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Abstract: Background: Considering the great heterogeneity of Hepatocellular carcinoma (HCC), more accurate

prognostic models are urgently needed. This paper combined the advantages of genomics and pathomics to construct

a prognostic model. Methods: First, we collected data from hepatocellular carcinoma patients with complete mRNA

expression profiles and clinical annotations from the TCGA database. Then, based on immune-related genes, we used

random forest plots to screen prognosis-related genes and build prognostic models. Bioinformatics was used to

identify biological pathways, evaluate the tumor microenvironment, and perform drug susceptibility testing. Finally,

we divided the patients into different subgroups according to the gene model algorithm. Pathological models were

constructed by obtaining HE-stained sections from TCGA in corresponding subgroups of patients. Results: In this

study, we constructed a stable prognostic model that could predict overall survival in HCC patients. The signature

consisted of six immune-related genes (BX537318.1, TMEM147, CSPG4P12, AC015908.3, CEBPZOS, and SRD5A3).

We found increased levels of infiltration of immune cells in the tumor microenvironment in patients with low risk

scores, indicating significant antitumor immunity and corresponding to better clinical outcomes. We then screened

nine drugs that were more sensitive in the low-risk group than in the high-risk group. Finally, we addressed the

complex cellular changes and phenotypic heterogeneity in the HCC microenvironment by combining genomics and

pathomics analysis methods. Conclusion: Our study showed that the prognostic evaluation model of HCC based on

the immune signaling pathway is feasible and provided a reference value for potential immunotherapy for HCC.

Introduction

Globally, the incidence and mortality of primary liver cancer
are the sixth and fourth highest, respectively, among which
hepatocellular carcinoma (HCC) accounts for 75%–85% of
primary liver cancer [1–3]. Liver is the sixth most common
site of primary cancer in humans, often in the context of
cirrhosis and inflammation. Cholangiocarcinoma is the
second most common primary liver malignancy after HCC
[4–6]. In recent decades, the incidence of
cholangiocarcinoma has increased significantly, with a 5-
year survival rate of <10% [7]. Although patients with early
liver cancer can be surgically resected or given a liver graft,
most patients with primary liver cancer are too advanced to
be eligible for surgical resection. In addition, owing to its
anatomical location and tissue, as well as its unique

metabolic and immunosuppressive environment, the liver is
often colonized by cancer metastases from other organs
[8,9]. In recent years, tumor immunotherapy has achieved
good results in many cancers, but the therapeutic effect of
immunotherapy in liver cancer has not been satisfactory
[10,11]. Under physiological conditions, tumors accelerate
cancer development by avoiding immune responses [12–14].
The key regulatory node of immunotherapy is the immuno-
tumor microenvironment, which is divided into the T-cell
infiltration-exclusion type, infiltration-inflammatory type
and lymphoid structure infiltration type [13–15]. A better
understanding of the immune microenvironment is an
important prerequisite for immunity against liver cancer [16].

Tumors resist immune responses by activating immune
checkpoints, such as programmed death-1 (PD-1) and its
ligand PD-L [17–19], as well as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) [20,21]. Immune checkpoint
inhibition uses monoclonal antibodies targeting PD-1/
PD-L1 and CTLA-4 to release pre-existing immunity,
particularly effector CD8+ T cells [13,22,23].
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Immunotherapy has a positive effect on some patients but has
no obvious effect on most patients [24,25]. Owing to the
adaptability of tumors to different microenvironments,
different individuals have different abilities to respond to
treatment. Therefore, accurate immunotherapy and
predictive biomarkers are important to achieve the best
therapeutic effect and prolong the quality of life of patients.
Exploring new immune-related prognostic markers is
important for guiding the treatment process and prolonging
the survival of patients with liver cancer.

