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Abstract: Scaffold proteins are crucial regulators of signaling networks, and their abnormal expression may favor the

development of tumors. Among the scaffold proteins, immunophilin covers a unique role as ‘protein-philin’ (Greek

‘philin’ = friend) that interacts with proteins to guide their proper assembly. The growing list of human syndromes

associated with the immunophilin defect underscores the biological relevance of these proteins that are largely

opportunistically exploited by cancer cells to support and enable the tumor’s intrinsic properties. Among the

members of the immunophilin family, the FKBP5 gene was the only one identified to have a splicing variant. Cancer

cells impose unique demands on the splicing machinery, thus acquiring a particular susceptibility to splicing

inhibitors. This review article aims to overview the current knowledge of the FKBP5 gene functions in human cancer,

illustrating how cancer cells exploit the scaffolding function of canonical FKBP51 to foster signaling networks that

support their intrinsic tumor properties and the spliced FKBP51s to gain the capacity to evade the immune system.

Introduction

Scaffold proteins are crucial regulators of signaling networks
[1,2]. In addition to interacting with multiple members of a
signaling pathway and tethering them into complexes [2],
these multidomain proteins can exert allosteric control over
their partners and are themselves the target of the regulation
[2]. With their protein-protein interaction modules, scaffold
proteins assist the assembly of intracellular signaling
complexes downstream of numerous receptors [3].
Abnormal expression of scaffold proteins may contribute to
the dysregulation of signaling pathways and favor the
development of tumors [4,5].

Relevant roles in cancer have been reported for the Cas
family member proteins [6], particularly, NEDD9 [7]
assembles complexes involving oncogenic kinases, including

focal adhesion kinase (FAK), Abelson tyrosine-protein
kinase (ABL), Rous sarcoma tyrosine-protein kinase (SRC),
and Aurora-A (AURKA) thus [7], regulating the magnitude
and duration of cell signaling cascades acting in
tumorigenesis and metastases. The scaffold protein Ezirin, a
member of the ezrin/radixin/moesin (ERM) family of
proteins [8], acts as a cross-linker of membrane proteins or
phospholipids in the plasma membrane and the actin
cytoskeleton and functions as a platform for signaling
molecules at the cell surface [8]. As focal points for the
association of signaling molecules and downstream
pathways, scaffold proteins are explored as potential
anticancer therapeutic targets [8–13]. RAC (Rho family)-
alpha serine/threonine-protein kinase (AKT), the well-
known transducer of oncogenic signals in virtually all
human tumors [14], has received considerable attention
from a therapeutic perspective [15].

The scaffold protein sodium-hydrogen exchanger
regulatory factor 1 (NHERF1) is being explored to optimize
current anticancer drugs targeting EGFR signaling [16]
because it controls EGFR recycling/degradation. Stabilizing
the EGFR on the plasma membrane, NHERF1 increases cell
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sensitivity to the tyrosine kinase inhibitors that affect EGFR-
driven motility and invadopodia-dependent ECM
proteolysis in cancer cells [16].

Within the scaffold proteins, immunophilins cover a
unique role as “protein-philins” (Greek “philin” = friend)
that interact with proteins to guide their proper assembly
[17–19]. Immunophilins include two large subfamilies of
proteins, namely cyclophilins and FK506 binding proteins
(FKBPs) [18] that were first identified as the binding proteins
for the immunosuppressant cyclosporin (a cyclophilin ligand)
and FK506 and rapamycin (FKBP ligand) [18]. The growing
list of human syndromes associated with the immunophilin
defect underscores the biological relevance of these proteins
[20–23]. Immunophilins are largely opportunistically
exploited by cancer cells to support and enable the tumor’s
intrinsic properties [23–30]. For a comprehensive review of
immunophilins as dynamic scaffolding elements in diverse
signaling complexes, see [19].

