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Abstract: Ionizing radiation is frequently used to treat solid tumors, as it causes DNA damage and kill cancer cells.

However, damaged DNA is repaired involving poly-(ADP-ribose) polymerase-1 (PARP-1) causing resistance to

radiation therapy. Thus, PARP-1 represents an important target in multiple cancer types, including prostate cancer.

PARP is a nuclear enzyme essential for single-strand DNA breaks repair. Inhibiting PARP-1 is lethal in a wide range

of cancer cells that lack the homologous recombination repair (HR) pathway. This article provides a concise and

simplified overview of the development of PARP inhibitors in the laboratory and their clinical applications. We

focused on the use of PARP inhibitors in various cancers, including prostate cancer. We also discussed some of the

underlying principles and challenges that may affect the clinical efficacy of PARP inhibitors.

Introduction

DNA repair pathways in normal cells ensure error-free
replication and maintain genomic integrity. However, it is
known that DNA repair genes are frequently mutated in
cancer which contributes significantly to cancer development
and progression [1]. DNA repair dysfunction is an ideal ally
for the cancer cells to acquire an aggressive phenotype and
therapeutic resistance [2,3]. Our cells utilize multiple different
mechanisms of DNA repair based on the kind of lesion-
induced. These include direct repair, mismatch repair
(MMR), base excision repair (BER), nucleotide excision repair
(NER), and double-strand break (DSB) recombinational
repair, which encompasses both non-homologous end-joining
(NHEJ) and homologous recombinational repair (HR). This
remarkable redundancy in the DNA repair pathway is in
place to ensure precision in the process of DNA replication.
This also guarantees that the cells have a second chance to
survive, even if one of these pathways fails.

During cancer development, the cells continue to acquire
different mutations, not only due to defects in DNA repair/
genomic instability but also due to poor redox balance in

these cells. The poorly functioning redox regulation causes
these cells to have higher oxidative stress. The sustained
oxidative stress leads to significant oxidative DNA damage,
which further contributes to genomic instability and higher
mutational burden [4]. In this context, the same backup
repair pathways assist them to remain viable and repair the
damage caused by chemotherapeutic or other genotoxic
agents used for treatment. Given that the cancers with
defective DNA repair genes rely on alternative pathways, it
was correctly hypothesized that further blocking of the other
DNA repair pathways would be lethal for these cells. The
concept of “synthetic lethality” [5], which describes a
situation “where a defect in one gene is compatible with cell
viability but results in cell death when combined with a
defect in another gene”, has thus formed the basis of newer
targeted therapies especially focusing the DNA repair
pathways in cancers [6].

Exploiting Synthetic Lethality Approach for Cancer
Treatment

Though synthetic lethality was established decades earlier, the
potential of this approach for drug targeting in cancer was
only harnessed in recent years, due to a lack of robust and
systematic tools for identifying the synthetic lethal genetic
combinations. Recently, genome-wide drug-sensitization
screening using short hairpin RNA (shRNA) and small
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interfering RNA (siRNA)–as well as small-molecule inhibitors
have led to the identification of many novel drug candidates
(reviewed in McLoran et al.) [7]. The synthetic lethality
approach is specifically useful in cancer, as it facilitates the
development of cancer-specific cytotoxic agents, which
would not affect the “non-mutated” normal cells with a
robust repair system. One example of this approach, which
has been very successful in the clinic, is the use of PARP
(Poly-ADP-ribose polymerase) inhibitors for BRCA
mutant cancers.

The Promise of PARP Inhibitors

The PARP family of proteins comprised of 17 members which
were identified on the basis of their homology in the catalytic
domain. PARP1, a nuclear enzyme, is the most prominent
member of the family as it accounts for 85% of total PARP
activity [8]. PARP enzyme catalyzes the transfer of the first
ADP-ribose from nicotinamide adenine dinucleotide
(NAD+) to the amino acid residues on target proteins and
generates a poly-ADP-ribose unit chain (PAR). This process
of “PARylation” on proteins as well as on the PARP enzyme
itself (self-PARylation) creates a negative charge which
reworks the protein structure and function, helping with the
binding of multiple proteins (Fig. 1). The PARylation at
DNA breaks helps in the recruitment of DNA repair

proteins like DNA ligase 3, XRCC1, DNA polymerase β as
well as the MRE11-Rad50-NBS1 (MRN) complex [9,10].
Therefore, the PARP enzyme function is crucial not only for
BER but also in the HR and NHEJ mechanisms. Since, the
PARP function is specifically crucial for single-strand break
(SSB) repair, inhibiting PARP will lead to persistent SSBs
that, when encountered by the replication fork, are
converted into double-stranded breaks (DSBs). The repair of
DSB would require a functional HR repair pathway.
Therefore, cancers with HR repair deficiencies would be
highly sensitive to PARP inhibition, as the lesions will
remain unrepaired and eventually cause cell death (Fig. 2).
This hypothesis was verified by mouse models, where
deletion of PARP-1 increased sensitivity to DNA-damaging
agents that induce DNA SSBs, without being embryonic
lethal [11,12]. Multiple studies using PARP inhibitors in
various tumor models found that PARP inhibitors could
sensitize tumor cells to cytotoxic therapies such as
temozolomide, topoisomerase I inhibitors, platinum-based
chemotherapeutics, and radiation treatment [13–15].

