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Abstract: Distant metastasis is a major cause of increased mortality in breast cancer patients, but the mechanisms

underlying breast cancer metastasis remain poorly understood. In this study, we aimed to identify a metastasis-related

gene (MRG) signature for predicting progression in breast cancer. By screening using three regression analysis

methods, a 9-gene signature (NOTCH1, PTP4A3, MMP13, MACC1, EZR, NEDD9, PIK3CA, F2RL1 and CCR7) was

constructed based on an MRG set in the BRCA cohort from TCGA. This signature exhibited strong robustness, and

its generalizability was verified in the Metabric and GEO cohorts. Of the nine MRGs, EZR is an oncogenic gene with

a well-documented role in cell adhesion and cell migration, but it has rarely been investigated in breast cancer. Based

on a search of different databases, EZR was found to be significantly more highly expressed in both breast cancer cells

and breast cancer tissue. EZR knockdown significantly inhibited cell proliferation, invasion, chemoresistance and

EMT in breast cancer. Mechanistically, RhoA activation assays confirmed that EZR knockdown inhibited the activity

of RhoA, Rac1 and Cdc42. In summary, we identified a nine-MRG signature that can be used as an efficient

prognostic indicator for breast cancer patients, and owing to its involvement in regulating breast cancer metastasis,

EZR might serve as a therapeutic target.

Introduction

Breast cancer (BC) is the most frequent malignancy and the
second leading cause of cancer-related mortality in females
worldwide. According to estimates, approximately 2,088,849
new BC cases and 626,679 deaths occurred in 2018
worldwide [1]. Although the incidence rate is higher in
developed countries, overall mortality is greater in
developing countries. BC survival rates range from over 80%
in many developed countries to below 40% in developing
countries [2]. Overall, the mortality rates of BC have
decreased with improvements in therapeutic strategies.
Unfortunately, approximately 15% of patients are initially
diagnosed with incurable disease at an advanced stage, and
nearly 30% of women diagnosed with early-stage BC will
eventually develop metastasis. Indeed, metastatic invasion to
organs such as the bone marrow and lung is the major
cause of death for BC patients. Therefore, advanced BC with
distant metastasis is still a therapeutic challenge, and an

effective prognostic prediction model is urgently needed for
BC patients.

Metastasis is considered a lethal step in the progression of
BC, leading to the breakdown of physiological homeostasis.
Despite the high heterogeneity and epigenetic aberrations
occurring in BC, several biological factors for prognosis
evaluation in metastatic BC have been identified by
multiomics analysis. These include matrix metalloproteinase
2 (MMP2) [3], CD44 [4] and MDM2 [5], and metastasis-
related genes (MRGs) may act as significant prognostic
biomarkers for patients with BC. Furthermore, several gene
signatures have been constructed to guide prognosis
prediction in BC. Compared to individual clinical variables, a
signature with an optimal combination of candidate
biomarkers significantly improves the accuracy and stability
of prediction. However, signatures are largely not used
clinically. Thus, it is meaningful to identify a novel and
robust gene signature with promising clinical utility in BC.

Over the past few years, the emergence of high-
throughput technologies has revolutionized the analysis of
cancer research involving the genome and transcriptome.
Through analysis of high-throughput sequencing data from
public databases, some MRG signatures associated with
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survival prognosis have been identified inmany tumor types, such
as hepatocellular carcinoma [6], osteosarcoma [7], and pancreatic
ductal adenocarcinoma [8]. For example, by integrating data in
multiple public databases, Dou et al. identified a 7-metastasis-
related lncRNA signature through analysis of lncRNA
expression profiling in clear cell renal cell carcinoma patients
[9]. Hu et al. [10] discovered a six-gene set associated with
distant metastasis in gastric cancer patients, and Hu et al.
developed a 4-MRG signature for BC patients through Gene
Expression Omnibus (GEO) database analysis [11]. Conversely,
there are few studies on mRNA combination biomarkers for
BC metastasis using multiplatform data integration.

Motivated by these previous efforts and the need for a
robust MRG signature, we identified 9 MRG markers
through integrative analysis of multiomics data, including
The Cancer Genome Atlas (TCGA) [12], Gene Expression
Omnibus (GEO) [13] and Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) [14].
Moreover, the signature was verified and analyzed by
combining it with clinicopathological features. Of the nine
MRGs, EZR was revealed as a potent cancer-promoting gene
highly expressed in BC tissue samples. The effects of EZR on
BC cell proliferation, migration, and epithelial-mesenchymal
transition (EMT) were evaluated, and its involvement in the
mechanism of BC metastasis deserves further study.

Materials and Methods

Data collection and processing
The transcriptome and clinical data of 1109 BC cases and 133
normal breast cases were extracted from TCGA (https://tcga-
data.nci.nih.gov/tcga/). All primary RNA expression profile
data were first normalized with the transcripts per million
(TPM) method and subjected to log2(TPM+1) transformation.
Gene expression and clinical data in the METABRIC BC
dataset were retrieved via cBioPortal (http://www.cbioportal.org/)
[15,16]. Two GEO datasets (GSE21653 and GSE20685) were
obtained from the GEO website (http://www.ncbi.nlm.nih.gov/
geo/). Clinical information was reviewed, and samples with
incomplete information or survival duration less than 30 days
were removed. A protein expression matrix for EZR was
generated using CPTAC-BRCA data (https://cptac-data-portal.
georgetown.edu/cptac/s/S015) [17]. Immunohistochemistry
(IHC) images of EZR in normal and BC tissues were obtained
from the online Human Protein Atlas database (HPAD)
(https://www.proteinatlas.org/) [18]. EZR expression in 63 BC
cells and 5 normal breast cells was downloaded from the
Cancer Cell Line Encyclopedia (CCLE) website (http://www.
broadinstitute.org/ccle/home) [19].