Among the members of the immunophilin family, the
FKBP5 gene was the only one identified to have a splicing
variant [31]. Isoform 1 of the FKBP5 gene contains a
tandem FK separated by a short linker sequence and three
tetratricopeptide repeat motifs (TPR) for protein/protein
interaction. The N-terminal FK is responsible for the
peptidylprolyl-isomerase (PPIase)- and ligand-binding
activities. The 2nd FK is inactive as PPIase but retains an
interaction ability. This domain contains an ATP/GTP-
binding sequence. For the structure of FKBP51, we refer to
the original papers by Sinars et al. [32], and Bracher et al. [33].

The spliced isoform 2 of the FKBP5 gene, FKBP51s, was
first identified in melanoma patients; it is codified by the
transcript variant 4 (NM_001145777.1 mRNA). Because of a
frameshift, FKBP51s has multiple differences in the coding
region and 3′ UTR compared to canonical variant 1. The
resulting protein (NP_001139249.1) is shorter because it
lacks the TPR protein/protein interaction domain, and has a
distinct C-terminus compared to canonical isoform 1 [31].

Alternative splicing of mRNA precursors is an almost
ubiquitous and extremely flexible gene checkpoint in
humans [34]. It allows cells to create protein isoforms of
different, sometimes opposite functions from a single gene.
Cancer cells actively exploit alternative splicing to expand
their proteome to accomplish the diversity of their
hallmarks, including survival, proliferation, migration
invasion, renewal, and immune evasion. Many isoforms
produced in this way are developmentally regulated and
preferentially re-expressed in tumors [34].

Due to its multiple interactors for which we refer to
Hähle et al. [35], FKBP51 has pleiotropic functions and
regulates numerous fundamental aspects of cell biology and
physiology of living organisms, including development [36],
differentiation [37,38] metabolism [39], response to
hormones [32] and immune response [40]. Our review
focuses on the scaffold roles of FKBP51 involved in signal
transduction pathways and genetic and epigenetic regulation
that drive cancer initiation and progression. We illustrate
how cancer cells exploit the canonical FKBP51 to foster
signaling networks, as, for example, NF-κB, Akt, and TGF-β
that support tumor intrinsic properties and the spliced
FKBP51s to gain the capacity to evade the immune system.

FKBP51 Scaffold Roles in Signal Transduction

Nuclear factor-kappaB (NF-κB) signaling
The NF-κB signal transduction pathway is the prototype of
modular composites of functionally interdependent sets of
proteins that coordinate to translate environmental stimuli
into a cellular response [41]. In 2004, Bouwmeester et al.
characterized the protein interaction network of Tumor
necrosis factor (TNF)-α/NF-κB pathway components using
an integrated approach comprising tandem affinity
purification, liquid-chromatography tandem mass
spectrometry, network analysis, and directed functional
perturbation studies using RNA interference [41]. Such a
mapping study identified FKBP51 for the first time as a
major multifunctional kinase cofactor in NF-κB signaling
among 221 molecular associations and 80 unknown
interactors. This latter was co-purified with IκB kinase
(IKK)α, IKKε, transforming growth factor-β-activated kinase
1 (TAK1), and mitogen-activated protein kinase kinase-1
(MEKK1). The interaction with IKKα was confirmed by co-
immunoprecipitation. Following RNA interference of
FKBP51, the authors demonstrated an impaired NF-κB
activation, measured in a luciferase reporter assay,
underlining an essential role for the immunophilin in the
overall signaling process of NF-κB activation.

In 2014, Erlejman et al. [42] reported that FKBP51
impaired the nuclear translocation rate of NF-κB and its
transcriptional activity. Because FKBP51 and FKBP52 are
responsible in a mutually exclusive fashion for the retro-
transport mechanism of steroid hormone receptors, the
authors hypothesized that these immunophilins could
similarly regulate the translocation of NF-κB proteins. They
found an association of either FKBP51 or FKBP52 with NF-
κB/RelA, with FKBP52 promoting the nuclear translocation
while FKBP51 the cytoplasmic retention. Moreover,
following Chromatin immunoprecipitation (ChIp) assays,
they proposed that both immunophilins are recruited to the
promoter sequences of NF-κB regulated genes, with FKBP51
inhibiting NF-κB transcriptional activity, while FKBP52
favors such activity.

