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Abstract: Optical-CT dual-modality imaging requires the mapping between 2D 
fluorescence images and 3D body surface light flux. In this paper, we proposed 
an optical-CT dual-modality image mapping algorithm based on the Digitally 
Reconstructed Radiography (DRR) registration. In the process of registration, a 
series of DRR images were computed from CT data using the ray casting 
algorithm. Then, the improved HMNI similarity strategy based on Hausdorff 
distance was used to complete the registration of the white-light optical images 
and DRR virtual images. According to the corresponding relationship obtained 
by the image registration and the Lambert’s cosine law based on the pin-hole 
imaging model, the 3D light intensity distribution on the surface of the object 
could be solved. The feasibility and effectiveness of the mapping algorithm are 
verified by the irregular phantom and mouse experiments. 
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1 Introduction 
Fluorescence Molecular Tomography (FMT) has been used frequently for the noninvasive study of 

cancer biological behavior [1-3]. With specific imaging agents, FMT has powerful capability in detection 
and quantification of important biological processes by reconstructing in vivo distribution of agents [4,5]. 
Combining FMT with computerized tomography (CT), both functional signals and anatomical 
information can be obtained. However, when FMT/CT dual-modality imaging technology is used to 
calculate internal bioluminescent source’s size and location, it is necessary to establish a mapping 
between two-dimensional (2D) optical images and three-dimensional (3D) CT data in order to reconstruct 
3D energy distribution on surface of the imaging object [6,7]. 

The registration of the dual-modality images is the basis of mapping. The registration between the 
optical image and the CT volume data is a registration between the 2D and 3D images. Markers are often 
used as indicators in the registration of different modality images [8]. The registration of 2D and 3D can 
also be transformed into the registration of 3D and 3D through projecting reconstruction techniques. Ning 
[9] reconstructs 3D optical surfaces by acquiring multi-orientation 2D images and then complete the 3D 
registration between optical image and CT image. However, multi-orientation optical image’s acquisition 
is complicated and variations of the fluorescent energy over time will reduce the reconstruction accuracy 
of the internal bioluminescent source. In addition, 3D image can also be projected into 2D image to 
achieve the registration between two modal 2D images. However, this approach is works well for two 
modal images with high similarity, such as X-ray images and CT [10,11]. 

Fluorescent image is used along with CT to map functional information on tissue structures due to its 
high sensitivity. However, 2D fluorescent image acquired from CCD is short of three-dimensional coordinate 
information. In this paper, we propose an optical-CT dual-modality image mapping algorithm based on 
Digitally Reconstructed Radiograph (DRR) registration. The algorithm can directly map the 2D optical image 
onto the surface of the 3D CT data to obtain the 3D light intensity distribution on the tissue surface. 
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2 Theory and Method 
2.1 DRR Virtual Image 

The 3D CT data can be converted to the 2D DRR virtual images through the ray casting algorithm 
[12,13]. As shown in Fig. 1, the virtual point light source simulates a conventional X-ray light source and 
emits a number of virtual rays passing through the CT dataset to project on the DRR imaging plane, and 
the projected points of all rays on the imaging plane constitute a DRR virtual image. For a given CT 
volume data J, the DRR virtual image can be obtained from the following model [14]: 
𝐻𝐻𝑇𝑇(𝑝𝑝) = ∫ 𝐽𝐽(𝑇𝑇−1 ∙ 𝐿𝐿(𝑝𝑝, 𝑟𝑟))𝑑𝑑𝑟𝑟                                                         (1) 
where 𝐻𝐻𝑇𝑇(𝑝𝑝) is the intensity of the DRR virtual image at 𝑝𝑝, 𝑇𝑇 is the 3D geometric transformation of 
the CT volume data, 𝐿𝐿(𝑝𝑝, 𝑟𝑟) is the ray casting model, 𝑟𝑟 is a set of parameter points on the light. 

 
Figure 1: DRR virtual image converted from CT 

2.2 Registration of Optical Images and DRR Virtual Image 
For the fluorescence imaging system (AOIS, Animal Optical Imaging System, Nanjing University of 

Aeronautics and Astronautics, China), the white-light image and the fluorescence image are located in the 
same coordinate system. The white-light image provides the external contour information of the imaging 
object, and the fluorescence image provides light intensity distribution. Therefore, registration of 2D 
fluorescent image and 3D CT image can be achieved by registration of 2D white-light image with 
external contour and 3D CT image. 