With a better understanding of SSB repair and
homologous recombination (HR) repair-mediated DSB
repair, two seminal studies applied the approach of
synthetic lethality with promising results, as they
demonstrated the potential of poly-(ADP-ribose)
polymerase (PARP1) inhibition in treating BRCA-mutant
tumors [16,17]. BRCA1 and BRCA2 play a crucial role in
the repair of double-stranded breaks (DSBs) by homologous
recombination (HR) [18]. Heterozygous germline mutation
in the BRCA1 gene confers a 60% lifetime risk of breast or
ovarian cancer, whereas BRCA2 mutations are associated
with a risk of breast or ovarian cancer of 55% and 15%,
respectively [19]. Reasonably, tumors with malfunctioning

FIGURE 1. Role of PARP enzyme in DNA repair. In the event of a
single-stranded break in cells, PARP enzymes are recruited to the
strand break, where it catalyzes the addition of PAR chains on
itself or on the other target proteins. PARylation-mediated changes
in the chromatin assembly help in the recruitment of repair
enzymes, which ultimately repair the break. SSB, single-strand
break; NAD+, nicotinamide adenine dinucleotide; Pol beta, DNA
polymerase beta; PAR, poly-ADP ribose.

FIGURE 2. The concept of synthetic lethality in the context of BRCA
mutation carriers treated with PARP inhibitors. In the event of DNA
damage caused by oxidative base damage, ionizing radiation, and
other chemical agents, single-strand breaks (SSBs) are generated.
PARP inhibitors block the repair of SSBs, which when left
unrepaired are converted to double-strand breaks (DSBs) following
replication. In cells with functional BRCA genes, these DSB lesions
are repaired by homologous recombination (HR) and the cells
remain viable. However, in cells that are HR deficient, such as
BRCA mutant tumor cells, the DSBs cannot be repaired, leading to
cell death. PARP inhibition, therefore, is synthetic lethal in HR-
deficient cells.
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BRCA genes are deficient in the HR repair pathway. Based on
these preclinical studies which showed that cells with
dysfunctional BRCA1 or BRCA2 are dramatically more
sensitive to PARP inhibitors, multiple PARP inhibitors were
tested in in silico, in vitro, and in vivo studies and in clinical
trials which are summarized in Tables 1 and 2, respectively
and in Fig. 3.

PARP Inhibitors in Breast and Ovarian Cancers

Olaparib became the first PARP inhibitor to be approved in
the clinic (Table 3). Olaparib is being developed for BRCA
mutation-positive ovarian cancer [86]. The subsequent
phase II studies of Olaparib, in patients with high-grade
ovarian cancer revealed a highly statistically significant
improvement in progression-free survival (PFS) (median 8.4
months vs. 4.8 months; HR, 0.35; p < 0.001) [87]. Most
interestingly, the patients with a documented germline
BRCA mutation showed a significantly higher survival rate
(median 11.2 months vs. 4.3 months; HR, 0.18; p < 0.001)
[88]. Subsequent trials established the safety of Olaparib as a
single agent, and good responses were witnessed in patients
with BRCA-mutated breast, ovarian, or prostate tumors
[89,90]. Owing to their specificity in targeting cancer cells,
only mild side effects have been reported from PARP
inhibitor treatment as evident from these trials. Another
randomized, double-blind, placebo-controlled phase 3 trial
of Olaparib, as a maintenance therapy for BRCA mutated
ovarian cancer, SOLO 1 (NCT01844986), led to its approval
by the United States Food and Drug Administration (FDA)
in 2018. The median progression-free survival was better in

the Olaparib treated group (median 49.9 months vs. 13.8
months; HR, 0.31; p < 0.0001) [91]. The risk of disease
progression or death was 70% lower in the Olaparib treated
group than the placebo group.

It is also important to note that BRCA defective cells are
much more sensitive to PARP inhibitors than to the
knockdown of PARP using a siRNA approach [16]. The
study suggested that trapping PARP on specific DNA
lesions, may be important for the effective killing of HR-
defective cells (Fig. 3). Trapping of PARP leads to stalled
replication forks which causes the conversion of single-
strand breaks (SSBs) to double-strand breaks (DSBs). These
DSBs are repaired by HR-efficient cells, however, in cells
deficient in HR, it leads to cell killing. Most PARP
inhibitors have almost similar efficacy in inhibiting the
catalytic activity of PARP, however, they differ in their
ability to trap PARP on the lesions [92]. These studies
cemented the foundation for testing of other PARP
inhibitors including Rucaparib, Veliparib, and Niraparib in
clinical trials for the treatment of breast and ovarian cancer
[93–95] (Table 2). The positive findings from subsequent
trials in ovarian and breast cancer patients, led FDA to
approve two more PARP inhibitors for clinical use in
patients with BRCA-mutant ovarian cancer: Rucaparib [96]
and Niraparib [97] (Table 3). Along with these, currently,
phase 3 trials of Veliparib and Talazoparib are ongoing
(NCT02163694 and NCT01945775).

The FDA has also approved two PARP inhibitors for
BRCA mutated HER 2 negative breast cancer: Olaparib and
talazoparib (BC). Olaparib approval for BRCA mutated
HER2 negative metastatic and early breast cancer was based

TABLE 1

PARP inhibitors in in silico, in vitro, and in vivo studies for prostate cancer, breast cancer, and ovarian cancer

S. No. PARP inhibitor Cancer Study type Cell line Target References

1 5F02 Prostate
cancer

In vitro and in vivo PC-3 xenograft Non-NAD-like
PARP-1 inhibitor

[20]

2 Simmiparib Breast
cancer

In vitro and in vivo Xenografts, CDX and
PDX

PARP-1, PARP-2 [21]

3 DDHCB In vitro and in vivo HCC-1937 cell line
xenografts

PARP-1 [22]

4 BTH-8 In vivo and in vitro, using BRCA-
deficient cancer cells

HCC-1937 cell line
xenograft

PARP-1 [23]