Construction and validation of a prognostic MRG signature
AnMRG list containing 166 genes was obtained from CancerSEA
(http://biocc.hrbmu.edu.cn/CancerSEA/goDownload) [20]. A
total of 164 genes were ultimately identified by intersecting
TCGA and the MRG list to further construct the prognostic
model. Then, univariate Cox regression was performed to screen
out MRGs associated with prognosis, followed by confirming
the final prognostic signature using least absolute shrinkage and
selection operator (LASSO) regression and multivariate Cox
regression analyses. LASSO-Cox regression was performed with

the R package “glmnet”. Genes with P values less than 0.05 in
multivariate Cox regression analysis were identified as candidate
genes for prognosis. Next, the risk score for each patient was
calculated according to the following formula:

Riskscoreð Þ ¼
XN

i¼1
Expi � Coefð Þ

where N, Expi and Coef represent the gene number, gene
expression level and coefficient value, respectively. Based on
the cutoff point (median risk score), patients were stratified
into a low-risk group or a high-risk group. To validate the
specificity and sensitivity of the prognostic model, the log-
rank test was performed to compare differences in overall
survival (OS) between the high- and low-risk groups in
multiple datasets. Kaplan‒Meier curves were drawn by using
R packages (“survival” and “survminer”). The R package
“pROC” was used to generate receiver operating characteristic
(ROC) curves and obtain area under the curve (AUC) values.
The risk curves and scatter diagrams drawn by R software
(“ggplot2”) were utilized to show the risk score and the
survival outcome of each BC patient in TCGA datasets.

Correlation of clinical features and risk scores
To better understand the effect of the MRG signature on
tumorigenesis and development, subgroup analysis was used
to investigate the relationship between the risk score and
clinical features. First, differences in the distribution of the
risk scores were compared under different clinical
stratifications; the results were analyzed using the Wilcoxon
rank test and visualized as boxplots and heatmaps in R
(“ggplot2” and “pheatmap”). Then, Kaplan‒Meier analysis
was performed using the “survival” package to analyze OS
differences in various clinical subgroups between the high-
risk and low-risk groups. Finally, univariate and multivariate
Cox regression analyses were performed to identify whether
the risk score have prognostic value independent of other
clinical features. The above results are displayed as a forest
map. Based on the results from multivariate analyses, a
nomogram for OS prediction was established by using the
“rms” R package, and a calibration curve was used to
estimate the prediction accuracy of the model.

Functional analysis and protein-protein interaction (PPI)
network construction
To investigate potential molecular mechanisms involved in the
risk model, gene set enrichment analysis (GSEA) was
performed via downloaded GSEA software (www.broadinstitute.
org/gsea) [21]. GESA was implemented in the Java program
language to predict biological functions associated with the risk
model. The significance threshold was set at FDR < 0.25, NOM
p value < 0.05, and |NES| > 1 after performing 1000
permutations. To explore key proteins directly related to EZR
expression, a protein‒protein interaction (PPI) network was
constructed by using Search Tool for the Retrieval of Interacting
Genes (STRING) (https://cn.string-db.org/).

Exploration of tumor-infiltrating immune cells (TIICs) and
immune checkpoint inhibitors (ICIs) in the risk model
The CIBERSORT algorithm was utilized to calculate the
estimated abundance of 22 TIICs in TCGA-BRCA datasets.
The Wilcoxon nonparametric test was applied to screen for
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TIICs with significant differences between the high- and low-
risk groups. The violin plot drawn by the R package “ggplot2”
was utilized to demonstrate the above significant differences.
The correlation between TIICs and the risk score was
evaluated by Spearman’s correlation test (p < 0.05) and
displayed with radar plots using the R package “fmsb”.
Spearman’s rank correlation coefficient was calculated to
evaluate linear correlation between the risk score and
immune checkpoint-related genes. Correlation heatmaps
were generated with the R package “pheatmap”.

Assessment of the tumor microenvironment (TME) and
stemness indexes of the risk score
The ESTIMATE algorithm was applied to quantify three TME
scores (stromal scores, immune scores and estimate scores)
using the “estimate” package in R. Two stemness indexes,
the gene expression-based stemness index (mRNAsi) and
DNA methylation-based stemness index (mDNAsi), were
computed using a one-class logistic regression machine
learning (OCLR) algorithm [22]. Relationships between the
three TME scores, two stemness indexes and risk score are
illustrated using boxplots and heatmaps.

