiao Tong University. Primary rat aortic VSMCs were obtained by the explant 
technique [22], cultured in Dulbecco’s modified Eagle medium (Gibco, Carlsbad, CA) supplemented with 
10% Newborn calf serum, incubated at 37°C in a humidified 5% CO2 environment [23], and characterized 
by the VSMC marker SMA (DAKO, Glostrup, Denmark). VSMCs at passages 4-7 were used. ACTH 
concentration was 1000 nM. 

2.2 Cyclic Strain Application 
VSMCs were plated on gelatin-coated flexible silicone-bottom plates (Flexcell International, 

Burlington, NC) at a density of 2 × 105 cells per well. After 24 h, the culture medium was replaced with 
serum-free medium for another 24 h to synchronize the cells. Cells in the serum-free medium were exposed 
to cyclic strain, provided by the FX-5000T Strain Unit (Flexcell International, Burlington, NC), with an 
elongation magnitude of either 5% or 15%, at a constant frequency of 1.25 Hz.  

2.3 Western Blotting  
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Proteins were electrophoretically separated by 10% SDS-PAGE and transferred to nitrocellulose 
membrane (Hybond, Amersham, Piscataway, NJ), which was then blocked with 5% non-fat dry milk in 
TBST buffer, and incubated overnight at 4°C with primary antibodies against Oct-1 (1:1000, Abcam, 
Cambridge, UK), lamin B1(1:1000, Proteintech, Chicago), lamin A/C (1:1000, Abcam, Cambridge, UK), 
and GAPDH (1:1000, Proteintech, Rosemont, IL). Membranes were washed thrice with TBST buffer, 
incubated for 1.5 h with a secondary antibody at room temperature, and finally washed thrice again with 
TBST. Immunoreactive proteins were detected using BCIP/NBT phosphatase substrate system according 
to the instruction of the manufacturer (KPL, Milford, MA), scanned with an image scanner (Amersham, 
Piscataway, NJ), and quantified with Quantity One software (Bio-Rad, Hercules, CA). 

2.4 Cell Proliferation Assay 
VSMCs were seeded in triplicates at 1 × 104 cells per well in 100μl complete medium in 96-well plates. 

Cells were cultured overnight and then cultured in serum-starved medium for 24 h. Thereafter, appropriate 
concentration (1000 nM) of ACTH (Zhong tai Peptide Biochemical, Hangzhou, China) was added and left 
for another 24 h. The BrdU labeling reagent was added to the culture medium 8 h before detection (1:1000). 
For BrdU ELISA, VSMC proliferation was analyzed using a colorimetric BrdU kit (Roche, Basel, 
Switzerland). 

2.5 RNA Interference 
The mRNA sequence of rat Oct-1 (NM_001100639.1) was acquired from NCBI GenBank. Several 

small interfering RNAs (siRNAs) targeting rat Oct-1 were designed and synthesized by a company named 
Gene Pharma Biological, China; the sequences are as follows. For all interference experiments, we used 
siRNA-Oct-1-Rat-1063. 

Table 1: The siRNA sequences of Oct-1 

Oct-1 siRNA siRNA sequences, 5′ to 3′ 

Oct-1-Rat-485 Fwd: GCA ACA CUC CGC CAG CCA ATT 
Rev: UUG GCU GGC GGA GUG UUG CTT 

Oct-1-Rat-588 Fwd: GCA CAG GAU CUU CAA CAA UTT 
Rev: AUU GUU GAA GAU CCU GUG CTT 

Oct-1-Rat-1063 Fwd: CCU UGA ACC UCA GCU UUA ATT 
Rev: UUA AAG CUG AGG UUC AAG GTT 

NC Fwd: UUC UCC GAA CGU GUC ACG UTT 
Rev: ACG UGA CAC GUU CGG AGA ATT 

 
VSMCs were seeded on a six-well plate at a density of 1.5 × 105 cells per well and incubated overnight. 

RNA interference was studied according to the standard protocol [22]. Interference efficiency was 
measured after 24-48 h. 