 
Figure 2: Flow chart based on DRR registration 
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The white-light image and the DRR virtual image computed from CT are aligned iteratively until an 
optimal matching is achieved by adjusting the optimal transformation parameters and similarity measure. 
The flow chart based on DRR registration of these two modalities images is shown in Fig. 2. 

2.2.1 Similarity Measure Registration Based on Mutual Information 
In medical image registration, normalized mutual information (NMI) is widely used in 

multi-modality image registration because of its high registration accuracy and good robustness. Given 
two images 𝐴𝐴 and 𝐵𝐵, the NMI between them is defined as [15]: 

𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵) = 𝐻𝐻(𝐴𝐴)+𝐻𝐻(𝐵𝐵)
𝐻𝐻(𝐴𝐴,𝐵𝐵)                                                              (2) 

where 𝐻𝐻(𝐴𝐴)  and 𝐻𝐻(𝐵𝐵)  represent the entropies of images 𝐴𝐴  and 𝐵𝐵 , respectively, and 𝐻𝐻(𝐴𝐴,𝐵𝐵) 
represents the joint entropy of images 𝐴𝐴 and  𝐵𝐵, which are defined as follows: 
𝐻𝐻(𝐴𝐴) = ∑ −𝑃𝑃𝐴𝐴(𝑎𝑎)𝑙𝑙𝑙𝑙𝑎𝑎 𝑃𝑃𝐴𝐴(𝑎𝑎)                                                         (3) 
𝐻𝐻(𝐵𝐵) = ∑ −𝑃𝑃𝐵𝐵(𝑏𝑏)𝑙𝑙𝑙𝑙𝑏𝑏 𝑃𝑃𝐵𝐵(𝑏𝑏)                                                         (4) 
𝐻𝐻(𝐴𝐴,𝐵𝐵) = ∑ −𝑃𝑃𝐴𝐴,𝐵𝐵(𝑎𝑎, 𝑏𝑏)𝑙𝑙𝑙𝑙𝑎𝑎,𝑏𝑏 𝑃𝑃𝐴𝐴,𝐵𝐵(𝑎𝑎, 𝑏𝑏)                                                (5) 
where 𝑃𝑃𝐴𝐴(𝑎𝑎)  and 𝑃𝑃𝐵𝐵(𝑏𝑏)  respectively represent the gray-level distribution of images 𝐴𝐴  and B. 
 𝑃𝑃𝐴𝐴,𝐵𝐵(𝑎𝑎, 𝑏𝑏) is the joint probability distribution of gray level. 

2.2.2 Improved Similarity Measure Registration 
The registering accuracy based on the NMI is often suffered from image missing, noise, and 

excessive local extremes. This paper proposes an improved Hausdorff Normalized Mutual Information 
(HNMI) similarity measure for optical image and DRR virtual image registration, which combines 
image’s mutual information and contour features. 

After the average filtering and Maximum Between-Class Variance (OTSU) segmenting, the contour 
feature point sets of images A and B are obtained by sampling the contours according to uniform angle 
from centroid individually. Hausdorff distance between contour feature point sets A  and B  is defined as 
follows [16]: 

𝐻𝐻(𝐴𝐴′,𝐵𝐵′) = 1
ℎ×𝑁𝑁𝐴𝐴

∑ 𝑑𝑑𝐵𝐵(𝑎𝑎)(𝑖𝑖)𝑎𝑎∈𝐴𝐴                                                       (6) 

where 𝑑𝑑𝐵𝐵(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏∈𝐵𝐵

‖𝑥𝑥 − 𝑏𝑏‖, 𝑑𝑑𝐵𝐵(𝑎𝑎)(𝑖𝑖)represents the 𝑚𝑚th distance after sorting, ℎ is in the range from 
0.6 to 0.8, 𝑁𝑁𝐴𝐴 is the number of points in the set 𝐴𝐴′. 

So, for images A and B to be registered, the improved HNMI function is defined as: 
𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵) = 𝑤𝑤1 ×𝐻𝐻(𝐴𝐴′,𝐵𝐵′) + 𝑤𝑤2 × �1 −𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵)�         (7) 
where 𝑤𝑤1 and 𝑤𝑤2 are constants used to balance the contributions of 𝐻𝐻(𝐴𝐴′,𝐵𝐵′) and 𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵). After 
doing a lot of tests, 𝑤𝑤1 is set 0.2 and 𝑤𝑤2 is set 1 in the following phantom and mouse experiments. 
𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵) is the NMI of two images, and 𝐻𝐻(𝐴𝐴′,𝐵𝐵′) is the Hausdorff distance between point sets 𝐴𝐴′ 
and 𝐵𝐵′. 