Cell culture and transfection
BC cell lines (MCF-7, MCF-7/ADR, BT-549, BT-549/ADR,
MDA-MB-468 and SKBR-3) were purchased from Procell
Company (Wuhan, China). MCF-7 cells were cultured in
DMEM (Gibco, USA) and BT-549 cells were RPMI 1640
(HyClone, USA). MCF-7/ADR cells were grown in DMEM
containing 10% FBS and1 µg/mL ADR. BT-549/ADR cells
were grown in RPMI 1640 containing 10% FBS and1 µg/mL
ADR. MDA-MB-468 cells were cultured in DMEM/F12
medium with 10% FBS. SKBR-3cells were plated in DMEM
supplemented with 10% FBS. All media were supplemented
with 10% fetal bovine serum (BI, Israel) and 1% penicillin/
streptomycin (HyClone, USA). The cells were grown in a
37°C humidified incubator with 5% CO2. EZR siRNAs (si-
EZR), scrambled negative control (NC) siRNAs (si-NC),
empty pcDNA3.0 vector and EZR-pcDNA3.0 vector were
synthesized by Gene Pharma (Shanghai, China), as follows:
EZR 5′-UUCUCAUAAAUAUUCAGUCCAAGGG-3′, 5′-
UUCUGCGTACCUAUCACGUTT-5′. Briefly, cells were
plated in six-well plates at a density of 5 × 105 cells/well
overnight and then transfected with 50 nm si-EZR or si-NC
by using Lipofectamine 3000 reagent (Invitrogen, USA).

Quantitative real-time PCR (qRT‒PCR) analysis
Total RNA was extracted from cells by using a TRIzol RNA
extraction kit (Invitrogen, USA). Total RNA was reverse
transcribed into cDNA with reverse transcriptase (AMV-XL
reverse transcriptase, Takara). Quantitative PCR was performed
using SYBR Premix Ex Taq ii (Takara #RR820A, Japan) and a
CFX Connect Real-Time System (Bio-Rad, USA). GAPDH was
used as the reference gene for qPCR. The qPCR primer
sequences were as follows: forward 5’-CACGCTTGTGTCTTTA-
GTGCTCC-3′ and reverse 5′-ACTCAGACTTTACAGGCATTT-
TCC-3′; GAPDH forward 5′-TGAAGGTCGGAGTCAACGGA-
TTTGG-3′ and reverse 5′-GGAGGCCATGTGGGC-CATGAG-3′.
The relative expression of EZR mRNA was determined by
the comparative threshold cycle (2−ΔΔCt) method.

Colony formation assay
Cell proliferation ability was assessed by using the colony
formation assay. In brief, cells at a density of 500 cells/well
were seeded in 6-well plates after transfection and cultured in
DMEM or RPMI 1640 (10% FBS) for 2 weeks. Subsequently,
all colonies were fixed in 4% paraformaldehyde (Beyotime,
Shanghai, China) for 10 min and stained with 0.1% crystal
violet for 5 min. Colonies greater than 100 μm in diameter
were scored as positive using an inverted microscope. Each
sample was assessed in triplicate.

Western blot analysis
Western blot analysis was performed as previously described.
The primary antibodies and dilutions used were as follows:
anti-EZR (Cat #: 3145, 1:1000, Cell Signaling) and anti-β-
actin (Cat #: sc-47778, 1:1000, Santa Cruz Biotechnology). An
EMT antibody sampler kit was purchased from Cell Signaling
Technology (Danvers, MA, USA). HRP-conjugated secondary
antibodies (anti-mouse and goat anti-rabbit) were obtained
from Beyotime Biotechnology (Shanghai, China). Protein
blots were visualized using enhanced chemiluminescence
(ECL) reagent and analyzed with ImageJ software.

Transwell assay
First, cells were grown to 80–90% confluence after overnight
starvation and then resuspended to a density of 5 × 104 cells/ml
in serum-free medium. Afterward, the diluted cells were seeded
into the upper chamber of a Transwell device, and 700 µl of
complete medium containing 10% FBS was added to the lower
chamber. After 24 h of incubation at 37°C, the bottom
membrane of the chamber was washed three times in 1 × PBS
buffer, and the cells were stained with 0.1% crystal violet solution.
Images of invaded cells were captured with a microscope at 400×
and photographed, counted and statistically analyzed.

Rho GTPase activation assays
Activation of small GTPases, including RhoA, Cdc42, and
Rac1, was assessed using an EZ-Detect Rho GTPase assay Kit
(Pierce, Rockford, IL) according to the supplier’s protocols
[23]. Briefly, primary MCF-7 and BT-549 cells were serum-
starved overnight to reach 70–80% confluence and treated
with FBS or EGF (50 ng/ml) for 5 min. GTPase activation
was assessed according to the manufacturer’s instructions.

Pull-down assays
RhoA-GTP and Rac1-GTP activities were assessed in GST-
RBD and GST-PBD pull-down assays, respectively. The
detailed experimental protocol was described in a previous
study [24]. Briefly, cells were grown in regular media to
attain 70% confluency and stimulated with EGF (50 ng/ml)
for 5 min. For si-NC or si-EZR treatment, cells were
preincubated overnight. Anti-RhoA (Cat: #2117, 1:200) was
obtained from Cell Signaling Technology, anti-Rac1 (Cat:
05-389, 1:100) was purchased from Millipore, and the anti-
GST antibody (Cat: sc-53909, 1:1000) was obtained from
Santa Cruz Biotechnology, Inc. (Dallas, TX, USA).