2.6 Immunoprecipitation (IP)  
Cells were lysed using RIPA Lysis Buffer in presence of complete protease inhibitor cocktail (Sangon 

Biotech, Shanghai, China). Lysates were pre-cleared twice using protein G PLUS-Agarose (Sangon Biotech, 
Shanghai, China) and immunoprecipitated overnight at 4°C using anti-lamin B1 (Proteintech, Rosemont, 
IL). IP complexes were captured using protein G PLUS-Agarose and eluted using 1 × Loading Buffer. The 
eluted immunoprecipitate was used in SDS-PAGE. Antibodies used for IP, in the current study, were anti-
lamin B1 (Proteintech, Rosemont, IL) and anti-Oct-1 (Abcam, Cambridge, UK).  



202                                                                                        MCB, 2019, vol.16, no.3 

2.7 Radioimmunoassay (RIA) for ACTH Concentration  
VSMCs were seeded on flexible silicone-bottom plates (Flexcell International, Burlington, NC) at a 

density of 2 × 105 cells per well and cultured overnight in an incubator. Once the cells were completely adhered, 
the culture medium was changed to serum-free medium for 24 h for synchronization. After the cells were 
exposed to cyclic strain for 24 h, the culture media from VSMCs were collected, and ACTH concentrations 
were measured using ACTH RIA kit (HY-098, Beijing DORUN International Technology Co., Ltd). 

2.8 Immunofluorescence Staining  
VSMCs were cultured on coverslips placed in cell cultured plates. Following different treatments, cells 

were fixed with 4% paraformaldehyde for 20 min, followed by permeabilization with 0.2% Triton X-100 
in PBS for 10 min. The slides were blocked with PBS containing 10% horse serum for 1 h at 25°C, and 
incubated overnight with primary antibodies at 4°C. Appropriate secondary antibodies were added for 
incubation over 1 h at 37°C. The nuclei were stained with DAPI; images were captured using confocal 
microscopy (Leica TCS SP8). 

2.9 Statistical Analysis  
All data are presented as mean ± SD. Statistical comparisons were made with the Student’s t-test for 

paired data, and one-way or two-way ANOVA was used to compare the difference between two groups, 
followed by Fisher’s exact-test for multiple comparisons. Values with P < 0.05 were considered statistically 
significant. All analyses were performed with GraphPad Prism Software (Version 7.0). 

3 Results 
3.1 Cyclic Strain Up-Regulates ACTH Secretion in the Medium 

VSMCs were exposed to different magnitudes of cyclic stretch for 12 h and 24 h, and the expressions 
of ACTH in culture supernatants were measured (Fig. 1(A)). Compared to 5% cyclic stretch (as normal and 
physiological stretch), 15% cyclic stretch (as high and pathological stretch) slightly repressed ACTH in the 
culture supernatants after 12 h, but the difference was not significant. When VSMCs were exposed to 
different cyclic stretches for 24 h, the expressions of ACTH in the culture supernatants of cells exposed 
under 15% cyclic stretch were significantly increased compared to that exposed under 5% cyclic stretch 
(Fig. 1(B)). These results indicate that high cyclic stretch applied to VSMCs up-regulates ACTH secretion. 

 

 
Figure 1: Cyclic strain regulated ACTH expression in culture fluids and ACTH promoted VSMC 
proliferation. (A) Pattern diagram of strain loading. (B) Protein levels of ACTH in culture fluids after cyclin 
strain loading for 12 h and 24 h. (C) Proliferation of VSMCs stimulated by 1000 nM ACTH. VSMCs were 
either untreated or treated with ACTH for 24 h, and their proliferation was assessed using BrdU. The results 
are represented as the means ± SD of five independent experiments, *P < 0.05, n = 5 
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3.2 ACTH Induces Proliferative Effects with Enhanced Oct-1 Expression in VSMCs  
Using certain concentrations of ACTH to stimulate VSMCs, our data showed significant increase of 

VSMC proliferation compared to that in control cells (Fig. 1(C)). To determine whether ACTH directly 
induces Oct-1 expression in VSMCs, cells were stimulated with ACTH (1000 nM), and cell lysates were 
analyzed for Oct-1 protein expression. After 6 h, 12 h, and 24 h of ACTH stimulation, the up-regulation of 
Oct-1 protein expression appears (Fig. 2(A)). In addition, ACTH treatment significantly increased lamin 
B1 protein expression in the 24 h group (Fig. 2(B)) and had little effect on the expression of lamin A/C (Fig. 
2(C)) in VSMCs. These results suggest that ACTH is capable to stimulate VSMC proliferation and induce 
the up-regulation of both Oct-1 and lamin B1. 