2.2.3 Multi-Resolution Registration Strategy Based on Gaussian Pyramid 
In order to avoid the side effect of local optimization on HNMI and to improve the registration 

accuracy and operating efficiency, Gaussian Pyramids are introduced for multi-resolution image 
registration [17]: 
𝐺𝐺𝑘𝑘(𝑚𝑚, 𝑗𝑗) = ∑ ∑ 𝑊𝑊(𝑚𝑚,𝑚𝑚)𝐺𝐺𝑘𝑘−1(2𝑚𝑚 + 𝑚𝑚, 2𝑗𝑗 + 𝑚𝑚),   1 ≤ 𝑘𝑘 ≤ 𝑚𝑚𝑛𝑛𝑚𝑚                                  (8) 
where 𝐺𝐺𝑘𝑘(𝑚𝑚, 𝑗𝑗) represents the 𝑘𝑘th layer image, 𝑚𝑚 and  𝑗𝑗 respectively are the row and column of the 
image, 𝑊𝑊(𝑚𝑚,𝑚𝑚) is a window function. 

The process of Gaussian Pyramid for multi-resolution registration is shown in Fig. 3. Optical image and 
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DRR virtual image are respectively resampled to obtain three sets of image sequences with different 
resolutions. The rough registration is obtained from the image with the lowest resolution in the top layer, and 
the transformation parameters are used as the initial parameters of the next layer of image registration.  

 
Figure 3: Multi-resolution registration based on Gaussian pyramid 

With respect to the selection of the optimization algorithm, particle swarm optimization (PSO) has 
low convergence precision but strong global optimization ability, and powell optimization has fast 
convergence rate but is easily dropped in local minimization [18]. The contour spindle axis method is 
usually used for rough registration of different modal images [19]. Therefore, after roughly alignment 
using contour spindle axis method in the top layer, contour similarity distance measure and the PSO 
algorithm are chosed to align two modal images in the second layer. The contour similarity distance 
measure is defined as follows: 
𝐷𝐷 = ∑ ∑ |𝑁𝑁1(𝑚𝑚, 𝑗𝑗)− 𝑁𝑁2(𝑚𝑚, 𝑗𝑗)|𝑚𝑚−1

𝑗𝑗=0
𝑛𝑛−1
𝑖𝑖=0                                                         (9) 

where 𝑚𝑚 × 𝑚𝑚 is the resolution of image, 𝑁𝑁(𝑚𝑚, 𝑗𝑗) is the pixel value of the image. 
In this end, optical and DRR images are precisely registered by combining the improved HNMI 

measure and the Powell algorithm. 

2.3 Registration Evaluation Index 
To evaluate the proposed registration method, some marked points were set on the surface of the 

imaging object. The mean error (ME) and root mean squared error (RMSE) are often used as evaluation 
indexes of the registration. ME and RMSE are defined as follows: 
𝑁𝑁𝑀𝑀 = ∑ �𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐(𝑖𝑖) − 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖)�𝑁𝑁

𝑖𝑖=1 /𝑁𝑁                                                        (10) 

𝑅𝑅𝑁𝑁𝑅𝑅𝑀𝑀 = �∑ ��𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐(𝑖𝑖) − 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖)� − 𝑁𝑁𝑀𝑀�2 (𝑁𝑁 − 1)�𝑁𝑁
𝑖𝑖=1                                       (11) 

At a marked point 𝑚𝑚, 𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐(𝑖𝑖) is the registration coordinate and  𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖) is the real coordinate. 𝑁𝑁 is 
the number of marked points. 

The optimal registration parameters can be obtained after the registration between DRR virtual 
image and the optical image. Then, according to the coordinate correspondence relationship between 
DRR virtual image and 3D CT data, the fluorescence distribution can be reconstructed on the surface of 
CT volume data. 

2.4 Free Space Flux Mapping Model 
The fluorescent photons propagate along a straight line in free space, and the Lambert’s cosine law is 

used to describe the transmission of photons from the surface of the imaging object to the CCD detectors [20]. 