Statistical analysis
All statistical analyses were performed using R 4.0.3 software,
and GraphPad prism5.0 software was utilized to display the
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data. For all processes, p < 0.05 was recognized as statistically
significant. Comparisons were performed using the
Wilcoxon-Mann-Whitney test (for two groups), the Limma
test, and the Student t-test for paired samples showing
normal distribution. For multiple groups, the Kruskal-Wallis
test followed by Dunn’s multiple comparison test was used.
In the figures, p values are provided as follows: *p < 0.05;
**p < 0.01; ***p < 0.005; ****p < 0.0001.

Results

Construction and identification of the 9 metastasis-related gene
signature
The flowchart of the study is presented in Fig. 1. To build aMRG
signature for predicting the prognosis of BC patients, 164
mRNAs were obtained after screening overlapping MRGs and
mRNAs the BRCA dataset from TCGA. Thereafter, we
included the 164 MRGs in univariate Cox regression analysis
and identified 15 genes significantly associated with OS
(Fig. 2A). Univariate Cox analysis of genes with p values <
0.05 was performed by LASSO-Cox regression analysis to
select hub genes, and 12 genes were selected for further
multivariate Cox regression analysis (Figs. 2B and 2C).
Ultimately, multivariate Cox regression analysis was employed
to reduce the number of genes from 12 to 9, as follows:

FIGURE 1. Study flow chart for the identification of a 9 MRG
signature in BC.

FIGURE 2. Identification of a 9MRG signature in TCGA-BRCA cohort. (A) Forest plot showing the 12 MRGs screened by univariate
regression analysis. (B–C) LASSO algorithms were further performed to screen for MRGs associated with breast cancer prognosis.
(D) Multivariate Cox regression analysis was performed to obtain optimal MRGs affecting prognosis.
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neurogenic locus notch homolog protein 1 (NOTCH1), protein
tyrosine phosphatase 4A3 (PTP4A3), matrix metallopeptidase
13 (MMP13), F2R-like trypsin receptor 1 (F2RL1), metastasis-
associated in colon cancer 1 (MACC1), EZR, neural precursor
cell expressed, developmentally downregulated 9 (NEDD9),
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic
Subunit Alpha (PIK3CA), and C-C motif chemokine receptor
7 (CCR7) (Fig. 2D). As expected, a meaningful correlation
between these nine MRGs and distant metastasis-free survival
(DMFS) was validated using the KM plotter online database
(Suppl. Fig. 1).

Next, the final nine-gene signature formula was
calculated for each patient in TCGA datasets, as follows: risk
score = (NOTCH1 × 0.025856067 + PTP4A3 × 0.016839163
+ MMP13 × 0.011252209 + F2RL1 × 0.061627176 +
MACC1 × 0.054689802 + EZR × 0.003327923 + NEDD9 ×
−0.070163692 + PIK3CA × 0.019899521 + CCR7 ×
0.014898432). Based on the median value of the risk score,
patients in the cohort from TCGA were stratified into low-
and high-risk groups, and allocations of the risk score and
dot plot of survival status indicated poorer prognosis for BC
patients with high risk (Figs. 3I and 3J). The Kaplan‒Meier
survival curves revealed that TCGA dataset patients with
high risk scores had high mortality and short survival rates

(Fig. 3A). Similar trends were observed for OS in
METABRIC (Fig. 3B) and two GEO (Figs. 3C and 3D)
datasets. Then, we used a time-dependent ROC curve to
evaluate the sensitivity and specificity of the risk scoring
model for 5-year survival.

The AUC was 0.693 in TCGA (Fig. 3E), 0.631 in
METABRIC (Fig. 3F), 0.742 in GSE21653 (Fig. 3G), and
0.743 in GSE20685 (Fig. 3H). These results suggest that the
nine-MRG signature can effectively determine the prognosis
of BC patients.

Assessment of the correlation between the risk model and
clinicopathological characteristics
To evaluate the association between the BC patient risk score
and clinical characteristics, an overview strip chart of
differences in clinicopathological characteristics between the
low- and high-risk groups of all samples is shown in
Fig. 4A. The results revealed significant differences in M
stage (Fig. 4B), ER status (Fig. 4C), PR status (Fig. 4D), P53
status (Fig. 4E), and TNBC status (Fig. 4F). As shown in the
box plot, the PAM50 tumor subtype (Fig. 4G), TMB
(Fig. 4H), BRCA histology (Fig. 4I), metastatic events
(Fig. 4J) and regional relapse (N stage) (Fig. 4K) also
correlated significantly with the risk score.

FIGURE 3. Evaluation of the performance of the 9 MRG signature in TCGA-BRCA cohort, METABRIC and two GEO datasets.
(A–D) Kaplan–Meier survival curve analysis described the significant survival difference between the high-risk group and the low-risk
group in TCGA, Metabric and two GEO datasets, respectively. (E–H) Time-dependent ROC curves of the 9 MRG signature for predicting
the 5-year OS in the TCGA, METABRIC and two GEO datasets. (I) Distribution of risk scores in high-and low-risk groups of BC patients
in TCGA dataset. (J) Distribution of survival status in BC patients with different risk scores, red dots mean people who were already dead,
green dots mean people who were still alive.
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Stratification analyses
Furthermore, stratified analysis of clinicopathologic features
revealed that BC patients in the high-risk group had a
significantly shorter OS period in several strata, such as ER
status (ER- or ER+) (Figs. 5A and 5B), PR status (PR− or
PR+) (Figs. 5C and 5D), HER2 status (HER2− or HER2+)
(Figs. 5E and 5F), TNBC (non-TNBC or TNBC) (Figs. 5G
and 5H), and P53 status (P53 mutated type or P53 wild-
type) (Fig. 5I and 5J). These results suggest that our 9 MRG
signature is powerful for predicting the survival period of
BC patients with different hormone receptor statuses, P53
statuses and TNBC grades.