 

Figure 2: ACTH enhanced Oct-1 and lamin B1 expression in VSMCs. Total protein extracts of VSMCs 
were either untreated or treated with ACTH (1000 nM) for 0 h, 6 h, 12 h, and 24 h. Protein levels of Oct-1 
(A), lamin B1 (B), and lamin A/C (C) were subjected to immunoblot analysis by western blotting in both 
control and ACTH-treated cells. GAPDH served as the loading control. Data are presented as mean ± SD 
of six independent experiments, *P < 0.05, n = 6 

3.3 ACTH Could Induce Oct-1 Shuttling Between Cytosol and Nucleus 
To examine the ACTH-treatment induced proliferation, subcellular distribution of Oct-1after ACTH 

stimulation was studied. Oct-1 was well distributed in all VSMCs at 0 h. Using immunofluorescence 
staining, we found that with the treatment of ACTH, Oct-1 expression was induced, which concentrated 
mainly in the nucleus at 6 h compared to that in the control (0 h) (Fig. 3). However, similar distributions 
were not observed at 12 h and 24 h (Fig. 3). This indicates that ACTH could affect the subcellular 
distribution of Oct-1, and Oct-1 could shuttle between the cytosol and nucleus during VSMC proliferation.  
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Figure 3: ACTH could induce Oct-1 shuttling between cytosol and nucleus. ACTH (1000 nM) 
stimulated VSMCs for 6 h, 12 h, and 24 h; the cells were then immunostained with anti-Oct-1 antibodies 
(green) while nuclei were stained with DAPI (blue), and localization of Oct-1 analyzed by confocal 
microscopy. Bars = 25 μm 

3.4 Oct-1 Mediates the VSMC Proliferation Induced by ACTH 
As shown in Fig. 2(A), ACTH significantly induced Oct-1 expression in VSMCs in a time-dependent 

manner. To further investigate the role of Oct-1 on the VSMC proliferation, gene silencing of Oct-1 by 
siRNA Oct-1 was employed. Oct-1 protein expression was evaluated by western blot analysis, after 24 h of 
siRNA transfection to verify whether Oct-1 protein expression was effectively silenced (Fig. 4(A)). 
Knockdown studies were performed to further confirm the contribution of Oct-1. Results suggested that 
Oct-1 does not affect lamin B1 expression in VSMCs (Fig. 4(B)), although VSMC proliferation was 
significantly decreased (Fig. 4(C)). Therefore, the present study showed that ACTH induced proliferation 
response, which was alleviated by Oct-1 deficiency (Fig. 4(D)). These findings comprehensively suggest 
that Oct-1 is necessary for ACTH-mediated VSMC proliferation. 

 
Figure 4: Oct-1 mediated VSMC proliferation induced by ACTH. (A, B) VSMCs were transfected with 
Oct-1 siRNA for 24 h and protein expression of Oct-1 and lamin B1 was examined by western blotting. (C) 
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Proliferation of VSMCs was reduced when Oct-1 expression was reduced; proliferation was assessed using 
BrdU in VSMCs transfected with control siRNA or siRNA directed against Oct-1 for 24 h. (D) VSMCs 
were transfected with Oct-1 siRNA, and then either left untreated or treated with 1000 nM ACTH for 24 h. 
Cell proliferation was evaluated by BrdU. The sequence of siRNA used siRNA-Oct-1-Rat-1063 in (C, D). 
The results are represented as the means ± SD of five independent experiments, *P < 0.05, n = 5 

3.5 Oct-1 Associates with Lamin B1 in VSMCs 
To investigate the correlation between Oct-1 and lamin B1, interaction between them was analyzed 

after ACTH stimulation. 
To address this issue, we immunoprecipitated lamin B1 using an anti-lamin B1 antibody and assessed 

the levels of co-immunoprecipitated Oct-1 using western blotting. Expression of lamin B1 and Oct-1 could 
not be detected in the negative control (Fig. 5(A)). However, after 6 h, 12 h, and 24 h of ACTH stimulation 
(1000 nM), Oct-1 was pulled down with lamin B1 using co-immunoprecipitation (Fig. 5(B)). The Co-IP 
experiments showed an interaction of Oct-1-lamin B1 during the ACTH-induced proliferation. 