In 2015, Romano et al. [43], by co-immunoprecipitation
assays, confirmed the physical interaction between FKBP51
and IKKα and also demonstrated an interaction with IKKγ,
IKKβ, and TNF-receptor associated factor 2 (TRAF2).
FKBP51-knockdown inhibited the binding of IKKγ to the
IKK catalytic subunits, i.e., IKKα and IKKβ, and impaired
overall IKK catalytic activity. Either FKBP51 TPR and
PPIase domains were required for their interaction with
TRAF2 and IKKγ, whereas only the TPR domain was
involved in interactions with IKKα and β. TRAF2 catalyzes
K63-linked polyubiquitination of receptor-interacting
protein 1 (RIP1) in response to TNFα receptor triggering;
this non-canonical polyubiquitin chain recruits both TAK1
complex (consisting of TAK1 and TAK1-binding proteins
TAB2, and TAB3) and the IKK complex, by binding directly
to the ubiquitin-binding domains present on TAB2 and
IKKγ. By interacting with TRAF2, FKBP51 reinforces IKKγ
recruitment to the K63 ubiquitin chain that keeps closer
RIP1, TAK1, and IKK [44]. FK506 and SAFits, respectively,
unselective and specific inhibitors of the FKBP51 isomerase
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activity, impaired the IKK-regulatory role of FKBP51. These
results support the conclusion that FKBP51 promotes NF-
κB activation by serving as an IKK scaffold and an
isomerase. Fig. 1 summarizes the different results from
literature on FKBP51 in the NF-κB signaling.

AKT signaling
A role for FKBP51 as a scaffold protein in AKT signaling was
proposed in 2009 by Pei et al. when they identified the
immunophilin as part of the protein complex AKT/PH
domain leucine-rich repeat protein phosphatase (PHLPP),
which enhanced the de-phosphorylation of AKT in a
pancreatic cancer context [45]. The authors co-
immunoprecipitated PHLPP1 and AKT with FKBP51,
showing that the immunophilin, AKT, and PHLPP exist as
a complex in cells. By employing FKBP51 mutants, they
demonstrated that the N-terminus of the immunophilin
(FK1 and FK2 domains) is bound to Akt, while the C-
terminus, i.e., TPR domain, to PHLPP. They observed that,
in the absence of FKBP51, Akt was hyperphosphorylated at
Serine 473 (S473) due to the inefficient binding of PHLPP
to Akt. Moreover, they found that AKT S473
phosphorylation was conserved upon the overexpression of
the FKBP51 mutant FD67/68DV that lacks peptidylprolyl
isomerase activity, suggesting that FKBP51 regulates AKT
phosphorylation in an isomerase-independent manner and,
thus, acting as a scaffolding protein to promote the AKT-
PHLPP interaction [45]. Fabian et al. performed a detailed
analysis of the domains involved in the interaction between
FKBP51 and AKT, showing that AKT could directly bind to
FKBP51 via the FK1 domain or indirectly via the TPR
domain through heat-shock protein 90 (HSP90) [46].
Notably, other parts of the FK1 domain that do not exert
PPIase activity are involved in the binding of FKBP51 to

AKT [46]. Mutations in the FK1 site abolished the
isomerase activity without affecting binding to AKT [46]. In
2017, the research group that first identified the role of
FKBP51 as a scaffold protein for PHLPP [45] reported that
this scaffold does not necessarily assist the de-
phosphorylation of AKT [47]. They identified the sirtuin 7
(SIRT7) as an interactor of FKBP51 and responsible for its
deacetylation at residues K28 and K155. They found that in
different breast or prostate cancer cell lines, depletion of
SIRT7 significantly increased the phosphorylation of AKT at
S473 by regulating the acetylation status of the
immunophilin [47]. Moreover, conversely, the FKBP51
acetylation was increased by P300/CBP and produced an
increased AKT phosphorylation at S473 [47].