Cancer diagnosis, prognosis, and prediction of response
to therapy are often done using heterogeneous data sources,
including histological sections, molecular profiles, as well as
clinical data, such as patient age and comorbidities [26].
Histology-based subjective and qualitative analysis of the
tumor microenvironment combined with quantitative
examination with genomic testing is the standard of care for
most cancers in modern clinical settings [27–29]. As the
field of anatomic pathology moves from slides to digitized
whole-slide images, it becomes possible to analyze
pathomics and genomics in a comprehensive manner.
Current modern sequencing technologies such as single-cell
sequencing are capable of dissecting genomic information
from individual cells in tumor specimens, and spatial
transcriptomics and multiplex immunofluorescence are
capable of spatially dissecting histological tissue and
genomics together [30–33]. However, these techniques
currently lack clinical penetration The Cancer Genome
Atlas (TCGA) contains genomically-paired whole-slide
images, genotype and transcriptome data from cancer
patients with ground truth survival and histological grading
markers, providing a powerful tool for the combination of
pathomics and genomics [34].

In our investigation, we analyzed liver cancer data from
The Cancer Genome Atlas (TCGA) database, selected
immune-related prognostic biomarkers, and then
constructed predictive model. However, we have not
stopped yet. Because pathological imaging plays an

important role in revealing the tumor microenvironment, it
is limited by the complexity of previous multi-genomics
studies and has not been fully applied to the analysis of liver
cancer. With the rapid development of biomedical imaging
applications in cancer, pathology combined with multi-
genomics showed great application potential in liver cancer
prediction. This is the first original study to combine
pathological images and genetic groupings to complement
each other.

Methods

Flowchart was found in Fig. 1.

Data acquisition
The TCGA (Cancer Genome Atlas) database was created by
the National Cancer Institute and contains genomic,
transcriptomic, proteomic, and methylation data from
20,000 primary cancers (http://cancergenome.nih.gov/).
Transcriptomic data and corresponding clinical information
were collected from a total of 368 HCC patients by
screening samples that were not eligible for data or had
missing clinical data.

Single-sample gene set enrichment analysis (ssGSEA)
Immune-related hallmark pathways were included in this
study. The ssGSEA algorithm was used to score, and
consensus cluster analysis was performed to identify
immune-related patterns [35]. The R package
ConsensusClusterPlus (Version 1.56.0) was used with key
parameters, including maxK = 6 and repetition = 500 for
stable identification [36]. A total of 368 patients with HCC
were divided into three groups by consensus clustering. We
further performed differential expression gene (DEG)
analysis using the R package LIMMA (version 3.48.3) to
compare pairwise expression of different patterns of genes
using the LMFIT and EBayes functions to ensure accuracy.
DEGs were selected according to the standard; the adjusted

FIGURE 1. Flowchart.
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p-value was less than 0.001, and the absolute value of logFC
was more than 1.

Immune-related signaling pathways
Gene Ontology (GO) annotation analysis was performed
using the R package clusterProfiler (version 4.0.5) with a
false discovery rate (FDR) of less than 0.05 to determine
significant enrichment [37]. GSEA Version 4.1.0 (Broad
Institute, Cambridge, MA, USA) was used to identify a
predefined genomic cohort p-value of less than 0.05, and an
FDR of less than 0.25 for alterations between clusters 1‒3 in
a consensus cluster were considered statistically significant
[38].

Construction of genome models
Based on the TCGA‒LIHC cohort, we used random forest
analysis to screen for genes with prognostic markers from
the target gene pool and constructed a prognostic model.
Next, we distinguished the high-risk group from the low-
risk group according to the median risk score.

Assessment of immune cell infiltration
Two methods were used to calculate the immune infiltration
score: ssGSEA and the xCell algorithm, which were
visualized by stacking map correlation heat map and scatter
plot, respectively.