 
Figure 5: Oct-1 association with lamin B1 in VSMCs. (A) Same amount of IgG was used as a negative 
control in co-immunoprecipitation. The negative control used lamin B1 antibody, and IP samples were 
analyzed using anti-lamin B1 and anti-Oct-1 antibodies. The IgG group did not use any antibody and IP 
samples were also analyzed using anti-lamin B1 and anti-Oct-1 antibodies. (B) After VSMCs were treated 
with 1000 nM for 6 h, 12 h, and 24 h, control and ACTH-treated VSMCs cells were subjected to immune-
precipitation using an anti-lamin B1 antibody. IP samples were then analyzed using anti-lamin B1 and anti-
Oct-1 antibodies. One of three similar experiments is presented here 

3.6 Correlation of the Downstream Targets of Oct-1 with Cell Proliferation in Cardiovascular Diseases, 
as Revealed by Ingenuity Pathway Analysis 

Ingenuity Pathway Analysis (IPA) was used to analyze the downstream targets of Oct-1 that are 
associated with cell proliferation in cardiovascular diseases. According to the data obtained, probably 
more than 20 downstream targets of Oct-1 are closely related to cell proliferation in cardiovascular 
diseases, which include ICAM1, ATM, SOD1, and IL6 (Fig. 6(A)). After 6 h, 12 h, and 24 h of ACTH 
stimulation, an up-regulation of SOD1 protein expression at 24 h was observed (Fig. 6(B)). In addition, 
Oct-1 siRNA transfection significantly reduced SOD1 levels (Fig. 6(C)). The present work demonstrates 
that ACTH directly up-regulates the protein expression level of Oct-1, thereby regulating the downstream 
target gene SOD1. 
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Figure 6: Correlation of the downstream targets of Oct-1 with cell proliferation in cardiovascular diseases, 
as revealed by IPA. (A) IPA analyzed the downstream targets of Oct-1 that were associated with cell 
proliferation in cardiovascular diseases. (B) VSMCs were treated with ACTH (1000 nM) for 0 h, 6 h, 12 h, 
and 24 h. Protein levels of SOD1 were checked with western blotting. (C) VSMCs were transfected with 
Oct-1 siRNA for 24 h, protein level of SOD1 was analyzed by western blotting, and the sequence of siRNA 
used was siRNA-Oct-1-Rat-1063 in this experiment, *P < 0.05, n = 5 

4 Discussion 
Cyclic stretch is an important inducer of VSMC proliferation, which is crucial in vascular remodeling 

during hypertension [6]. However, molecular mechanism underlying the vascular remodeling in 
hypertension has not been fully elucidated. Neuropeptides are endogenous active substances which present 
in the nerve tissues and participate in the function of the nervous system [24]. Studies on neuropeptides are 
mainly focused on the nervous system and endocrine system. In recent years, the role of neuropeptides in 
other local tissues, acting as a special kind of information material, has attracted the attention of researchers. 
In the humoral regulation, neuropeptides are transported to the target organ through the blood circulation 
system, and then regulate the function of target organ via specific receptor. For example, the spectrum of 
ghrelins function has been expanded to include Cardiovascular actions and modulation of proliferation of 
neoplastic cells, as well as of the immune system [25]. 