5 YHP-836 In vitro and in vivo MDA-MD-436 cell line
xenograft

PARP-1, PARP-2 [24]

6 ZC-22 In vitro and in vivo MDA-MD-231 cell line
xenograft

PARP and CDK4/6 [25]

7 Mefuparib
hydrochloride
(MPH)

In vitro and in vivo MDA-MB-436 cell line
xenograft

PARP-1, PARP-2 [26]

8 1,2,4-triazoles In silico and in vitro MCF-7 cell line PARP-1 [27]

9 Mortaparib Ovarian
cancer

In vitro and in vivo SKOV3 ovarian cancer
cells xenograft

PARP-1 and
mortalin

[28]

10 ZC-22 In vitro and in vivo OVCAR5 Ovarian
cancer cells xenograft

PARP and CDK4/6 [25,29]
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TABLE 2

PARP inhibitors as monotherapy in various phases of clinical trials, for metastatic castration-resistant prostate cancer (mCRPC), breast
cancer, and ovarian cancer

S. No. PARP inhibitor Cancer Main trial Status Cohort Target References

1 Niraparib Prostate
Cancer

GALAHAD
NCT02854436

Under phase 2 trial
Trial start: 31 Aug. 2016
Estimated completion: 31
Oct. 2022 Status: active

mCRPC with
alternation in DNA
repair

PARP-1,
PARP-2

[30,31]

2 Talazoparib TALAPRO-1
NCT03148795

Under phase 2 trial
Trial start: 4 Jul. 2017
Estimated completion: 31
Oct. 2024

mCRPC with
alterations in DDR-
HRR who have
received both AR-
directed therapy and
taxane-based
chemotherapy

PARP-1,
PARP-2,
PARP-16

[32,33]

3 Pamiparib NCT05327621 Under phase 2 trial
Trial start: 01 May 2022
Estimated completion: 20
Mar. 2025

mCRCP with
homologous
recombination
deficiency or BRCA 1
or 2 somatic/germline
mutation.

PARP-1
PARP-2

[34]

4 Veliparib (With or
without
Abiraterone
Acetate and
Prednisone)

NCT01576172 Phase 2 trial completed
on 23 Apr. 2020

mCRPC PARP-1,
PARP-2

[35]

5 Fluzoparib (Alone
or with Apatinib)

Breast
Cancer

FZPL-III-303
NCT04296370

Under phase 3 trial
Trial start: 13 Jul. 2020
Estimated completion: 30
Jun. 2025

BRCA mutated HER-2
negative metastatic
breast cancer

PARP-1,
PARP-2

[36]

6 Niraparib BRAVO
NCT01905592

Phase 3 trial completed
26 Oct. 2021

BRCA mutated HER-2
negative metastatic
breast cancer

PARP-1,
PARP-2

[37,38]

NCT05232006 Under phase 2 trial
Trial start: May 2022
Estimated completion:
May 2030

Advanced metastatic
breast cancer in
germline PALB2
mutations carriers

7 2X-121 NCT03562832 Under phase 2 trial
Trial start: 20 Jun. 2018
Estimated completion:
Oct. 2022 Status: active

Metastatic breast
cancer

PARP-1,
PARP-2 and
Tankyrase 1/2

[39]

8 Rucaparib NCT02505048 Phase 2 trial completed
on Dec. 2019

Metastatic breast
cancer with BRCAness
genomic signature

PARP-1,
PARP-2,
PARP-3

[40]

9 NMS-03305293 NCT04182516 Under phase 1 trial
Trial start: 25 Nov. 2019
Estimated completion: 30
Dec. 2023

Patients with advanced
solid tumors (including
breast cancer)

PARP [41]

10 AZD5305 (Alone
or in combination
with anti-cancer
agents)

NCT04644068 Under phase 1/2 trial
Trial start: 12 Nov. 2020
Estimated completion: 29
Jul. 2025

Patients with advanced
solid malignancy
(including breast
cancer)

PARP-1 [42,43]

11 RP12146 NCT05002868 Under phase 1 trial
Trial start: 05 Oct. 2021
Estimated completion:
Aug. 2023

Patients with locally
advanced or metastatic
solid tumors (including
locally advanced/

PARP [44]

(Continued)
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Table 2 (continued)

S. No. PARP inhibitor Cancer Main trial Status Cohort Target References

metastatic breast
cancer)

12 AZD9574 (alone or
in combination
with anti-cancer
agents)

NCT05417594 Under phase 1/2 trial
Trial start: 24 Jun. 2022
Estimated completion: 30
Jun. 2025

Advanced cancer that
has recurred/
progressed (including
breast cancer)

PARP [45]

13 E7449 (Alone or in
combination with
Temozolomide
(TMZ) or with
Carboplatin and
Paclitaxel

NCT01618136 Phase 1/2 trial completed
in Jul. 2015

Patients with advanced
solid tumors (including
triple-negative breast
cancer)

PARP-1,
PARP-2 and
tankyrase 1/2

[46,47]

14 AMXI-5001 ATLAS-101
NCT04503265

Under phase 1/2 trial
Trial start: 12 Aug. 2020
Estimated completion:
Jan. 2023

Advanced malignant
neoplasm (including
breast cancer) who
have failed other
therapies

PARP and
microtubule
polymerization
inhibitor

[48]

15 Pamiparib NCT03333915 Under phase 2 trial
Trial start: 21 Dec. 2016
Estimated completion:
Nov. 2021 Status: active

Chinese patients with
triple negative breast
cancer

PARP-1,
PARP-2

[49]

16 Simmiparib NCT02993913 Under phase 1 trial for
malignant solid tumors
Trial start: Dec. 2016
Estimated primary
completion: Dec. 2018
Status: unknown