Extraction of pathological features
The Cancer Genome Atlas (TCGA) contains genomics paired
whole-slide images, genotype, and transcriptome data from
cancer patients with ground truth survival and histological
grading markers [34]. To observe the histological changes
and pathological changes in patients at high and low risk of
LIHC, we obtained hematoxylin and eosin (H&E) stained
sections from TCGA from each LIHC patient, and the
patients to whom each section belonged corresponded to the
genomics data of LIHC patients. We used CellProfiler
software (3.0.0) downloaded from the CellProfiler website
(www.cellprofiler.org), pathological images were analyzed,
and pathomics feature extraction and data processing were
performed using a special pipeline set by ourselves [39,40].
A workflow for LIHC tumor pathology feature extraction
was established by adding a pre-programmed algorithm
module to the pipeline. The pipeline is available from
public data (https://cellprofiler.org/published-pipelines).The
specific pipeline is set as follows: We construct eight
Gaussian filters, and the extracted feature types include
texture feature, wavelet feature and pipeline feature. After a
series of superposition operations, the constructed pipeline
can extract 6564 pathological and histological features in
each pathological image. In pathological images of LIHC
patients, we obtained HE staining images of five typical
patients from previously identified high-risk and low-risk
groups of LIHC patients for feature extraction for
histopathology. For each patient with LIHC, the most
typical 10 PATCH images (256 × 256 size) were selected
and each pathological image was magnified 20-fold in WSI
format to obtain the corresponding PATCH images.
Initially, biopsy margins, tears, or gaps within the tissue
were excluded and applied to masked RAW images. Masked

RAW images were then converted to grayscale to identify
stained objects (DAB and nuclei). A threshold algorithm
was applied to identify DAB and HTX (kernel) stained
objects, respectively. Eventually, we obtained 50 images
from each of the low-risk and high-risk groups for feature
extraction and subsequent analysis.

Construction of pathological model
For 100 pathological images obtained from LIHC patients, we
randomly selected 70 training datasets (39/31 = positive/
negative) as pathomics models. The other 30 served as
independent test datasets (11/19 = positive/negative). To
eliminate imbalances in the training dataset, we used a
variety of data normalization and regularization methods
and analyzed the degree of dominance of the respective
constructed models in terms of prediction level. A
normalization method was applied to the feature matrix. For
each feature vector, we calculated the number of l2
parameters and divided them by. The feature vector is then
mapped onto the unit vector. For the normalization
method, we chose the minmax, z-score, and mean methods.
Because of the high dimensionality of the feature space,
principal component analysis (PCA) and Pearson
correlation coefficient dimensionality reduction were applied
to the feature matrix. The feature vectors of the transformed
feature matrices are independent of each other. Before
building the model, we used ANOVA, KW, RFE, and
mitigation methods to select pathomorphologic features.
These methods are often used to explore salient features
corresponding to labels. Ultimately, we used logistic
regression to construct a pathological risk model for the
selected optimal pathological features. The prediction
performance of the constructed pathological feature model
was analyzed and evaluated using receiver operating
characteristic curves in the training, validation, cross-
training, and cross-validation groups. In addition, we
assessed the goodness-of-fit and clinical applicability of the
pathologic signature model using the Hosmer–Lemnshow
test.

Statistical analysis
The R software was used for all analyses. Student’s t-test was
used for normally distributed continuous variables. Mann–
Whitney U test was used for continuous variables that were
not normally distributed. Limma package was used to
analyze the differentially expressed threshold setting of
logFC > 0.5, p < 0.05.

Results

Identification of immune pathway-related genes in HCC
First, we used 368 patients with HCC to identify gene patterns
related to immune pathways by ssGSEA algorithm scoring
and consensus clustering analysis and set the K value of the
consensus matrix to 3. The patients were then divided into
three groups according to the optimal conditions, with
significant differences between the groups (Fig. 2A). K–M
analysis revealed significant differences in survival among
the three groups; patients in cluster 1 had the worst survival
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outcomes (Fig. 2B). PCA also revealed remarkable differences
in gene expression distribution among the three subsets,
demonstrating the success of our classification approach
(Fig. 2C). To further evaluate the differences among the
three subsets, we evaluated the functional status and quality

of life of these genes in vivo using GO analysis based on the
DEGs (Figs. 2D and 2E). From these results, we observed
that the screened genes were highly correlated with the
GO:0006397 pathway. These results suggest that based on
the cohort information of the patients with HCC and the

FIGURE 2. Identification of immune pathway-related genes and molecular subtype (A) Patients with HCC (n = 368) were classified into three
groups by consensus clustering (K = 3); categorical evaluation of the three subsets formed after cluster analysis, (B) survival analysis of patients
with differential subsets, and (C) distribution evaluation of subsets by PCA. (D, E) GO analysis of immune pathway-associated genes in liver
cancer, discovering the cellular distribution of each gene and the functional association of gene expression.
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expression levels of genes related to immune signaling
pathways, the patients were effectively divided into different
molecular subgroups by consensus clustering analysis, and
the effectiveness of classification was confirmed by PCA
analysis.