ACTH, a small neuropeptide molecule, is synthesized and secreted by basal cells of the anterior 
pituitary [26]. Studies have shown that ACTH upregulates intracellular caveolin-1 expression, inhibits G-
protein signaling (RGS2 and RGS5) by activating surface-related receptors of ECs and VSMCs [2], and 
promotes apoptosis by the activation of caspase 3 in ECs [3]. After activation of the ACTH receptor, 
mononuclear macrophages could adhere and accumulate in the circulatory system, which induces EC 
dysfunction [4, 27]. In addition to the expression of ACTH receptor, ECs also synthesize and secrete ACTH 
which interactively participates in EC regulation and angiogenesis by regulating the activity of endogenous 
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nitric oxide synthase (eNOS) [27]. Interestingly, ACTH has been reported to be able to regulate VSMC 
proliferation via the ERK/STAT3 pathway [14]. In addition, STAT3 regulated the transcription and 
expression of Oct-1 by directly targeting its promoter and hence regulating cell proliferation in esophageal 
carcinogenesis [28]. In this study, ACTH stimulation significantly increases the proliferation of VSMCs in 
vitro, which is consistent with previous reports, thereby suggests that neuropeptides are directly involved 
in the regulation of function of vascular wall cells. Our previous study had shown that different amplitudes 
of cyclic strain can regulate the production of neuropeptide Y (NPY) in VSMCs and ultimately affect the 
proliferation and migration of VSMCs [29]. All these data comprehensively suggest that neuropeptides may 
play an important role in the regulation of vascular cell function. 

To study the molecular mechanism underlying ACTH-induced proliferation of VSMCs, we focused on 
the transcription factor Oct-1. Oct-1 is a transcription factor that plays crucial roles in modulating cell 
proliferation, migration, and apoptosis [30]. Previous studies had suggested that Oct-1 is overexpressed in 
pituitary and breast tumors [31], and Oct-1 expression also correlates with the proliferation of prostate cancer 
cells [32]. In addition, Oct-1 has been shown in the promotion of HeLa and MCF-7 cell proliferation via a 
mechanism involving the activation of histone H2B transcription [33]. The present study found that ACTH 
stimulation can promote the proliferation of VSMCs, which agrees with previous reports those suggested the 
ACTH/ERK/STAT3 pathway in promoting the proliferation of VSMCs [14]. Our study also demonstrated 
the increasing expression of Oct-1 due to ACTH. To investigate the roles of Oct-1 in VSMCs proliferation, 
RNAi was used to downregulate the expression of Oct-1. Inhibition of Oct-1 led to significant decrease in 
VSMC proliferation which suggests that Oct-1 is necessary for inducing VSMC proliferation. Furthermore, 
there exists a novel signaling cascade Pak1/MEK/ERK/Oct-1, for both insulin and curcumin, in exerting 
glucose-lowering effects via the promotion of hepatic ChREBP production [34]. All these results indicated 
that ACTH might activate STAT3 or ERK to regulate the expression of Oct-1 and promote proliferation of 
VSMC. These results collectively indicate the central role played by Oct-1 in cell proliferation. 

Furthermore, after ACTH treatment, the expression of lamin B1 was found to be remarkably increased. 
To discover the interactions between lamin B1 and Oct-1, we adopted co-immunoprecipitation. The nuclear 
lamina is involved in anchoring chromatin to the nuclear envelope during DNA replication and repair, and 
in the control of gene expression [35,36]. As reported in previous work, lamin B1 contributes to the 
regulation of gene expression by tethering to specific chromosomes [37] and the transcription factor Oct-1. 
In addition, phosphorylation of lamin B1 by JNK could result in Oct-1 release from NE as well as the 
downstream effects that Oct-1 has on GADD45A expression [38]. Previously, Oct-1 was observed to 
undergo DNA-PK-dependent phosphorylation in response to DSBs, and was considered to make an 
important contribution to the survival ability of cells against damage [39].  

Our immunofluorescence results indicate that Oct-1 could shuttle between the cytosol and nucleus after 
being stimulated by ACTH. When VSMCs were treated with ACTH, the expression of Oct-1 was significantly 
increased and it shuttled into the nucleus. We propose that lamin B1 may likely get phosphorylated at T575 
[38], which results in partly release of Oct-1 from lamin B1, and the accumulation of Oct-1 in the nucleus in 
response to ACTH stimulation. After that the increased Oct-1 could bind to its target gene sequence, 
subsequently up-regulating the expression of downstream target genes such as SOD1. After completion of its 
effects, Oct-1 may shuttle back from nucleus into cytosol and be degraded therein [40].  