Malignant tumors PARP-1,
PARP-2

[50,51]

17 Veliparib Ovarian
Cancer

VELIA
NCT02470585

Under phase 3 trial
Trial start: 29 Jun. 2015
Estimated completion:
08 Dec. 2026

With Carboplatin and
Paclitaxel and as
continuation
maintenance therapy in
advanced ovarian
cancer

PARP-1,
PARP-2

[52]

18 IMP4297 NCT04169997 Under phase 3 trial
Trial start: 24 Dec. 2019
Estimated completion: 30
Dec. 2022

Advanced ovarian
cancer

PARP [53]

19 Talazoparib NCT04598321 Under phase 1 trial
Trial start: 29 Mar. 2021
Estimated completion:
Jan. 2027

BRCA mutated ovarian
cancer

PARP-1,
PARP-2,
PARP-16

[54]

20 E7449 (Alone or in
Combination with
Temozolomide
(TMZ) or with
Carboplatin and
Paclitaxel

NCT01618136 Phase 1/2 trial completed
in Jul. 2015

Patients with advanced
solid tumors (including
ovarian cancer)

PARP-1,
PARP-2 and
tankyrase 1/2

[46,47]

21 Pamiparib NCT05489926 Under phase 2 trial
Trial start: 16 Aug. 2022
Estimated completion:
Dec. 2023

Epithelial Ovarian
Cancer EOC with prior
exposure to a PARP
inhibitor

PARP-1,
PARP-2

[55]

22 Fluzoparib NCT03509636 Phase 1 trial completed
on 23 Jul. 2020

BRCA mutated ovarian
cancer

PARP-1,
PARP-2

[56,57]

23 AZD5305 NCT04644068 Under phase 1/2 trial
Trial start: 12 Nov. 2020
Estimated completion: 29
Jul. 2025

Patients with advanced
solid malignancy
(including ovarian
cancer)

PARP-1 [42,43]

(Continued)
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Table 2 (continued)

S. No. PARP inhibitor Cancer Main trial Status Cohort Target References

24 RP12146 NCT05002868 Under phase 1 trial
Trial start: 05 Oct. 2021
Estimated completion:
Aug. 2023

Patients with Locally
Advanced or
Metastatic Solid
Tumors (including
platinum sensitive
ovarian cancer)

PARP [44]

25 AZD9574 (Alone
or in combination
with anti-cancer
agents)

NCT05417594 Under phase 1/2 trial
Trial start: 24 Jun. 2022
Estimated completion: 30
Jun. 2025

Advanced cancer that
has recurred/
progressed (including
ovarian cancer)

PARP [45]

26 E7449 (Alone or in
Combination with
Temozolomide
(TMZ) or with
Carboplatin and
Paclitaxel

NCT01618136 Phase 1/2 trial completed
in Jul. 2015

Patients with advanced
solid tumors (including
ovarian cancer)

PARP-1,
PARP-2 and
tankyrase 1/2

[46,47]

27 NMS-03305293 NCT04182516 Under phase 1 trial
Trial start: 25 Nov. 2019
Estimated completion: 30
Dec. 2023

Patients with advanced
solid tumors (including
ovarian cancer)

PARP [41]

28 AMXI-5001 ATLAS-101
NCT04503265

Under phase 1/2 trial
Trial start: 12 Aug. 2020
Estimated completion:
Jan. 2023

Advanced malignant
neoplasm (including
ovarian cancer) who
have failed other
therapies

PARP and
microtubule
polymerization
inhibitor

[48]

29 [18F]
FluorThanatrace
(FTT)

Pilot study Pilot study Patients with ovarian
carcinoma

PARP-1 [58]

FIGURE 3. A schematic representation of the mechanism of action of PARP inhibitors and their targets. PARP inhibitors work either by inhibiting
the PARylation reaction (except 5F02 which is a non-NAD-like PARP inhibitor) or by trapping the PARP enzyme at the DNA lesions. Trapping of
PARP at single-strand breaks (SSBs) causes stalled replication forks which in turn leads to the production of double-strand breaks (DSBs). In HR-
efficient cells, these lesions are repaired, however, in HR-deficient cells, it leads to cell death. Most of the PARP inhibitors target either PARP-1, 2, and
3 (inhibition of PARP-16 is off-target effect of Talazoparib) or PARP-1 and PARP-2 or only PARP-1. The inhibitors which exclusively target PARP-1
are depicted in italics. SSB-Single Strand Breaks, DSB-Double Strand Breaks, ER-Endoplasmic Reticulum, FTT-[18F]FluorThanatrace, MPH-
(Mefuparib Hydrochloride).
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on OlympiAD and OlympiA trials, respectively. OlympiAD
was a randomized, open-label, phase 3 trial that compared
Olaparib with standard treatment in metastatic breast
cancer patients with BRCA mutated HER-2 negative breast
cancer [98]. Olaparib treated group showed significantly
longer median progression-free survival than the standard
therapy group (7.0 months vs. 4.2 months; HR, 0.58; p <
0.001) and 42% lower risk of disease progression or death
than the standard therapy group. Early this year, Olaparib

was approved for adjuvant treatment of BRCA-mutated
HER-2 negative early breast cancer patients who have
received local treatment and neoadjuvant or adjuvant
chemotherapy. This approval was based on OlympiA, a
randomized double-blind, phase 3 trial. 3-year invasive
disease-free survival was better in the Olaparib group
(85.9% vs. 77.1%; HR, 0.58; p < 0.001) and 3-year distant
disease-free survival was longer in the Olaparib treated
group (87.5% vs. 80.4%; HR, 0.57; p < 0.001) [65].