MCB, 2019, vol.16, no.4                                                                      257 

The light flux reconstruction on the surface of the object is to simplify the imaging lens in the optical imaging 
system into the pin-hole imaging model [21]. As shown in Fig. 4, the energy mapping relationship between 
the diffused light on the surface of the imaging object and the CCD detectors is as follows: 

𝑑𝑑𝑃𝑃(𝑟𝑟𝑑𝑑) = 𝑑𝑑𝑃𝑃𝑅𝑅 = 1
𝜋𝜋
𝑑𝑑𝑃𝑃(𝑟𝑟) 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2

|𝑑𝑑𝑑𝑑−𝑟𝑟|2 𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅                                   (12)  

where 𝑑𝑑𝑃𝑃𝑅𝑅 is the light flux density at the pin-hole with a value approximately equal to the light flux 
density 𝑑𝑑𝑃𝑃(𝑟𝑟𝑑𝑑)at the CCD planar; 𝑑𝑑𝑃𝑃(𝑟𝑟) is the light flux density at the bin 𝑟𝑟;  𝑅𝑅𝑟𝑟 and 𝑅𝑅𝑅𝑅 are the area 
of 𝑟𝑟 and 𝑑𝑑𝑅𝑅 respectively. 

 
Figure 4: Light flux reconstruction of 3D surface based on pin-hole imaging model 

ME and correlation factor (CF) are introduced as evaluation indexes for the light flux reconstruction. 
CF is defined as follows: 

𝐶𝐶𝐶𝐶 = ∑ �𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖)−𝑃𝑃�𝑐𝑐𝑐𝑐𝑐𝑐��𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖)−𝑃𝑃�𝑠𝑠𝑠𝑠𝑠𝑠�
(𝑁𝑁−1)𝜎𝜎�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐�𝜎𝜎�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠�

𝑁𝑁
𝑖𝑖=1                                                   (13) 

where 𝑃𝑃𝑐𝑐𝑎𝑎𝑐𝑐 and 𝑃𝑃𝑐𝑐𝑠𝑠𝑑𝑑  represent the light flux value at the sampling point by the mapping algorithm and 
the forward simulation method respectively. 𝑃𝑃� is the mean, and 𝜎𝜎(∙) is the standard deviation of the 
surface light flux. 𝑁𝑁 is the number of sampling points. 

2.5 Optical-CT Dual-Modality Image Mapping 
Optical-CT image registration based on DRR establishes the mapping relationship between the 2D 

optical image and the 3D CT data. So, the light intensity distribution on the surface of CT is completed 
following these steps: 
Step_1   Acquire 2D optical image and 3D CT data; 
Step_2   Set the initial projection angle after the 3D CT data being down-sampled; 
Step_3   Obtain the DRR virtual image under the setting angle from CT, and perform zero-filling to 
make it consistent with the same resolution of the optical image; 
Step_4   Multi-resolution spatial registration is performed on the DRR virtual image and optical image 
to obtain the optimal transform parameter and similarity measure value; 
Step_5   The optical image with external contour and the DRR virtual image are aligned iteratively until the 
termination condition is achieved by adjusting the optimal transformation parameters and similarity measure; 
Step_6   The 3D light intensity distribution on the surface of CT is obtained according to the coordinate 
correspondence obtained by the Eq. (12). 
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3 Experiments and Results 
In order to verify the feasibility and effectiveness of the mapping algorithm proposed in this paper, 

we designed phantom and tumor mouse experiments. The optical images were acquired by the Animal 
Optical Imaging System (AOIS). White-light and fluorescence images in different orientations, -45º, 0º, 
and 45º, can be collected by rotating CCD, as shown in Fig. 5.  

  

Figure 5: Image’s acquisition in different angles  

3.1 Phantom Experiment 
A cloud-shaped homogeneous cylinder (Fig. 6) is used in the phantom experiment. The radius of 

each arcs is 10 mm and the height of the cylinder is 35 mm. The hollow cylinder with a 2.5 mm radius 
and 15 mm height is filled with Indocyanine Green (ICG). The volume data of the phantom with 15 
marked points is 420 × 420 × 254, and each voxel is 0.15 × 0.15 × 0.15 mm. 

 
Figure 6: Phantom experiment. (a) Phantom model; (b) Marked points on phantom surface 

In order to verify the improved HNMI registration method, the registration centers are respectively 
set at -45º, 0º and 45º and the initial deviation angles 𝜃𝜃𝑧𝑧 of the DRR projection is set as -10º ~ 10º with 
step size of 1º. The optimal similarity measure values between the DRR virtual image and the optical 
image in different orientations are calculated, as shown in Fig. 7. Fig. 7(a) shows the variation of HNMI, 
and Fig. 7(b) shows the variation of NMI. Fig. 7 indicates that the HNMI has a good convergence, while 
the NMI exists multiple local extreme values
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Figure 7: Phantom experiment in different orientations with initial deviation angle. (a) Variation of 
HNMI; (b)Variation of NMI 

The 3D coordinates of these marked points on the optical images can be calculated after the registration 
of white-light image and DRR virtual image. The registration error is shown in Tab. 1. The ME is less than 
1.87 mm and RMSE is less than 0.48 mm. The results is satisfied the requirements of experiments. 