Functional analysis of immune-related genes
Through KEGG and functional enrichment analyses, we
further confirmed the functional role and metabolically
active pathways of the DEGs in tumor progression (143
genes). Fig. 3A displays that these DEGs were enriched in
these pathways (cell cycle, DNA replication, herpes simplex
virus 1 infection, and bacterial invasion of epithelial cells),
the specific information was marked, and Fig. 3B showed
the enriched gene number in the corresponding pathway.
Subsequently, we further evaluated the relationship between
these metabolic pathways and the genes of immune
pathway, then found that hypertrophic cardiomyopathy,
ribosome, retinol metabolism, complement and coagulation
cascades, dilated cardiomyopathy, and the HCC immune
model were significantly expressed (Fig. 3C). Fig. 3D
represented an overview of the pathways involved in the
genes.

Identification of genes associated with HCC risk model
Six genes of prognostic significance were selected from 143
genes in the TCGA–LIHC cohort according to a random
forest algorithm: BX537318.1, TMEM147, CSPG4P12,
AC015908.3, CEBPZOS, and SRD5A3, and prognostic
models were constructed (Figs. 4A and 4B). Patients were
divided into high-risk and low-risk groups according to the
median risk score. We found that the risk score was
independent of age and gender but correlated with T stage
and clinical stage, and the risk value increased with disease
progression (Fig. 4C). According to Kaplan–Meier (K–M)
analysis, poor survival outcomes were evident for patients in
the high-risk group (Fig. 4D). As the risk value increases,
the patient ’s survival status becomes progressively worse
(Fig. 4E).

Preliminary evaluation of HCC risk model
To further verify the effectiveness of our prognostic model, we
needed to draw survival curves based on the other cohort
(internal cohort verification), which was divided 8:2 into
training and validation sets. K‒M analysis and log-rank tests
were used to compare the p-values of survival curves
between the two groups (Figs. 4F and 4G). In both the
training and independent validation sets, we found that
patients with high-risk scores had poorer overall survival (p
< 0.05), indicating the validity and accuracy of our
prognostic model.

Evaluation of tumor immune microenvironment based on the
two algorisms
Subsequently, because tumor immune infiltration plays a key
role in tumor development and progression, we compared the
differences in infiltrating immune cells between high-risk and
low-risk groups by MCPcount algorithm analysis. The results
showed that neutrophil infiltration was higher in the low-risk
group, indicating that neutrophils may play an important role

in anti-tumor immunity. Fig. 5B shows the correlation
between the six prognostic genes. AC015908.3 was
negatively correlated with other genes, while other genes
were positively correlated. Butterfly plots showed
correlations between genes and immune cells (Fig. 5C).
Fig. 5D shows the proportion of tumor cell infiltration in
each patient. Bubble plots showed the association of six
prognostic genes with immune cell infiltration (Fig. 5E).
TMEM147 was positively associated with fibroblast
production, CEBPZOS with CD8 + T cells, and CEBPZOS
and TMEM147 with T cells (Fig. 5F).

The xCell algorithm was used to verify the above results.
Similarly, patients in the low-risk group had an increased
component of immune cell infiltration and an enhanced
immuno-antitumor effect (Figs. 6A and 6B). Fig. 6C showed
the percentage of immune cell infiltration in each tissue.
CEBPZOS was positively correlated with GMP and
fibroblasis, but negatively correlated with hematopoietic
stem cell (HSC); SRD5A3 was positively correlated with CLP
and negatively correlated with HSC, and TMEM137 was
negatively correlated with regulatory T cells (Fig. 7A). The
bubble graph shows the association of the six prognostic
genes with immune cell infiltration (Fig. 7B).

The ESTIMATE algorithm was used to calculate the
ESTIMATEScore, StromalScore, and ImmuneScore of each
sample, and the heat map showed the high- and low-risk
grade distribution subgroup patients (Fig. 7C). Fig. 7D
showed that risk is negatively correlated with the
ESTIMATEScore, StromalScore, and ImmuneScore.
Conclusively, we preliminarily evaluated the effectiveness of
the prognostic model by drawing survival curves and
correlation verification, laying a solid foundation for further
verification.