TABLE 3

PARP inhibitors clinically approved by United States FDA (Food and Drug Administration) for metastatic castration-resistant prostate
cancer (mCRPC), breast cancer, and ovarian cancer

S.
No.

PARP
inhibitor

Cancer Main trial Status Cohort Target References

1 Rucaparib Prostate
cancer

TRITON2
NCT02952534

Clinically
approved, 15
May 2020
(Accelerated
approval)

mCRPC with a deleterious BRCA alteration who
have received both AR-directed therapy and taxane-
based chemotherapy

PARP-1,
PARP-2,
PARP-3

[59,60]

2 Olaparib PROfound
NCT02987543

Clinically
approved, 19
May 2020

mCRPC associated with a deleterious alteration in
an HRR gene who received AR- directed therapy

PARP-1,
PARP-2,
PARP-3

[61–63]

3 Olaparib Breast
cancer

OlympiAD
NCT02000622

Clinically
approved, 12
Jan. 2018

BRCA mutated HER-2 negative metastatic breast
cancer who have received chemotherapy either in
neoadjuvant, adjuvant or metastatic setting

PARP-1,
PARP-2,
PARP-3

[64–68]

OlympiA
NCT02032823

Clinically
approved, 11
Mar. 2022

For adjuvant treatment of BRCA mutated HER-2
negative early breast cancer who have received local
treatment and neoadjuvant or adjuvant
chemotherapy

4 Talazoparib EMBRACA
NCT01945775

Clinically
approved, 16
Oct. 2018

BRCA mutated HER-2 negative locally advanced/
metastatic breast cancer

PARP-1,
PARP-2,
PARP-16

[64–71]

5 Olaparib Ovarian
cancer

NCT01078662 Clinically
approved 19
Dec. 2014

BRCA mutated ovarian cancer who have received 3
or more prior lines of chemotherapy

PARP-1,
PARP-2,
PARP-3

[72–78]

SOLO-1
NCT01844986

Clinically
approved, 19
Dec. 2018

As first-line maintenance treatment of BRCA-
mutated advanced ovarian cancer

PAOLA-1
NCT02477644

Clinically
approved, 08
May 2020

In combination with bevacizumab for first-line
maintenance treatment of homologous
recombination deficient (HRD)–positive advanced
ovarian cancer

6 Niraparib NOVA
NCT01847274

Clinically
approved, 27
Mar. 2017

Maintenance treatment for platinum sensitive
ovarian cancer

PARP-1,
PARP-2

[79–83]

QUADRA
NCT02354586

Clinically
approved, 23
Oct. 2019

HRD-positive advanced ovarian cancer patients
treated with three or more prior chemotherapy
regimens

PRIMA
NCT02655016

Clinically
approved, 29
Apr. 2020

Maintenance treatment in patients with advanced
Ovarian cancer following complete or partial
response to front line platinum-based chemotherapy

7 Rucaparib ARIEL3
NCT01968213

Clinically
approved, 6
Apr. 2018

Maintenance treatment of recurrent epithelial
ovarian, cancer who are sensitive to platinum-based
chemotherapy

PARP-1,
PARP-2,
PARP-3

[84,85]
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Talazoparib was FDA approved for BRCA mutated HER-2
negative locally advanced/metastatic breast cancer based on
EMBRACA trial [69,70].

A recent study profiled the crystal structure of the 10
most potent PARP inhibitors by either binding to PARP1
and PARP2 and revealed that veliparib and niraparib are
selective inhibitors of PARP1 and PARP2; Olaparib,
Rucaparib, and Talazoparib are more potent inhibitors of
the PARP1 but are less selective [99] (Fig. 3). Going forward
these studies would help improve efficacy and minimize
toxicities from PARP inhibitors. Most PARP inhibitors
compete with NAD at the active site of PARP-1 enzyme.
Since NAD-like PARP inhibitors are less selective as NAD is
ubiquitous and NAD competitors could lead to off-target
effects, non-NAD-like PARP inhibitors are a novel class of
drugs that target histone-dependent activation of PARP-1, a
mechanism that is unique to PARP-1. One such inhibitor is
5F02 which showed superior anti-tumor activity in in vitro
and in vivo models of prostate cancer [20].

PARP Inhibitors-the New Phase of Treatment for
Metastatic Prostate Cancer?

The promising outcomes from the clinical trials involving
PARP inhibitors for breast and ovarian cancer patients have
resulted in a series of studies from research groups across
the world to try to broaden the patient cohort which could
be benefitted from their use. It is now known that these
BRCA mutations also increase the risk of other cancers such
as colon (reviewed by Oh et al., [100], melanoma [101],
pancreatic, gastric cancers, and prostate cancers (reviewed
by Cavanagh et al., [102]). BRCA1 and BRCA2 mutations
have shown a pivotal role in DNA repair dysfunction in
prostate cancers. Germline BRCA2 carriers have a 5.0 to
8.6-fold increased risk of developing prostate carcinoma
[103,104]. Also, the prevalence of germline HR mutations
among men with metastatic prostate cancer ranges from
8%–14%, indicative of a large proportion of men with
advanced disease may benefit from these agents. In addition,
PARP inhibition also showed selective lethality in tumor
cells with TMPRSS2-ERG gene fusions [105], which are
identified in more than 50% of prostate tumors, especially in
hormone-insensitive metastatic prostate cancer. Given these
findings, as well as the lack of effective treatments for
castration-resistant metastatic prostate cancer (mCRPC),
PARP inhibitors were tested for efficacy in this patient
subset. The phase II open-label, single-arm, two-stage,
TOPARP-A trial was conducted to test Olaparib efficacy in
tested metastatic-castration resistant prostate cancer
(mCRPC) has shown promising results [106]. The study
found that 14 out of 16 patients who responded to Olaparib
treatment had aberrations in DNA repair-related genes.
Further classifying the response based on the mutation
showed that all patients with a BRCA2 alteration responded
to treatment with Olaparib and defects in ATM were also
indicative of response to Olaparib, excluding 1 patient with
ATM alteration, who did not respond to therapy. In the rest
of 28% patients without DNA repair defects, Olaparib was
not observed to be effective [106]. These impressive results

led the FDA to grant a breakthrough designation for the use
of Olaparib in mCRPC patients with BRCA1/2 or ATM
alterations.