Table 1: Registration error (mm) 

Optical image acquisition angle -45º 0º 45º 

ME 
RMSE 

1.65 1.87 0.84 

0.25 0.48 0.40 

To evaluate the performance of the mapping algorithm based on DRR optical-CT registration, the 
reconstruction results are also compared with the forward simulation results of COMSOL, as shown in 
Fig. 8. Fig. 8(a) is the surface light flux distribution of the COMSOL forward simulation, Fig. 8(b) is the 
surface light flux reconstruction based on the proposed mapping algorithm, in which there are 2011 nodes, 
1228 triangular patches and 10331 tetrahedral elements. A total of 1014 surface sampling points are 
selected, the intensity distribution of these nodes is shown in Fig. 8(c). The orange curve is the result of 
the mapping algorithm and the blue curve is the COMSOL forward simulation result. The ME is 3.77% 
and the CF is 0.9854. Both light flux distributions have highly similarity and consistency. 

 
Figure 8: Surface light flux distribution of phantom. (a) Result of COMSOL forward simulation; (b) 
Result of proposed mapping algorithm; (c) Light flux distribution of each point on the surface 
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3.2 Tumor Mouse Experiment 
ICG was injected through the tail vein in the mouse experiment. Abdomen partial CT data of mouse 

was obtained from micro-CT system (Hiscan-2000, Suzhou Hiscan Information Technology Co., Ltd) 
with a scan parameter of 40 kVp, 200 μA. White-light images and fluorescent images were acquired from 
the AOIS system. The experimental scheme is the same with the phantom experiment. 

The optimal similarity measure values between the DRR virtual images and the optical images in 
different orientations (-45º, 0º and 45º) are calculated, as shown in Fig. 9. Fig. 9(a) and Fig. 9(b) indicated 
the variation of HNMI and NMI respectively. The result shows that the HNMI is superior to the NMI in 
terms of convergency.  

 
Figure 9: Mouse experiment in different orientations with initial deviation angle. (a) Variation of HNMI; 
(b) Variation of NMI 

Fig. 10 shows the optical-CT dual-modality image registration results of a mouse. Fig. 10(a) is the 
white-light image, Fig. 10(b) is the fusion image of fluorescence and white-light image, Fig. 10(c) is the 
DRR virtual image computed from CT, and Fig. 10(d) is the registration result.  

 
Figure 10: Optical-CT dual-modality images registration. (a) White-light image; (b) Optical fusion image; 
(c) DRR virtual image; (d) Registration result 

Based on the registration results of the optical-CT dual-modality images, 3D energy distribution of 
the biological surface is reconstructed in Fig. 11. Fig. 11(a) is the reconstruction result of the COMSOL 
forward simulation, and Fig. 11(b) is the reconstruction result based on the proposed algorithm, in which 
there are 2224 nodes, 8753 triangular patches and 10936 tetrahedral elements. A total of 970 sampling 
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points on the surface of the mouse grid were selected. The distribution of the light intensity of these nodes 
is shown in Fig. 11(c). The orange curve is the result of the mapping algorithm and the blue curve is result 
of the COMSOL forward simulation. The ME is 3.14% and the CF is 0.9883.  

 
Figure 11: Surface light flux reconstruction results of the mouse. (a) The result of COMSOL forward 
simulation; (b) The result based on the proposed algorithm; (c) Light flux comparison at points on the 
surface of the mouse 

 

 
Figure 12: The fusion of two modal images. (a) CT images; (b) Fusion images 

To further verify the accuracy of the proposed registration algorithm, 3D bioluminescent source 
inside the mouse was reconstructed based on the surface light flux distribution. The fusion of the internal 
source and CT volume data is shown in Fig. 12.  
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4 Conclusion 
This paper proposes an optical-CT dual-modality image mapping algorithm based on DRR 

registration. In the process of registration, the improved HNMI similarity measure is used to achieve 
spatial registration of optical image and DRR virtual image. The phantom and mouse experiments 
indicated that the proposed algorithm can align the different orientation 2D optical image to the 3D CT 
image and further reconstruct the 3D surface light flux distribution with high precision. This study is the 
basis for positioning and quantifing the 3D bioluminescent source inside the imaging object. 
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