The metastasis-related gene signature is an independent factor
To verify whether the risk score acts as a prognostic index
irrespective of other clinical features, we performed
univariate and multivariate Cox regression analyses using
multiple datasets. The results showed that the risk score
alone was able to evaluate prognosis in univariate Cox
regression analysis in the three datasets (Figs. 6A–6C). It
was also an obvious predictive factor for prognosis after

eliminating the influence of other characteristics in the
datasets from TCGA (Fig. 6D) and GSE21653 (Fig. 6F) but
not that from METABRIC (Fig. 6E).

Construction and validation of a nomogram
To determine the predictive efficacy of the MRG signature, we
constructed an OS nomogram at 1-, 2- and 3-year by
integrating the risk score with age in TCGA datasets. Results
showed that shorter OS happened in older age and higher
riskscores (Fig. 7A). Furthermore, the calibration curve for the
predicted 3-year survival probability revealed that the predicted
curve was very close to the ideal curve (Figs. 7B and 7C). This
result suggests good predictive efficiency of the model.

Functional analysis of the prognostic model
To further identify biological processes and Kyoto
Encyclopedia of Genes and Genomes KEGG pathways
associated with the risk signature, we performed GSEA for
high- and low-risk patients classified by the risk score.

As expected, the high-risk score group showed obvious
enrichment in EMT-related gene sets (Fig. 8A), invasion-related

FIGURE 4. Relationship between the clinical features and MRG signature. (A) The strip chart shows the distributional differences of clinical
features between high- and low-risk groups. (B) The riskscores were different based on different differences in the (B) M stage, (C) ER status,
(D) PR status, (E) P53 status, (F) TNBC grade, (G) PAM50, (H)TMB, (I) BRCA pathology, (J) metastatic events, (K) regional relapse for BC
patients.
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FIGURE 5. Stratified analysis of the prognostic significance of risk models in different clinical subgroups. Based on the risk score model,
stratified survival analysis showed the OS rates in patients with different ER status group (A and B), PR statuses (C and D), and HER2
statuses (E and F), and molecular subtypes (G and H), and P53 statuses (I and J).

FIGURE 6. The MRG signature was able to serve as an independent prognostic factor in BC patients. (A and D) Univariate and multivariate
Cox-regression analyses of the correlation between risk score, age, stage, T stage, N stage, M stage, ER status, PR status, HER2 status and OS in
TCGA-BRCA cohort. (B and E) Univariate and multivariate Cox-regression analyses of the correlation between the risk score, age, grade,
chemotherapy, hormotherapy, ER status, PR status, HER2 status and OS in METABRIC cohort. (C and F) Univariate and multivariate
Cox-regression analyses of the correlation between the risk score, age, grade, ER status, PR status, HER2 status and OS in the GSE21653 cohort.
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gene sets (Fig. 8B) and MRG sets (Fig. 8C). Interestingly, the
high-risk score group also comprised significant enrichment
of unfavorable cancer-related hallmark gene sets
(Fig. 8D), such as “ANGIOGENESIS”, “E2F_Target”,
“IL2_STAT5 signaling”, “IL6_JAK_STAT3 signaling”, “MTORC1
signaling”, “MYC_TARGETS_V1” and “PI3K_AKT_MTOR
signaling”.

Relationship between immune features, the stemness index and
risk signature
The immune system has been shown to play key roles in the
occurrence and development of tumors. We first performed
GSEA to evaluate the relationship between the risk score and
immune features. As depicted in Fig. 9A, some pivotal
immune-related gene sets were enriched in the high-risk
group, including “activation of innate immune response”,
“positive regulation of humoral immune response”, “immune
response”, “immune system process”, “antigen processing cross

presentation”, and “PD-1 signaling”. Subsequently, we used
CIBERSORT to further support the correlation between 22
immune cell types and the risk signature, with a remarkable
correlation with the risk score for 14 immune cell types.
Among them, neutrophils, activated dendritic cells, M0
macrophages, gamma delta NK cells, and regulatory T cells
were correlated positively with the risk score. In contrast, naive
B cells, resting mast cells, resting dendritic cells, M1
macrophages, monocytes, and activated NK cells were
negatively correlated with the risk score (Fig. 9B). The
Wilcoxon-rank sum test was then performed to explore the
significant differential distribution of 22 immune cell types in
the low-risk group and high-risk group, and the results are
presented as a violin plot in Fig. 9D. Although the 12 immune
cell types were significantly different between the two groups,
the risk signature showed no significant correlation with the
eight immune checkpoint molecules (Fig. 9C). As previous
studies have confirmed that cell stemness is a prerequisite for

FIGURE 7. Establishment and evaluation of the nomogrammodel. (A) Prognostic nomogram incorporating the MRG signature predicting the
1-, 2- and 3-year overall survival of BRCA cohort. (B) Calibration plot of the nomogram for predicting the probability of OS at 1, 2, and 3 years
in the TCGA-BRCA cohort. (C) The calibration plot of the nomogram for predicting the probability of OS at 1, 2, and 3 years in the Metabric
cohort.
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cancer invasion and metastasis, we further examined the
correlation between the stemness index and the risk signature.
As expected, both mDNAsi and mRNAsi were observed to be
significantly higher in the high-risk group than in the low-risk
group. Based on the ESTIMATE algorithm, the high-risk
group had significantly higher ESTIMATE scores, immune
scores and stromal scores than the low-risk group. A
correlation heatmap analysis showed that the risk score
correlated significantly positively with the mDNAsi,
Immunescore and ESTIMATE scores (Fig. 9E).