The second part of the TOPARP study (TOPARP-B)
aimed to validate the role of Olaparib in BRCA2 or ATM
carriers and to provide added efficacy data in presence of
less common mutations in other DNA repair-related genes,
which have been previously linked to PARP inhibitors
sensitivity, such as RAD51, FANC, ATR, CDK12, MRE11,
CHEK1, CHEK2, and ETS gene fusions. The study
confirmed that Olaparib has antitumor activity against
heavily pre-treated mCRPC with DDR gene defects, with
BRCA1/2 aberrant tumors being the most sensitive but with
confirmed responses in patients with other DDR alterations
(PALB2 57% (4/7; mPFS 5.3mo); ATM 37% (7/19; mPFS
6.1mo); CDK12 25% (5/20; mPFS 2.9mo)). Another phase 2
trial is also underway to compare abiraterone vs. Olaparib as
a single agent vs. the combination of the two drugs in
metastatic CRPC patients with germline or somatic HR
mutations.

A phase III PROFOUND trial, in which patients with
abiraterone and/or enzalutamide-pretreated CRPC were
screened for somatic HR deficiency mutations and then
randomized to either AR-targeted therapy or Olaparib. In
the Olaparib group, the progression-free survival was
significantly longer than the control group (median 7.4 vs.
3.6; HR, 0.34; p < 0.001). As compared to either
enzalutamide or abiraterone, Olaparib was associated with
better measures of response. This led to its approval by FDA
in May 2020 for mCRPC associated with a deleterious
alteration in HRR genes who received AR-directed therapy
[61,62].

TRITON 2, a phase 2 trial, led to accelerated approval of
rucaparib in May 2020, for mCRPC patients with a deleterious
BRCA alteration who have received both AR-directed therapy
and taxane-based chemotherapy [59,60]. Another phase 3 trial
named TRITON3 is underway to study the efficacy of
rucaparib, a potent PARP1, PARP2, and PARP3 inhibitor,
in patients with mCRPC associated with HR deficiency
(BRCA1/2 or ATM gene mutations) in comparison to vs.
treatment with physician’s choice of abiraterone acetate,
enzalutamide, or docetaxel.

It will be important to see if these trials would validate
the use of PARP inhibitors in prostate cancer patients. An
integrated genomic analysis of advanced prostate cancer
revealed that aberrations of BRCA2, BRCA1, and ATM were
observed at substantially higher frequencies (19.3% overall)
compared to those in primary prostate cancers [107], which
reinforces the testing of PARP inhibitors in mCRPC. Also,
considering that most metastatic CRPC patient survival is
less than 10 months, PARP inhibitors do open new avenues
for mCRPC patients with HR repair deficiency.

Therapeutic Potential of the Combination of PARP
Inhibitors and Immune Checkpoint Inhibitors (ICI)

In the last decade, Immunotherapy has dramatically improved
treatment outcomes for cancer patients across multiple tumor
types, including lung, melanoma, ovarian, genitourinary, and,
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more recently, breast cancer, with long-lasting responses.
Despite promising results, immunotherapy only benefits a
subset of patients due to low overall response rates. There is
currently a lot of interest in either in patient selection
through biomarkers or finding combinatorial approaches to
build synergy with immunotherapy. DNA-damaging agents,
in particular, have the potential to improve immunotherapy
response by promoting neoantigen release, increasing tumor
mutational burden, and increasing PD-L1 expression. The
rationale behind using combination of PARP inhibitors in
DDR-defective cancer cells is that these prevent single-
strand DNA repair, which increases DNA damage,
enhancing the load of tumor mutations, thus making the
tumors more immunologically “hot” [108]. In DDR-
defective cells, trapping of PARP at the lesions was shown
to result in stalled replication forks and unrepaired lesions,
which increased micronuclei formation. These micronuclei
are detected by the cytoplasmic DNA sensor, cGAS, which
leads to activation of STING/pTBK1 and type 1 Interferon
(IFN) gene signaling that in turn is crucial in mounting
robust anti-tumor immune response [108–110]. Several
ongoing clinical trials are exploring the benefit of the
combination of immunotherapy and PARP inhibition,

summarized in Table 4. One such trial, NCT02484404, was
carried out for mCRPC, in which the combination of
Durvalumab (anti-PDL-1 antibody) and Olaparib was
shown to induce PSA responses (reduction ≥ 50%) in 8 out
of 17 patients (47%) [110,111]. Progression-free survival was
longer in patients with known DDR mutations than the
DDR-proficient ones. However, interestingly, the
durvalumab and Olaparib combination demonstrated
clinical activity in platinum-resistant recurrent ovarian
cancer independent of BRCA status. While the data now
available indicate that combining PARP inhibitors with ICI
could overcome immunological insufficiency, additional
data from ongoing trials will be necessary to shed further
light on this.

The Road Ahead for PAPR Inhibitors: Promises and
Challenges

The clinical trials done with PARP inhibitors so far are highly
encouraging and substantiate the fact that these inhibitors
could offer better responses not just in breast and ovarian
cancer, but in other “PARP-dependent tumors” as well.