Gassen et al. reported a role for FKBP51 in autophagy
regulation that involved AKT1 and PHLPP. They found a
physical interaction between FKBP51 and Beclin-1 that
increased the stability of Beclin-1 [48]. They showed that
FKBP51 recruits E3 ubiquitin ligase S-phase kinase-
associated protein 2 (SKP2) to Beclin-1. SKP2 executes K48-
linked ubiquitination at K402 of Beclin-1, resulting in
proteasomal degradation. The authors propose that the
recruitment of SKP2 to FKBP51 produced defective K48-
linked ubiquitination of Beclin-1 due to PHLPP-mediated
AKT deactivation, which hampered protein degradation.

A very recent paper by our group demonstrated that the
TPR domain of FKBP51 mediates AKT ubiquitination at K63,
which is an essential step for AKT activation [49]. The spliced
FKBP51, lacking such a domain, could not link K63-Ub
residues to AKT. PHLPP stabilized the level of E3-ubiquitin
ligase TRAF6 and supported K63-ubiquitination of AKT.
This finding introduces an unknown oncogenic role for the
phosphatase PHLPP supported by the interactome profile of
FKBP51 carried out on melanoma cells overexpressing

FIGURE 1. FKBP51 in the NF-κB signaling. Left, according to Bouwmeester et al. [41], FKBP51 is the major interactor of IKKα essential for
activation of the transcription factor. Middle, as to Erlejeman et al. [42], FKBP51 impairs the nuclear translocation rate of NF-κB and its
transcriptional activity. Right, Romano et al. [43] show FKBP51 guarantees the assembly and activity of the IKK complex. By interacting
with TRAF2, it reinforces IKK recruitment to K63 ubiquitin chain and keeps closer RIP1, TAK1, and IKK. The illustration was started
from scratch, created with BioRender.com original design.
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PHLPP [49]. An over-representation of components involved
in cell division, transcription, and translation, along with a
decrease of those related to apoptosis, highlighted a relevant
role for PHLPP in improving oncogenic hallmarks. The
spliced FKBP51 isoform can explain the discrepant results
from the literature. Accelerated splicing towards the
FKBP51s could shift the equilibrium between the two
isoforms generating a reduced ability to ubiquitinate AKT
due to the loss of the TPR domain. Also, a low tumor level
of PHLPP, as it may occur in pancreatic cancer [49], can
lead to a scarce activation of AKT on FKBP51-
overexpression. Fig. 2 summarizes the different results from
literature on FKBP51 in the AKT signaling.

AMPK/mTOR signaling
Recent findings position FKBP51 as a central regulatory
switch between AMPK and mTOR, pivotal proteins in
autophagy regulation [48,50]. The balance between the
adenosine 5′-monophosphate (AMP)–activated protein
kinase (AMPK) and the mechanistic target of rapamycin
(mTOR) regulates autophagy. WD-repeat protein
interacting with phosphoinositides (WIPI) proteins are
essential scaffold proteins that link autophagy’s key
regulatory elements with metabolite-sensing enzymes [51].
Following Bakula et al., who demonstrated that WIPI3 and
WIPI4 are essential scaffolders of the liver kinase B1
(LKB1)/AMPK/Tuberous Sclerosis (TSC)1/2 signaling
network [51], Häusl et al. [50] found that FKBP51 recruits
LKB1 to the WIPI4-AMPK regulatory platform to induce
AMPK phosphorylation, which stimulates autophagy
initiation by direct phosphorylation of UNC51-like kinase 1
(ULK1) complex, one of the most upstream components
acting in the autophagy machinery. Furthermore,
performing co-immunoprecipitation studies in neuronal
cells, the authors showed an association of FKBP51 with
TSC2, which depended on the presence of WIPI3, opening
the possibility of an inhibitory role of FKBP51 in mTOR
signaling. Fig. 3 illustrates the proposed mechanisms for
FKBP51 roles in the AMPK/mTOR/autophagy axis.