Rac1 and RhoA signaling mediates EZR-induced cell migration
Among the nine MRGs, we selected EZR for further analysis
of biological function and regulatory mechanisms. In
TCGA, the expression of EZR was significantly upregulated
in malignant tissues compared with adjacent normal tissues
(Fig. 10A). Consistent with this finding, upregulated EZR
was found in CPTAC datasets (Fig. 10B) and at the cellular
level in CCLE datasets (Fig. 10C). We also examined the
prognostic significance of EZR in BC patients through the
Kaplan‒Meier plotter online database. Kaplan‒Meier
survival curve analysis showed that high EZR expression at
both RNA (Fig. 10D) and protein (Fig. 10E) levels predicted
shorter OS, and the HPAD IHC data confirmed higher

expression of EZR at the protein level in BC (Fig. 10F). To
further analyze the biological functions of EZR in BC cells,
we first knocked down EZR expression in two BC cell lines
(Figs. 10I and 10J). In subsequent cell function experiments,
we found that EZR knockdown significantly inhibited
clonogenic ability (Fig. 10G), cell migration (Fig. 10H) and
EMT (Fig. 10K). The enforced expression of EZR generated
the opposite results in the EMT assay (Suppl. Fig. 2).
Quantitative data of colony assay and transwell assays were
shown in Suppl. Fig. 3.

In addition, we used CellMiner, a web-based suite of
bioinformatics tools designed to explore the drug sensitivity in
the NCI-60 cell lines to mine the significantly associated drugs
related to the transcription level of EZR [25]. Interestingly, the
expression level of EZR was significantly negatively correlated
with the drug activity of Doxorubicin (Fig. 11A) and Paclitaxel
(Fig. 11B) but not Fluorouracil (Fig. 11C). To further investigate
the effect of EZR on the cytotoxicity of doxorubicin in breast
cancer cell lines. The expression level of EZR mRNA and protein
were measured by using Western blotting and q-PCR.
MCF-7/ADR cells and BT-549/ADR cells expressed higher level
of EZR than wild-type two BCcells (Figs. 11D and 11E). Based
on the above data, we speculated that inhibition of EZR
expression may increase the sensitivity of BC cells to doxorubicin.

FIGURE 8. GSEA. (A) EMT-related gene sets were significantly enriched in the high-risk group. (B) Invasion-related gene sets were
significantly enriched in the high-risk group. (C) Metastasis-related gene sets were significantly enriched in the high-risk group.
(D) Cancer-related signaling pathways were significantly enriched in the high-risk group.
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Finally, we used STRING (http://string-db.org/cgi/input.pl)
to construct a PPI network for EZR. A total of 10 proteins were
predicted to directly interact with EZR (Fig. 12A), and RhoA was
found to correlate positively with EZR in the BRCA dataset from
TCGA. In addition, the other two most studied members of the
RhoGTPase family, namely, Rac1 and CDC42, were significantly
positively associated with EZR in BC (Fig. 12B). Taking previous
studies into consideration, the Rho family of GTPases plays an
important role in the regulation of F-actin assembly and cell
migration. To verify whether the biological function of EZR is
exerted through the Rac1/RhoA/cdc42 pathway, the effect of
EZR expression on this activity was assessed in EZR-
knockdown BT-549 and MCF-7-cell lines using GTPase
activity assays (Fig. 12C). A similar effect was illustrated in
GST-TRBD and GST-PBD pull-down assays, in which RhoA
and Rac1 activities were decreased basally following si-EZR
treatment in two BC cell lines. EGF stimulation partially
reversed the inhibitory effect of EZR knockdown on the
activities of RhoA and Rac1 (Fig. 12D). These results show
that si-EZR inhibited the activities of RhoA, Rac1 and Cdc42.
Finally, to implicate these downstream pathways in the
regulation of the migration of BC cells, we treated two BC cell
lines with si-EZR and EGF and assessed effects on migration
using a Transwell migration assay. We found that reducing

EZR expression significantly inhibited cell migration and that
EGF treatment partially reversed this inhibition (Figs. 12E and
12F). Taken together, these findings show that EZR may play a
oncogenic role in BC through the Rac1/RhoA/cdc42 pathway.

Discussion

Metastasis is responsible for 90% of cancer-associated
mortalities in BC and thus has become the most lethal
behavior of BC. In general, patients with localized BC may
experience 5-year survival as high as 90%, whereas the same
rate for metastatic BC may be as low as 25%. In addition,
metastasis is arguably the most robust cause of treatment
failure in BC. At the cytomolecular level, metastatic BC
differs significantly from its in situ origin. Therefore,
exploring the molecular mechanisms underlying BC
metastasis is beneficial for identifying candidate diagnostic
and therapeutic targets for metastasis.