TABLE 4

PARP inhibitors in combination with immunotherapy in various phases of clinical trials for prostate cancer, breast cancer, and ovarian
cancer

S.
No.

PARP
inhibitor

Immunotherapy Cancer Main trial Status Cohort References

1 Olaparib Pembrolizumab (anti-
PD-1 antibody)

Prostate
cancer

KEYLYNK-010
NCT03834519

Under phase 3 trial
Trial start: 02 May 2019
Estimated completion: 29
Sept. 2023

mCRPC [111–114]

Durvalumab (anti-
PD-L1 antibody) and
Cediranib (VEGFR)

NCT04336943 Under phase 2 trial
Trial start: 13 Apr. 2021
Estimated completion: 30
Apr. 2025

Prostate cancer
with high
neoantigen load

Durvalumab (anti-
PD-L1 antibody)

NCT02484404 Under phase 1/2 trial
Trial start: 29 Jun. 2015
Estimated completion: 30
Dec. 2024

Prostate cancer

Pembrolizumab (anti-
PD-1 antibody)

KEYNOTE-
365
NCT02861573

Under phase 1/2 trial
Trial start: 17 Nov. 2016
Estimated completion: 30
May 2025

mCRPC

2 Talazoparib Avelumab (anti-PD-
L1 antibody)

NCT03330405 Under phase 2 trial
Trial start: 19 Oct. 2017
Estimated completion: 03
Jan. 2023

castration
resistant prostate
cancer

[115]

3 Rucaparib Nivolumab (anti-PD-
1 antibody)

CheckMate
9KD
NCT03338790

Under phase 2 trial
Trial start: 19 Dec. 2017
Estimated completion: 15
Jul. 2023

mCRPC [116]

4 Pamiparib BGB-A317
(tislelizumab) (PD-1)

NCT02660034 Phase 1 trial completed on
09 Sep. 2020

mCRPC [117]

(Continued)
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Table 4 (continued)

S.
No.

PARP
inhibitor

Immunotherapy Cancer Main trial Status Cohort References

5 Olaparib Durvalumab (anti-
PD-L1 antibody)

Breast
cancer

DORA
NCT03167619

Phase 2 trial completed on
30 Jun. 2022

Platinum treated
triple negative
breast cancer

[111,118–122]

Pembrolizumab (anti-
PD-1 antibody)

NCT03025035 Under phase 2 trial
Trial start: 10 Sep. 2017
Estimated completion:
Nov. 2025

BRCA mutated/
HRD-defect
breast cancer

Durvalumab (anti-
PD-L1 antibody)

NCT02484404 Under phase 1/2 trial
Trial start: 29 Jun. 2015
Estimated completion: 30
Dec. 2024

Triple negative
breast cancer

Atezolizumab (anti-
PD-1 antibody)

NCT02849496 Under phase 2 trial
Trial start: 15 Nov. 2016
Estimated completion: 31
Aug. 2023

BRCA mutated
Non-HER2
positive breast
cancer

Durvalumab (anti-
PD-L1 antibody)

OlympiaN
NCT05498155

Under phase 2 trial
Trial start: 21 Oct. 2022
Estimated completion: 20
Nov. 2026

BRCA mutated
HER2 negative
breast cancer

Durvalumab (anti-
PD-L1 antibody)

NCT03544125 Phase 1 trial completed in
18 Nov. 2020

Metastatic triple
negative breast
cancer

6 Talazoparib Avelumab (anti-PD-
L1 antibody)

NCT03330405 Under phase 2 trial
Trial start: 19 Oct. 2017
Estimated completion: 03
Jan. 2023

Triple negative
breast cancer

[115]

7 Niraparib Dostarlimab (PD-1)
plus radiation therapy

NADiR
NCT04837209

Under phase 2 trial
Trial start: 21 Jul. 2021
Estimated completion: 01
Dec. 2029

Metastatic triple
negative breast
cancer

[123–125]

Pembrolizumab (anti-
PD-1 antibody)

TOPACIO
NCT02657889

Phase 1 trial completed on
17 Sep. 2021

Triple negative
breast cancer

TSR-042
(Dostarlimab)

NCT04673448 Under phase 1 trial
Trial start: 18 Oct. 2021
Estimated completion: 30
Mar. 2026

Metastatic breast
cancer

8 Pamiparib BGB-A317
(tislelizumab) (anti-
PD-1 antibody)

NCT02660034 Phase 1 trial completed on
09 Sep. 2020

Triple negative
breast cancer

[117]

9 Rucaparib Atezolizumab (anti-
PD-1 antibody)

NCT03101280 Phase 1 trial completed on
11 Aug. 2020

Triple negative
breast cancer

[126]

10 Olaparib Durvalumab (anti-
PD-L1) and Cediranib
(VEGFR)

Ovarian
cancer

NCT02484404 Under phase 1/2 trial
Trial start: 29 Jun. 2015
Estimated completion: 30
Dec. 2024

Advanced/
recurrent ovarian
cancer

[111,127–129]

Tremelimumab (anti-
CTLA-4 antibody)

NCT04034927 Under phase 2 trial
Trial start: 11 Oct. 2019
Estimated completion: 31
Dec. 2022

Platinum sensitive
recurrent ovarian
cancer

Tremelimumab (anti-
CTLA-4 antibody)

NCT02571725 Under phase 1/2 trial
Trial start: 23 Feb. 2016
Estimated completion: 15
Jul. 2027

Recurrent BRCA
mutated ovarian
cancer

(Continued)
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Data from these clinical trials also argue for the need to change
our conventions of treating cancer mainly based on
anatomical sites and rather create a “molecular
stratification” which may improve treatment response,
especially in advanced-stage tumors with limited treatment
alternatives. In line with this theory, increasing evidence
suggests that BRCA may be inactivated by multiple
mechanisms in a large proportion of breast cancers, despite
possessing a functional gene structure, a trait now called
“BRCAness”. It would be interesting to see whether the use
of PARP inhibitors could be extended to these cases as well.
On a cautious note, it is also important to draw our
attention to breast cancer cases with confirmed BRCA
mutations, which do not respond well to PARP inhibitors.