Drug sensitivity analysis
To further evaluate the drug sensitivity of the immune-
signaling pathway-based prognostic assessment model for
HCC, we introduced drug-calculated sensitivity scores from
the GDSC database to screen potential therapeutic agents
for HCC based on prognostic genes. We showed the
susceptibility of different drugs to six differential genes in
the form of a heatmap (Fig. 8A). Finally, we screened nine
drugs that were more sensitive in the low-risk group than in
the high-risk group, including PD173074, PCI-34051, IWP-
2, linsitnib, VE821, PD173074, PCI-34051, IWP-2, VE821,
AZD4547, gefitnib, nelarabine, and AT13148 (Fig. 8B). In
conclusion, our prognostic evaluation model for HCC based
on immune signaling pathways has good performance for
drug prediction.

Construction of pathological model
The HE-stained sections corresponding to the high-risk and
low-risk groups of patients with LIHC were screened against
the pathology database; the specific pathological images and
the region of interest patches are outlined in Fig. 9A. We
obtained multiple pathomic features through a variety of
pathology section feature extraction pipelines, including
those within the DNA and skeletal regions, as shown in
Fig. 9B. The weights occupied by the selected pathomic
features in the machine learning model are shown in
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Fig. 9C. Differences in the area under the curve (AUC)
values were similarly generated for different numbers of
features in the same model (Fig. 9D). The differences in

model prediction performance due to methodological
differences between steps in the pipeline constructed
through multiple normalization, feature selection, and

FIGURE 3. The functional assessment (A) KEGG pathway analysis of immune pathway-associated genes in liver cancer. (B) The number of
genes involved in the enrichment pathway. (C) KEGG analysis revealed that metabolic and tissue developmental elements, including
hypertrophic cardiomyopathy, ribosome, retinol metabolism, complement and coagulation cascades, dilated cardiomyopathy and
arrhythmogenic right ventricular cardiomyopathy, were significantly associated with the immune pathway-associated genes. (D) The UpSet
graph showing the genes involved in the pathway.
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dimensionality reduction methods to filter the optimal
model are shown in Figs. 9E and 9F. The machine
learning model obtained by the following method was
selected to achieve the best AUC value and was therefore
considered to be the best model for pathomics model

construction and optimal pipeline formation. The feature
vectors of the transformed feature matrix were
independent of each other. Before building the model, we
used Relief to select the features. Relief selects a sub-
dataset and recursively finds the relative features according

FIGURE 4. Construction of predictive model (A, B) Six genes of prognostic significance were selected from 143 genes based on LASSO
regression to construct predictive models. (C) Risk values for patients with different clinical parameters, including gender, stage T, age,
stage. (D) K‒M survival analysis curves of TCGA‒LIHC cohort. (E) Survival time and survival status distribution between high- and low-
risk groups of the prediction model in the TCGA‒LIHC cohort. (F, G) K‒M survival analysis in training and validating cohorts.
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to the label. Logistic regression with the LASSO constraint
was used as the classifier. Logistic regression with LASSO
constraint is a linear classifier based on logistic, and the
hyper-parameters were set according to the model
performance on the validation dataset. The AUC and

accuracy of the model were 0.852 and 0.867, respectively,
for the test dataset (Fig. 9G). In the H-L test (Fig. 9H), we
also demonstrated the excellent goodness-of-fit of the
constructed LIHC pathomics model, demonstrating its
clinical applicability.