It has reported that 15% cyclic stretch could induce more proliferation of VSMCs compared with 5% 
cyclic stretch [6]. In addition, our previous study had also proved that cyclic stretch upregulates the protein 
expressions of ACTH and its receptor MC2R in VSMCs, which promoted the proliferation of VSMCs [14]. 
Our present study focuses more on clearing the function and molecular mechanism of VSMCs with exogenous 
ACTH rather than discovering the total comprehensive pathways through Oct-1. The molecular mechanisms 
under mechanical conditions are very complicated. Several experiments in our follow-up series work about 
this topic revealed that the protein expressions of Oct-1 and lamin B1 in VSMCs sometime conjugated and 
significantly increased under 15% cyclic stretch compared with 5% cyclic stretch which suggested mechano-
responsive correlations between the Oct-1 and lamin B1. Yet, it is unclear whether the molecular mechanisms 
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of Oct-1 increased in VSMC induced by high cyclic stretch and exogenous ACTH are consistent. The role of 
Oct-1 in different levels of cyclic stretch needs to clarify in our following researches. 

5 Conclusions  
In summary, ACTH stimulation was seen to significantly promote the expression of Oct-1 and lamin 

B1, and it may activate the expression of related target gene SOD1. As a result, the proliferation of VSMCs 
is significantly appreciated (Fig. 7).  

 

 
Figure 7: Proposed working model of ACTH in modulating Oct-1 expression and cell proliferation in 
VSMCs. ACTH stimulation significantly up-regulates the protein expression of Oct-1 and lamin B1. 
Simultaneously, ACTH treatment promotes more Oct-1 accumulation in the nucleus, which increases the 
binding of Oct-1 to DNA-binding sequences, thereby regulating the downstream signaling cascade involved 
in cell survival 

Acknowledgement: This study was supported by grants from the National Natural Science Foundation of 
China (Grant Nos. 11372190 and 11232010). Authors appreciate many instructive discussions from Prof. 
Yingxin Qi for this study. 

References 
1. Yamawaki H, Takahashi M, Mukohda M, Morita T, Okada M et al. A novel adipocytokine, nesfatin-1 modulates 

peripheral arterial contractility and blood pressure in rats. Biochemical and Biophysical Research 
Communications 2012, 418(4): 676-681. 

2. Grayson TH, Ohms SJ, Brackenbury TD, Meaney KR, Peng K et al. Vascular microarray profiling in two models 
of hypertension identifies caveolin-1, Rgs2 and Rgs5 as antihypertensive targets. BMC Genomics 2007, 8(1): 404. 

3. Juhasz B, Der P, Szodoray P, Gesztelyi R, Lekli I et al. Adrenocorticotrope hormone fragment (4-10) attenuates 
the ischemia/reperfusion-induced cardiac injury in isolated rat hearts. Antioxidants & Redox Signaling 2007, 
9(11): 1851-1862. 

4. Hagi-Pavli E, Farthing PM, Kapas S. Stimulation of adhesion molecule expression in human endothelial cells 
(HUVEC) by adrenomedullin and corticotrophin. American Journal of Physiology-Cell Physiology 2004, 286(2): 
239-246. 

5. Williams B. Mechanical influences on vascular smooth muscle cell function. Journal of Hypertension 1998, 
16(12): 1921-1929. 

6. Qi YX, Yao QP, Huang K, Shi Q, Zhang P et al. Nuclear envelope proteins modulate proliferation of vascular 
smooth muscle cells during cyclic stretch application. Proceedings of the National Academy of Sciences 2016, 
113(19): 5293-5298. 

7. Hofmann K, Montibeller JA, Finn FM. ACTH antagonists. Proceedings of the National Academy of Sciences 
1974, 71(1): 80-83. 



MCB, 2019, vol.16, no.3                                                                                        209 

8. Bicknell AB. The tissue-specific processing of pro-opiomelanocortin. Journal of Neuroendocrinology 2008, 
20(6): 692-699. 