Transforming growth factor-β1 (TGF-β1)/EMT signaling
Using a differential display technique, Giraudier et al. found
increased expression of FKBP51 in megakaryocytes of
patients suffering from idiopathic myelofibrosis [52]. The
same group demonstrated that FKBP51 sustained the
production and release of TGF-β1 in the bone marrow
microenvironment of a murine model of myelofibrosis
mediated by NF-κB activation [53]. These results
highlighted for the first time a pathogenetic role for FKBP51
in such a myeloproliferative disorder characterized by
fibrosis development [53]. The FKBP51 stimulating effect on
TGF-β1 production was confirmed by Romano et al. in
melanoma [54]. They also demonstrated a role for FKBP51
in regulating the TGF-β signaling [55]. By co-
immunoprecipitation assays, Romano et al. found that
FKBP51 interacts with the general transcriptional co-
activator p300 and the TGF-β transcription factors Smad2/3
[55] and promotes some transcriptional activities of the
TGF-β, precisely the gene expression of vimentin (VIM) and
secreted protein acidic and cysteine-rich (SPARC),
associated with accelerated tumor growth, invasion, and
poor prognosis of melanoma [55]. ChIp assays showed
FKBP51/p300 complexes bound to the promoter of the
melanoma cancer stem-cell marker ATP-binding cassette
transporter G2 (ABCG2) [54]. This finding, together with
the observation of an increased transcript level of ABCG2
and an increased number of ABCG2+ cells upon FKBP51
overexpression in melanoma cells, further supported a role
for FKBP51 as a co-regulator in gene expression [54].
Interestingly, ABCG2+ melanoma stem cells showed the
highest expression levels of epithelial to mesenchymal
transition (EMT) genes, including Twist basic helix-loop-
helix transcription factor 1 (TWIST), Snail family of zinc-
finger transcription factors (SNAIL), Snail Family Zinc
Finger 2 (SLUG), CDH-2/N-cadherin, VIM, SPARC [54]
highlighting EMT and cancer stemness are intertwined
aspects in melanoma biology and progression.

By a cell-by-cell immunohistochemical analysis in
colorectal cancer (CRC) and liver metastases resected after

FIGURE 2. FKBP51 in the AKT signaling. Left, FKBP51 is a scaffold protein for the complex AKT/PHLPP and promotes AKT inactivation in a
pancreatic cancer context [45]. Middle, FKBP51 acetylation status influences its binding to the AKT/PHLPP complex. When bound to SIRT7 is
deacetylated and binds AKT and PHLPP. When FKBP51 is acetylated by P300/CBP, AKT phosphorylation increases as the complex is
disrupted [47]. Right, the FKBP51/Akt/PHLPP complex operates in K63-ubiquitination of Akt, thus supporting the phosphorylation of
Akt [49]. The illustration was started from scratch, created with BioRender.com original design.
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chemotherapy with oxaliplatin, Rotoli et al. showed a
molecular interaction between the scaffold proteins
angiomotin-like 2 (AmotL2), FKBP51, and IQ motif
containing GTPase-activating protein 1 (IQGAP1) proteins
within the EMT context of cancer tissues [56]. The
colocalization of CD34 (a telocyte marker) with AmotL2,
FKBP51, and IQGAP1 in tumor vessels was indicative of a
role for these three scaffold proteins in tumor angiogenesis
and vascular invasion [56]. They also found a tumor nest
enveloped by several telocyte-like FKBP51+ cells. Notably,
telocytes are interstitial stromal cells [57] and key players in
regenerating and repairing organs. They establish a strict
cell-cell interaction within the stem cell niches [58] by
specific intercellular junctions. Functional interactions
between AmotL2, FKBP51, and IQGAP1 proteins in several
physiological and pathological situations were confirmed by
String analysis showing the involvement of proto-oncogene
SRC, HSP90, and yes-associated protein (YAP1) in AmotL2/
FKBP51/IQGAP1 multicomplex [5]. Fig. 4 illustrates FKBP51
in the TGF-β signaling.