FIGURE 5. Immune infiltration evaluation (A) MCPcount algorithm constructed a box line plot of the difference in infiltration levels of several
immune cells between the low-risk and high-risk groups in the predictive model. (B) Spearman correlation plots displaying the relationship
among six prognostic genes. (C) Correlation of genes and immunocytes. (D) Stacked plots of the distribution of 10 major immune cells in the
low-risk and high-risk groups. (E) Spearman correlation plots further visualized and clarified the relationship between the six genes and the
specific cell types of immune infiltration. (F) The scatterplot showing the relationship between specific genes and immune cells.
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FIGURE 6. Immune infiltration validation (A, B) Boxplots showing differences in immune cell infiltration between high- and low-risk groups.
(C) Stacked plots of the distribution of 50 major immune cells in the high- and low-risk groups.
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FIGURE 7. Immune infiltration validation (A) Scatterplot showing the relationship between specific genes and immune cells. (B) Spearman
correlation plots further visualized and clarified the relationship between the six genes and the specific cell types of immune infiltration. (C)
Heat map showing the immune scores of patients in the high- and low-risk groups. (D) Scatterplot showing the relationship between score and
ImmuneScore, StromalScore, and ESTIMATE score.
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Discussion

Immunotherapy has a wide application prospect for cancer,
but recent studies and clinical guidance have shown that its

efficacy in liver cancer is much lower than that in other
cancers. From the perspective of multi-genomics, we
identified prognostic markers of HCC based on immune
signaling pathways and explored the direct or indirect effect

FIGURE 8. Drug sensitivity evaluation (A) Heat map displaying the correlation between six genes and therapeutic sensitivity of multiple
chemotherapeutic drugs. (B) Box line plots showing significant therapeutic sensitivity between high- and low-risk subgroups for PD173074,
PCI-34051, IWP-2, Linsitinib, VE821 AZD4547, Gefitinib, Nelarabine, and AT13148.

PATHOLOGICAL IMAGES FOR PERSONAL MEDICINE IN HEPATOCELLULAR CARCINOMA 253



FIGURE 9. Pathomic marker mining and risk prediction model construction for LIHC. (A) HE-stained sections corresponding to patients
with LIHC in the high- and low-risk groups screened in the pathology section repository; specific pathological images and patches outlined in
the region of interest; (B) DNA, RescaleIntensity intensity analysis maps obtained from pathomics analysis. (C) Types of pathomic features
constituting the pathomic risk model and their respective weights in the final model. (D) Linear analysis plot of the effect of the number of
pathomic features on the AUC values of the final model. (E) Bar graph showing the effect of the selected dimensionality reduction method and
data normalization method on the predictive efficacy of the pathomic risk model. (F) Analysis of the effect of different pathomic feature
selection methods on the prediction of the pathomic risk model accuracy. (G) Histogram of the impact analysis of the constructed
pathomics models on prediction ROC curves (training, validation, CV-training, and CV-validation groups, respectively). (H) Goodness-
of-fit test curves for pathomics model.
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of prognostic markers of HCC and immunotherapy to provide
more reference for the potential application of effective
immunotherapy.

Significant progress has also been made in
immunotherapy for liver cancer. Studies have reported that
nivolumab against PD-1, a fully human immunoglobulin G4
monoclonal anti-PD-1 antibody, was first tested for safety
and efficacy in a phase 1/2 study of more than 250 patients
with advanced HCC [41]. The expanded cohort confirmed a
good safety profile, with 19% of grades 3 and 4 treatment-
related adverse events consisting primarily of transient
laboratory abnormalities. Nivolumab was subsequently
granted accelerated approval by the US Food and Drug
Administration in September 2017 for the treatment of
patients with advanced HCC previously treated with
sorafenib [42,43]. Several other monotherapy immune
checkpoint inhibitors targeting the PD-1/PD-L1 axis,
including atezolizumab (NCT04157985), durvalumab
(NCT03847428), toripalimab (NCT03949231), and
tislelizumab (NCT03412773), also showed an immune
response against liver cancer [10,44–48]. Cell-based
immunotherapies, such as tumor-infiltrating lymphocytes or
cytokine-induced killer cells (CIKs) for adoptive cell
transfer, have potent antitumor effects with little cytotoxicity
to normal cells. The efficacy and safety of activated CIKs in
adjuvant therapy were evaluated in 230 patients with HCC,
who underwent surgical resection, radiofrequency ablation
(RFA), or percutaneous ethanol injection [49]. When there
is a high endogenous tumor antigen load in the primary
tumor, immunotherapy in the neoadjuvant setting can
enhance T-cell priming and potentially eliminate
micrometastases, which may be the source of postoperative
tumor recurrence [47,50–52].