9. Rehfeld JF. Cellular peptide hormone synthesis and secretory pathways. 2010. Berlin: Springer. 
10. Donn R, Berry A, Stevens A, Farrow S, Betts J et al. Use of gene expression profiling to identify a novel 

glucocorticoid sensitivity determining gene, BMPRII. FASEB Journal 2007, 21(2): 402-414. 
11. Catania A. The melanocortin system in leukocyte biology. Journal of Leukocyte Biology 2007, 81(2): 383-392. 
12. Evans JF, Rodriguez S, Ragolia L. ACTH promotes chondrogenic nodule formation and induces transient 

elevations in intracellular calcium in rat bone marrow cell cultures via MC2-R signaling. Cell and Tissue 
Research 2013, 352(2): 413-425. 

13. Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends in Cell Biology 
2011, 21(6): 362-373. 

14. Tang X, Liu YY, Xiao Q, Yao QP, Allen M et al. Pathological cyclic strain promotes proliferation of vascular smooth 
muscle cells via the ACTH/ERK/STAT3 pathway. Journal of Cellular Biochemistry 2018, 119(10): 8260-8270. 

15. Magné S, Caron S, Charon M, Rouyez MC, Dusanter-Fourt I. STAT5 and Oct-1 form a stable complex that 
modulates cyclin D1 expression. Molecular and Cellular Biology 2003, 23(24): 8934-8945. 

16. Kakizawa T, Miyamoto T, Ichikawa K, Takeda T, Suzuki S et al. Silencing mediator for retinoid and thyroid 
hormone receptors interacts with octamer transcription factor-1 and acts as a transcriptional repressor. Journal 
of Biological Chemistry 2001, 276(13): 9720-9725. 

17. Karvande A, Kushwaha P, Ahmad N, Adhikary S, Kothari P et al. Glucose dependent miR-451a expression 
contributes to parathyroid hormone mediated osteoblast differentiation. Bone 2018, 117: 98-115. 

18. Ansari KI, Ogawa D, Rooj AK, Lawler SE, Krichevsky AM et al. Glucose-based regulation of miR-451/AMPK 
signaling depends on the OCT1 transcription factor. Cell Reports 2015, 11(6): 902-909. 

19. Akhmedov A, Camici GG, Reiner MF, Bonetti NR, Costantino S et al. Endothelial LOX-1 activation 
differentially regulates arterial thrombus formation depending on oxLDL levels: role of the Oct-1/SIRT1 and 
ERK1/2 pathways. Cardiovascular Research 2017, 113(5): 498-507. 

20. Sytina EV, Pankratova EV. Transcription factor oct-1: plasticity and multiplicity of functions. Molecular Biology 
2003, 37(5): 637-648. 

21. Tantin D, Schild-Poulter C, Wang V, Haché RJ, Sharp PA. The octamer binding transcription factor Oct-1 is a 
stress sensor. Cancer Research 2005, 65(23): 10750-10758. 

22. Qi YX, Qu MJ, Long DK, Liu B, Yao QP et al. Rho-GDP dissociation inhibitor alpha downregulated by low 
shear stress promotes vascular smooth muscle cell migration and apoptosis: a proteomic analysis. Cardiovascular 
Research 2008, 80(1): 114-122. 

23. Nayebosadri A, Ji JY. Lamin A/C regulates endothelial glucocorticoid receptor nuclear translocation in response 
to cyclic stretch. Molecular and Cellular Biomechanics 2016, 13(1): 69-98. 

24. Bakos J, Zatkova M, Bacova Z, Ostatnikova D. The role of hypothalamic neuropeptides in neurogenesis and 
neuritogenesis. Neural Plasticity 2016. 

25. Van Der Lely AJ, Tschop M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and 
pharmacological aspects of ghrelin. Endocrine Reviews 2004, 25(3): 426-457. 

26. Dores RM. Adrenocorticotropic hormone, melanocyte-stimulating hormone, and the melanocortin receptors: 
revisiting the work of Robert Schwyzer: a thirty-year retrospective. Annals of the New York Academy of Sciences 
2009, 1163(1): 93-100. 

27. Pozzi AO, Bernardo E, Coronado MT, Punchard MA, González P et al. Acute arterial thrombosis in the absence 
of inflammation: the stress-related anti-inflammatory hormone ACTH participates in platelet-mediated 
thrombosis. Atherosclerosis 2009, 204(1): 79-84. 