With the development of high-throughput technologies,
some candidate targets have been identified and indirectly or
directly linked to metastasis in BC. Some MRG signatures
have also been reported. For instance, Xie et al. identified a
four-mRNA metastasis-related prognostic signature using four
GEO datasets that was useful for predicting the disease-free

FIGURE 9. Tumor immunity and cancer stemness analysis of the 9 metastasis-related genes signature in TCGA-BRCA cohort. (A) Immune-
related gene sets significantly enriched in the high-risk group identified by GSEA. (B) Radar chart showing the correlation between the risk
score and 22 immune cell types. (C) A heatmap showing the relationship between the risk score and the expression of immune checkpoint
genes. (D) Violin plot of differences in various immune cell abundances between the high-and low-risk groups. (E) Heatmap and box plot
showing the correlation between the risk score, TME and stemness index. �p < 0.05, ��p < 0.01, �*��p < 0.005.
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survival DFS of BC patients [11]. Sui et al. reported a
multidimensional prognostic signature including four genes
and one lncRNA that was able to accurately subdivide lymph
node metastasis status in BC [26]. Similar results have also
been observed in other cancers, such as gastric cancer,
hepatocellular carcinomas, and colorectal cancer.

In this study, we identified a 9-MRG signature. Among
these genes, PTP4A3, MMP13, F2RL1, MACC1, EZR and
CCR7 were increased in BC tissues compared with normal
breast tissues, whereas NEDD9, NOTCH1 and PIK3CA
were decreased, suggesting differential roles of the 9 MRGs
in the metastatic process. Survival analysis showed that high
NEDD9 expression was associated with longer DMFS in
patients with BC. In contrast, high expression of the other 8
MRGs predicted shorter DMFS. Compared to the other
seven genes, MMP13 and NOTCH1 have been the most
studied in BC, especially regarding invasion and metastasis.
Notch1 is a well-known oncogene driver of metastasis in a

variety of tumors. Many early studies found that NOCTH1
enhances the metastatic ability of BC cells and is positively
associated with axillary lymph node metastasis in BC
patients [27]. MMP13 plays a critical role in the metastasis
of tumor cells through the degradation of extracellular
matrix proteins. Additionally, MMP13 is significantly
upregulated in metastatic and recurrent BC tissues and
promotes lung metastasis in BC [28]. The protein encoded
by the PTP4A3 gene belongs to the protein-tyrosine
phosphatase family, which mainly stimulates the
transformation of cells from G1 to S phase during mitosis.
The role of PTP4A3 associated with cell invasion and cancer
metastasis has been extensively studied in other cancers but
has seldom been reported in BC [29]. Only one study
showed that phosphatase PTP4A3 promotes cell growth and
G1-S cell cycle progression in TNBC cells [30]. F2RL1 (also
named PAR2) is a member of the unique G-protein-coupled
receptor subfamily and is expressed abundantly in various

FIGURE 10. The effect of EZR on cell proliferation, cell migration and EMT. (A) The RNA expression of EZR in BC tissues (N = 1102) and
normal tissues (N = 113) based on TCGA-BRCA dataset, p < 0.0001. (B) EZR protein expression in BC tissues (N = 133) and normal tissues (n =
18) in the CPTAC data, p < 0.0001. (C) The expression of EZR in five normal breast cell line and 63 BC cell lines was assessed by CCLE-dataset,
p = 0.0439. (D) Kaplan-Meier survival curve for the OS of patients in high EZR expression group and low EZR expression group according to the
Kaplan–Meier plotter database (https://kmplot.com/analysis/); p = 0.0369. (E) Kaplan-Meier survival curve for the OS of patients in high EZR
expression group and low EZR expression group according to a proteomic data, p = 0.0266. (F) Immunohistochemistry of the EZR in BC tissues
and normal tissues based on the HPAD. (G) Representative images of the colony formation assay were shown in BT-549 and MCF-7 cells after
transfection with si-NC or si-EZR. (H) Cell migration was assessed with a Transwell assay after the knockdown of EZR in two BC cell lines. (I and
J) The suppressive efficacy of si-EZR was confirmed by using qRT-PCR and western blotting assays. (K) Assessment of the effect of EZR on EMT
in two BC cell lines by using western blotting assays. ��p < 0.01.
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malignancies. Some previous studies have confirmed the
robust association of PAR2 with metastasis in BC [31].
MACC1 is a key regulator of the hepatocyte growth factor
(HGF) receptor and has mainly been identified as an
independent prognostic factor for metastasis formation and
metastasis-free survival in colon cancer. To date, studies on
MACC1 in BC have mainly focused on analyzing its
relationship with the clinicopathology and prognosis of
patients, but there are few studies on its molecular
mechanism in BC metastasis [32]. CCR7 is a G-coupled
cheekiness receptor that was identified as a mediator of EBV
effects on B lymphocytes. Thus, CCR7 is mainly involved in
the migration/trafficking of immune cells. In our study, we
also found that CCR7 correlated positively with multiple
inhibitory immune checkpoint molecules. Regarding
metastasis, recent studies have found that high expression of
CCR7 correlates with lymph node metastasis and promotes
cell invasion and migration processes through the AKT
signaling pathway in BC [33]. The protein encoded by
NEDD9 belongs to the CRK-associated substrate family and
is a focal adhesion protein that is mainly involved in
regulating cell attachment, migration and invasion. A recent
study showed that NEDD9 exhibits prometastatic behavior
in several solid tumors, including BC [34]. However,
NEDD9 was found to be more highly expressed in normal
breast tissues, and its high expression was associated with
better DMFS, which contradicts its prometastatic behavior.