FKBP51, Scaffold Roles in Genetic and Epigenetic
Regulation

Histone acetyltransferase (HAT)
Several studies support the interaction of FKBP51 with the
histone acetyltransferase HAT-p300 [47,54,55]. As
mentioned in the AKT section, Yu et al. [47] observed a

strict interaction among FKBP51 with p300 and CBP
(CREB-binding protein) and found that FKBP51 acetylation
was increased by CBP and, to a lesser extent, p300 [47]. In
vitro assays showed that CBP and p300 acetylated FKBP51,
while SIRT7 reverted this post-translational modification
[47]. Notably, p300/CBP inhibition is currently explored as
anticancer therapy [59,60] as it can affect the transcription of
proteins involved in distinct oncogenic networks across
different cancer types [59]. The interaction of FKBP51 with
p300/CBP suggests an involvement of the immunophilin in
chromatin modification [54]. Tufano et al. observed a general
increase in HDACs and a reduced level of acetylated-p300 in
FKBP51-KO melanoma cells [61]. These KO-cells also
showed increased expression of the TNF-related apoptosis-
inducing ligand (TRAIL) receptor DR5 and increased
sensitivity to TRAIL-induced apoptosis. Death receptor 5
(DR5) expression is inhibited at the transcriptional level by
the repressor activity of acetyl-Yin Yang 1 (YY1). YY1 is
acetylated by p300 and deacetylated by HDACs [62]. A ChIP
assay on KO-cells showed a reduced acetyl-YY1 on the DR5
promoter, associated with increased DR5 transcript levels.
Reconstituting FKBP51 levels contrasted the effects of KO on
DR5-, acetyl-YY1-, and acetyl-p300-levels [61]. Fig. 5 shows
a graphical representation of the proposed relationship
between FKBP51 and p300 and protein acetylation.

CCND1 and Cyclin-dependent kinase (CDK)
ChIp studies found FKBP51 bound to the CCND1 gene in an
open chromatin status accompanied by increased CCND1

FIGURE 3. FKBP51 in the AMPK/mTOR/autophagy axis. Left, FKBP51 recruits LKB1 to the WIPI4-AMPK regulatory platform to induce
AMPK phosphorylation and autophagy initiation by direct phosphorylation of the ULK1 complex. Furthermore, FKBP51 interacts with
TSC2, in a WIPI3-dependent manner, and activates autophagy through mTOR inhibition [50]. Right, FKBP51 can directly act on
autophagy by binding Beclin-1 and producing a defective K48-linked ubiquitination of Beclin-1 by SKP2 [48]. The illustration was started
from scratch, created with BioRender.com original design.
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transcript levels [63]. This finding suggested a role for FKBP51
in participating in transcriptional complexes regulating the
synthesis of cyclin D. By double immunofluorescence
experiments on formalin-fixed and paraffin-embedded CRC
samples, Rotoli et al. found FKBP51 and Proliferating cell
nuclear antigen (PCNA) protein exhibiting nuclear
colocalization in the early S phase in malignant cells
forming tumor nests [56]. Cyclin D1 belongs to the core cell
cycle machinery. Once induced, it binds and activates the

cyclin-dependent kinase (CDK)4 and CDK6. Cyclin D-
CDK4/6 holoenzymes phosphorylate proteins, such as the
retinoblastoma protein (pRB), which governs cell cycle
progression. In breast cancer, Jirawatnotai et al. identified
FKBP51 as one of the most abundant CDK4 interacting
proteins with a crucial role in CDK4 stability [64]. Newly
translated CDK4 is first incorporated into a protein complex
containing the chaperone HSP90 and the co-chaperone
adaptor CDC37 in the cytoplasm, where CDK4 is stabilized

FIGURE 5. FKBP51 and p300 and protein acetylation. Left, FKBP51 interaction with p300/CBP drives to YY1 acetylation and promotes its
repressor activity on the DR5 promoter. Right, FKBP51 KO reduces acetyl-YY1 on the DR5 promoter, and DR5 transcript levels increase [61].
The illustration was started from scratch, created with BioRender.com original design.