28. Barbieri A, Palma G, Rosati A, Giudice A, Falco A et al. Role of endothelial nitric oxide synthase (eNOS) in 
chronic stress-promoted tumour growth. Journal of Cellular and Molecular Medicine 2012, 16(4): 920-926. 

29. Zhang P, Qi YX, Yao QP, Chen XH, Wang GL et al. Neuropeptide Y stimulates proliferation and migration of 
vascular smooth muscle cells from pregnancy hypertensive rats via Y1 and Y5 receptors. PloS One 2015, 
10(7): e0131124. 

30. Wang Z, Zhu S, Shen M, Liu J, Wang M et al. STAT3 is involved in esophageal carcinogenesis through regulation 



210                                                                                        MCB, 2019, vol.16, no.3 

of Oct-1. Carcinogenesis 2012, 34(3): 678-688. 
31. Zhou C, Tong Y, Wawrowsky K, Bannykh S, Donangelo I et al. Oct-1 induces pituitary tumor transforming gene 

expression in endocrine tumors. Endocrine-Related Cancer 2008, 15(3): 817-831. 
32. Obinata D, Takayama KI, Urano T, Murata T, Kumagai J et al. Oct1 regulates cell growth of LNCaP cells and is 

a prognostic factor for prostate cancer. International Journal of Cancer 2012, 130(5): 1021-1028. 
33. Ewen ME. Where the cell cycle and histones meet. Genes & Development 2000, 14(18): 2265-2270. 
34. Zeng K, Tian L, Sirek A, Shao W, Liu L et al. Pak1 mediates the stimulatory effect of insulin and curcumin on 

hepatic ChREBP expression. Journal of Molecular Cell Biology 2017, 9(5): 384-394. 
35. Worman HJ, Courvalin JC. Nuclear envelope, nuclear lamina, and inherited disease. International Review of 

Cytology 2005, 246: 231-279. 
36. Tang CW, Maya-Mendoza A, Martin C, Zeng K, Chen S et al. The integrity of a lamin-B1-dependent 

nucleoskeleton is a fundamental determinant of RNA synthesis in human cells. Journal of Cell Science 2008, 
121(7): 1014-1024. 

37. Malhas A, Lee CF, Sanders R, Saunders NJ, Vaux DJ. Defects in lamin B1 expression or processing affect 
interphase chromosome position and gene expression. Journal of Cell Biology 2007, 176(5): 593-603. 

38. Boubriak II, Malhas AN, Drozdz MM, Pytowski L, Vaux DJ. Stress-induced release of Oct-1 from the nuclear 
envelope is mediated by JNK phosphorylation of lamin B1. PloS One 2017, 12(5): e0177990. 

39. Schild-Poulter C, Shih A, Yarymowich NC, Haché RJ. Down-regulation of histone H2B by DNA-dependent 
protein kinase in response to DNA damage through modulation of octamer transcription factor 1. Cancer 
Research 2003, 63(21): 7197-7205. 

40. Wang P, Jin T. Oct-1 functions as a sensor for metabolic and stress signals. Islets 2010, 2(1): 46-48. 


	Oct-1 Mediates ACTH-Induced Proliferation of Vascular Smooth Muscle Cells
	2 Materials and Methods
	3 Results
	3.1 Cyclic Strain Up-Regulates ACTH Secretion in the Medium
	3.2 ACTH Induces Proliferative Effects with Enhanced Oct-1 Expression in VSMCs
	3.3 ACTH Could Induce Oct-1 Shuttling Between Cytosol and Nucleus
	3.4 Oct-1 Mediates the VSMC Proliferation Induced by ACTH
	3.5 Oct-1 Associates with Lamin B1 in VSMCs
	3.6 Correlation of the Downstream Targets of Oct-1 with Cell Proliferation in Cardiovascular Diseases, as Revealed by Ingenuity Pathway Analysis

	4 Discussion
	5 Conclusions
	Acknowledgement: This study was supported by grants from the National Natural Science Foundation of China (Grant Nos. 11372190 and 11232010). Authors appreciate many instructive discussions from Prof. Yingxin Qi for this study.
	References