PIK3CA is the most frequently mutated oncogene in BC,
and mutations in this gene are known to activate the PI3K
pathway [35]. Ezrin (encoded by EZR) is a cytoplasmic
peripheral membrane protein that acts as a substrate of
protein-tyrosine kinases. It also plays a role in cell adhesion,
cell migration and organization and has been implicated in
various human cancers [36,37]. One study showed that EZR
expression was significantly upregulated in BC tissues and
that its high expression predicts poorer prognosis [38].
Nevertheless, few studies have been conducted to investigate
the molecular mechanism of EZR in BC metastasis. Here,
we first analyzed differences in EZR expression in cancerous
and normal breast tissues and the relationship between EZR
and BC patient prognosis. The results are consistent with
previous studies. Next, we explored the effect of EZR on cell
function. Cell proliferation, migration and EMT assays
confirmed that EZR plays an oncogenic role in BC cell lines.
Our examination of molecular mechanisms revealed that
EZR may be involved in BC cell proliferation and cell
motility through the RhoA/RAC1 signaling pathway.
Overall, current knowledge suggests that the roles of these
nine prognostic MRGs in BC are worthy of further
investigation.

Compared with early studies that established risk models
to predict BC prognosis, we constructed a 9-MRG prognostic
signature through a metastasis-associated gene set, which
enabled us to gain more insight into the role of MRGs in

FIGURE 11. Effect of EZR on Doxorubicin chemoresistance in BC cells. (A) correlation between tumor cell line sensitivity to Doxorubicin and
mRNA expression levels of EZR. R = −0.3542, p = 0.0059. (B) Correlation between tumor cell line sensitivity to Paclitaxel and mRNA
expression levels of EZR. R = −0.2839, p = 0.0293. (C) Correlation between tumor cell line sensitivity to Fluorouracil and mRNA
expression levels of EZR. R = −0.0786, p = 0.5506. (D) Q-PCR showing different levels of EZR mRNA expression in MCF-7 or BT-549
and MCF-7/ADR cells or BT-549/ADR cells. (E) Western blotting showing that different levels of EZR protein expression in MCF-7 or
BT-549 and MCF-7/ADR cells or BT-549/ADR cells.
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BC tumorigenesis. Moreover, integrated analysis of the MRGs
helped to dissect the molecular mechanisms involved in BC
metastasis. Kaplan–Meier survival analysis showed
significant prognostic differences between the high- and
low-risk groups, and the survival nomogram confirmed the
accuracy and sensitivity of the risk model in predicting the
prognosis of BC patients. In addition, when combined with
the commonly used TNM staging system, the MRG
prognostic signature showed even better predictive ability in
stratified analysis. Finally, we confirmed the broad
application of the MRG prognostic signature for BC tumor
characteristics by comprehensive analysis of risk scores and
clinical features, tumor immunity and cancer stemness.

Compared with previous studies [11,39], we constructed
a nine-MRG prognostic signature using TCGA-BRCA
datasets and validated its accuracy in TCGA, METABRIC,
and GEO datasets. This application of multiple platform
datasets ensures the applicability of the risk model. In
contrast to the purely bioinformatic analyses of previous
studies, we deeply analyzed the biological functions and
molecular mechanisms of EZR in BC cells. Nevertheless,
there are still several limitations in the present study. First,
as the 9-MRG prognostic signature was constructed and

identified based on several relatively small cohorts, and a
larger cohort is needed to verify the findings. Second, the
samples used in this study were mostly from European and
American populations, but the incidence and mortality rates
of BC vary among ethnic groups, which can lead to inherent
bias. Third, although we explored the biological function
and specific mechanism of EZR in BC cells, its function
needs in-depth exploration in animal studies and clinical
practice. Therefore, future studies should take these factors
into account to validate the current findings.

Taken together, we identified a 9-MRG signature that can
serve as a prognostic indicator for BC. The MRG signature
showed comparable performance in the prediction of patient
prognosis and assessment of tumor immune cell infiltration,
TME and cancer stemness. This risk model may facilitate the
discovery of molecular biomarkers and therapeutic targets for
BC patients, and the model has the potential to be widely
used in clinical practice in the near future.
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SUPPLEMENTAL FIGURE 1. Evaluation of the 9-Metastasis-associated key genes in relationship to the OS of BC patients. Survival analysis
showed the OS rates in patients with different CCR7 group (A), F2RL1 group (B), EZR group (C), MACC1 group (D), MMP13 group (E),
NEDD9 group (F), NOTCH1 group (G), PIK3CA group (H), PTP4A3 group (I) according to the onlineexpression datasets (bc-
GenExMiner v4.8).

SUPPLEMENTAL FIGURE 2. The effect of EZR overexpression on the EMT process in two breast cancer cell lines.
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SUPPLEMENTAL FIGURE 3. The effect of EZR knockdown on the colony formation assay and Transwell assay.
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