FIGURE 4. FKBP51 in the TGF-β signaling. FKBP51 forms a complex with P300 and Smad2/3 that binds to the promoters of genes involved in
cancer stemness and EMT. The illustration was started from scratch, created with BioRender.com original design.
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in an inactive form [65,66]. The authors found that CDK4
interacts with FKBP51 or CDC37 but does not form a
ternary CDK4-FKBP5-CDC37 complex, suggesting that
FKBP51 stabilizes CDK4 level via a CDC37-independent
mechanism. The authors found that depletion of FKBP51
decreased CDK4 protein levels and impaired CDK4 kinase
activity, suggesting that FKBP51 promotes oncogenesis by
stabilizing CDK4. In a mouse study, Ruiz-Estevez et al. [67]
confirmed CDK4/FKBP51 interaction, but they found that
FKBP51 sequesters CDK4 within the HSP90 storage
complex and prevents the formation of the cyclin D1-CDK4
complex. FKBP51, through its isomerase activity, inhibited
phosphorylation, hence activating CDK4. By these
mechanisms, FKBP51 positively regulated myoblasts
differentiation and myogenesis [67]. Fig. 6 illustrates the
proposed mechanisms for FKBP51 role in cancer cell
proliferation and chromatin remodeling.

Human telomerase reverse transcriptase (hTERT)
Lagadari et al. demonstrated that FKBP51 interacts with
human telomerase reverse transcriptase (hTERT) [68].
hTERT is the catalytic subunit of the enzyme telomerase,
together with the telomerase RNA component (TERC),
which comprises the essential unit of the telomerase
complex [68]. As known, telomerase or terminal transferase
is a ribonucleoprotein that adds a species-dependent
telomere repeat sequence to the 3′ end of telomeres, thus
contributing to protecting the end of the chromosome from
DNA damage. hTERT is an HSP90 client-protein highly
expressed in cancer cells, where it is required to compensate
for the loss of telomeric DNA after each successive cell

division. Lagadari et al. [68] found that FKBP51 is primarily
localized in mitochondria, whereas hTERT is nuclear.
Following oxidative stress, FKBP51 becomes nuclear and
colocalizes with hTERT. FKBP51 promotes hTERT catalytic
activity. The authors identified an essential role for
FKBP51 PPIase activity for upregulating hTERT activity and
for the TPR domain for efficient interaction of hTERT with
HSP90 [68]. Fig. 7 illustrates FKBP51 role in telomerase
elongation.

Argonaute 2 (Ago2)
A role of FKBP51 in post-transcriptional regulation has been
identified by Martinez et al., who found an association of
FKPB5 to Argonaute 2 (Ago 2) in mouse embryonic stem
cells (ESCs) [69]. Ago proteins load both siRNAs and
miRNAs as short duplexes of w22 bp; after this event, one
strand, the guide, is stably retained while the other strand is
degraded. Pharmacological inhibition of the Fkbp5-Ago2
interaction by the immunosuppressant FK506 or by Fkbp5
knockdown blocked miRNA-dependent stabilization of
Ago2 expression resulting in decreased Ago2 protein
expression, both in mouse and human cells. Ectopic FKBP5
expression increased Ago2 protein levels in a miRNA-
dependent fashion. Given that FK506 binds to active PPIase
domain, and FK506 treatment reduced Ago2 levels, along
with the presence of two prolines in the RNA-bound Ago2
structure. A crucial role for Fkbp5 in Ago2 regulation was
confirmed by mutagenesis analysis, indicating that both the
PPIase and TPR domains facilitated Ago1 loading; however,
the enzymatic function may be dispensable [70].
Accordingly, another FKBP, FKBP6, endowed with an

FIGURE 6. FKBP51 in cancer cell proliferation and chromatin remodeling. Left, FKBP51 sequesters CDK4 within the HSP90 storage complex
and prevents the formation of the cyclin D1-CDK4 complex [64]. Middle, FKBP51 binds the CCND1 promoter in an open chromatin status
accompanied by increased CCND1 transcript levels [63]. Right, FKBP51 interacts and stabilizes CDK4 promoting cell cycle progression and
prooncogenic activity [65,66]. The illustration was started from scratch, created with BioRender.com original design.
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inactive PPIase domain, plays a role in the biogenesis of Piwi-
interacting RNAs [71]. Fig. 8 illustrates FKBP51 interaction
with Ago2 and RNA processing.