In this study, we first performed differential gene analysis
based on immune signaling pathways in 368 patients with
HCC from the TCGA‒LIHC cohort. By consensus cluster
recognition, we divided patients into three clusters and
further analyzed the expression of differential genes. GO
and KEGG functional annotations were used to demonstrate
that differential genes shared specific functional processes
with immune signaling pathways. Six genes with prognostic
significance, including BX537318.1, TMEM147, CSPG4P12,
AC015908.3, CEBPZOS and SRD5A3, were selected from
143 genes according to random forest algorithm to
construct a prognostic model, and the whole set was cut
into 8:2—training set and validation set cohorts. The high-
and low-risk groups were distinguished by the median risk
score, and the two groups had significant prognostic
differences. The ssGSEA and xCell algorithms were also
used to calculate the immune infiltration score, which was
visualized by a stacking correlation heat map and scatter
plot, respectively.

Studies have shown that TMEM147 interacts with the
lamin B receptor in the endoplasmic reticulum, affecting the
expression level and localization of the receptor [53], and
TMEM147 can also promote the proliferation of prostate
cancer [54]. Studies have suggested that CEBPZOS is a
prognostic marker of liver cancer related to energy
metabolism [55]. Loss or overexpression of SRD5A3 is
closely related to breast cancer and loss of glycosylation

function [56–58]. However, studies of these genes in liver
cancer are relatively rare. We demonstrated that SRD5A3
plays a critical role in HCC progression.

In recent years, more and more researchers have
established cancer prognostic models based on novel cell
death mechanisms, but they are missing in clinical
applications [59]. Linking pathomics and genomics is a
whole new direction, and this approach links the
performance of models from theory to practice and is
essential for performance validation before clinical
application [27,60]. Recently, an increasing number of
researchers have linked pathomics and genomics. In one
study, researchers revealed the landscape of m6A
methylation modification patterns in bladder cancer by
radiogenomics mapping by linking pathomics and genomics
[61]. Another study validated this approach using glioma
and clear cell renal cell carcinoma datasets from The Cancer
Genome Atlas (TCGA), which contains paired whole-slide
images, genotype, and transcriptome data with survival and
histological grading markers, providing strong help for
pathomics and genomics linkages [27]. In our study, we
combined the model with clinical findings by obtaining
pathological patterns corresponding to patients in the high
and low model groups by TCGA. For the future clinical
treatment, we provide a reliable route, based on our model
to diagnose the patient’s risk, through clinical biopsy to
determine the patient’s disease progression, and finally
based on the risk score, and finally choose the
corresponding drug for treatment.

In summary, we constructed a stable prognostic marker
that can predict the overall survival of patients with liver
cancer by analyzing HCC-related data in the TCGA
database. In addition, we used a combination of
bioinformatics and pathomics analyses to elucidate the
complex cellular and phenotypic heterogeneity in the HCC
ecosystem; the information obtained from these studies is
critical for the development of successful therapies. The
complex timing of HCC with diverse immune cell subsets
and extensive tumor-immune cell crosstalk also emphasizes
the need for combination therapeutic approaches targeting
these components. As a next step, we will combine
experimental and clinical data to further clarify the clinical
feasibility of this prognostic marker. Immunotherapy has
great potential in the early stages of the disease, and several
trials investigating the effectiveness of immune-based
approaches in neoadjuvant and adjuvant settings are
ongoing. Finally, the development of biomarkers that can
effectively predict the response to immunotherapy is
essential for identifying optimal therapeutic targets and
selecting the appropriate treatment for each patient.

Our study still has some limitations. Our study is based
on data from the TCGA platform linking genomic and
pathological group outcomes in patients, which leads to
challenging validation of our model. Although we have an
internal validation set and cross-validation, it is better if
there are external validations that can satisfy both
genomic and pathological groups. In addition, our model
also has its certain advantages. Compared with the
previous conventional model, the model combined with
clinicopathologic pattern has more application conditions,
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and is no longer a blank talk for predicting the prognosis of
patients. It can find the differences between patients from
the pathological point of view.

Conclusively, our study shows that the prognostic
assessment model of HCC based on the immune signaling
pathway is feasible and provides a reference value for
potential immunotherapy for HCC treatment.
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