The study 42, which examined Olaparib monotherapy in
germline BRCA mutation carriers, found an objective
response rate of 34% only [132]. Also, there were cases of
ovarian cancers, with no apparent BRCA defect, which
responded well to PARP inhibitor therapy. Even though the
number of these cases has been marginal, it is important to
understand the reason for the failure to improve the
predictivity of treatment response. Also, while the
distinction in sensitivity between BRCA1 and BRCA2-
associated ovarian cancers remains unclear in the clinical
setting, emerging in vitro data does indicate that all BRCA
mutations are not equal in their functionality. This suggests
that the location of BRCA1 mutation may influence the
efficacy of PARP inhibitors, which should be considered in
future studies.

Another important area of active research in the field is
identifying accurate biomarkers of response to PARP
inhibitors apart from BRCA mutation status. Measurement
of PARylation levels of peripheral blood mononuclear cells
was explored in a study [133]. The homologous
recombination deficiency score which has been used to
identify patients with defective DNA repair mechanisms
(including tumors without BRCA mutations) was shown to
be associated with increased response rates in neoadjuvant
settings [134]. Studies are also undergoing to find methods
for evaluation of HR proficiency through the formation of
nuclear RAD51 foci [135] as well as the evaluation of BRCA
promoter hypermethylation or the levels of 53BP1
expression [136]. However, these results need to be
validated in independent large cohorts.

As with other chemotherapeutic drugs, the development
of resistance to PARP inhibitors also needs to be addressed.
Studies have demonstrated that using PARP inhibitors in
cancer cells carrying mutations in BRCA1 or BRCA2 could
develop resistance by acquiring secondary mutations in the
BRCA genes that, interestingly, reverse the effect of the
original mutation, restoring the levels of functional BRCA
proteins [137,138]. Upregulation of genes that encode P-
glycoprotein efflux pumps, a known culprit for drug
resistance could also hamper the effectiveness of PARP
inhibitors [139]. Alterations in signaling pathways have also
emerged as mechanisms of PARP1 inhibitor resistance. One
example involves the role of microRNAs (miR-622), in
modulating the balance of the DNA repair pathway [140].

Table 4 (continued)

S.
No.

PARP
inhibitor

Immunotherapy Cancer Main trial Status Cohort References

Durvalumab and
tremelimumab

NCT02953457 Under phase 2 trial
Trial start: 29 Jun. 2017
Estimated completion: 15
Dec. 2022

BRCA-mutated
ovarian cancer

11 Niraparib Atezolizumab (anti
PD-L1 antibody)

ANITA
NCT03598270

Under phase 3 trial
Trial start: 21 Nov. 2018
Estimated completion: Jan.
2025

Recurrent ovarian
carcinoma

[124,125,130,131]

Dostarlimab (PD-1) MOONSTONE
NCT03955471

Phase 2 trial completed on
12 Jan. 2022

Platinum resistant
ovarian cancer

TSR-042
(Dostarlimab)

NCT04673448 Under phase 1 trial
Trial start: 18 Oct. 2021
Estimated completion: 30
Mar. 2026

BRCA mutated
ovarian cancer

Pembrolizumab (anti
PD-1 antibody)

NCT02657889 Phase 1 trial completed on
17 Sep. 2021

Recurrent
Ovarian cancer

12 Talazoparib Avelumab (anti-PD-
L1 antibody)

NCT03330405 Under phase 2 trial
Trial start: 19 Oct. 2017
Estimated completion:
03 Jan. 2023

recurrent
platinum sensitive
ovarian cancer

[115]

13 Rucaparib Atezolizumab (anti-
PD-L1 antibody)

NCT03101280 Phase 1 trial completed on
11 Aug. 2020

Advanced ovarian
cancer

[126]
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Another study revealed that phosphorylation of PARP1 at
Y907 by c-Met leads to PARP inhibitor resistance and
identified c-Met as an important regulator of PAPR
inhibitor response [141]. Current approaches to
PARP inhibitor resistance are centered on combining PARP
inhibition with other DNA damage response inhibitors,
immune-checkpoint inhibition, or targeted therapies. To
further improve therapeutic outcomes, it is important to
improve our understanding of HR-deficient cancers and
find agents that target the acquired vulnerabilities of PARP
inhibitor-resistant tumors, delay the onset of resistance, or
selectively kill unresponsive cells.

Conclusions

With the advent of techniques like next-generation
sequencing, liquid biopsies, and circulating tumor DNA
analyses, the possibility of utilizing a personalized
therapeutic approach seems highly possible. On the clinical
end, ongoing PARP trials would offer significant
information on optimal agent selection, scheduling, and
dosing either alone or in combination, which will be
important for the rationalized use of PARP inhibitors in
multiple cancer types. However, overcoming mechanisms of
resistance and the identification of reliable predictive
biomarkers of response would need to be first addressed
using in vitro and pre-clinical model systems. With the
success of immunotherapy in multiple cancer types, it will
also be important to answer if PARP inhibition and
immunotherapy could work synergistically and improve
overall survival in cancer patients.
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