FKBP51s

A role as a folder in PDL-1 biogenesis
Among the different protein chaperones that have been
reported to either directly or indirectly influence the folding
and expression of the programmed death ligand-1 (PDL-1)
[72], FKBP51s plays a pivotal role in PDL-1 glycosylation
and presentation on the cell surface [73]. PDL-1, also known

as CD279 or B7-H1, is a 33-kDa type I transmembrane
glycoprotein that contains IgV- and IgC-like domains in its
extracellular region [74]. PDL-1 is physiologically expressed
in macrophages, some activated T and B cells, dendritic cells
(DCs), and some epithelial cells [75,76]. It can be expressed
by tumor cells constitutively or adaptively in response to
immune cell infiltration [77,78]. Although the molecular
mechanism is still poorly characterized, it seems that
FKBP51s acts at the level of the endoplasmic reticulum (ER)
compartment where PDL-1 precursor protein is synthesized,
thereby suggesting a possible role of the chaperone in the
biogenesis of PDL-1 [73]. FKBP51s maintains the same

FIGURE 8. FKBP51 and RNA processing. FKBP51 interacts with Ago2 in its RNA-bound structure, thus increasing Ago2 levels and favoring
RNA processing [71]. The illustration was started from scratch, created with BioRender.com original design.

FIGURE 7. FKBP51 role in telomerase elongation. FKBP51 interacts and promotes hTERT catalytic activity into the nucleus [68]. The
illustration was started from scratch, created with BioRender.com original design.
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FIGURE 9. Putative 3D structures of the PPIse domains, FK1 (middle panels) and FK2 (right panels), of FKBP51s (https://www.rcsb.org/
structure/3O5D) and PPIase domain (left panels) of TF (https://www.rcsb.org/structure/1T11). Front (upper panels) and top (lower panels)
views are shown. All the panels have been generated and arranged using the UCSF Chimera software.

FIGURE 10. Proposed mechanism for FKBP51s role as PDL-1 foldase FKBP51s may assist PDL-1 nascent chain as it emerges from the
ribosome, thereby regulating its biogenesis during the co-translational translocation process of PDL-1 protein into the ER. The illustration
was started from scratch, created with BioRender.com original design.
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structural organization as the full-length FKBP51 except for the
lack of the protein-protein interaction domain TPR, which
becomes replaced for the alternative splicing by a short new
C-terminal amino acidic stretch whose function is still
unknown [31]. However, the N-terminal portion of the
chaperone consisting of the two PPIase domains (FK1 and
FK2) remains intact and, as such, the peptidylprolyl cis/trans
isomerase activity [73]. Accordingly, pharmacological
inhibition of the PPIase activity by SAFit2 treatment affects
PDL-1 glycosylation, plasma membrane expression, and
contrasts PDL-1-induced cell death of activated lymphocytes
cocultured with glioblastoma cells [73,79]. In an orthotopic
mouse model of glioblastoma, daily treatment with SAFit2
significantly reduced tumor PDL-1 expression and growth
[79]. Interestingly, PDL-1 belongs to the type I
transmembrane protein family. Once the protein is correctly
co-translationally translocated and inserted into the ER
membrane, its topological organization provides that its
proline-rich extracellular portion faces the ER lumen. In
contrast, its short C-terminal tail, which does not contain
any proline residues, faces the cytosolic side of the ER
membrane (UniProt ID: Q9NZQ7). Due to the lack of a
needful signal sequence to access the ER lumen, FKBP51s
has a cytosolic localization which should not allow either
interception or isomerization of proline residues of the PDL-
1 polypeptide. D’Arrigo et al. reported that FKBP51s, and
not the full-length FKBP51, was enriched in the ER fraction
of glioblastoma cell lines suggesting a possible association
with the ER membranes [73]. Much evidence has been
shown that the ER entry of newly synthesized protein

precursors can be assisted by different cytosolic proteins
acting either at the level of the Sec61 translocon channel or
the associated ribosomes during the co-translational
translocation process [80–83]. In E. coli, a PPIase-containing
chaperone, which plays a crucial role in assisting nascent
chains destined for membrane translocation, is the trigger
factor (TF) [84–87].

Interestingly, the PPIase domains of FKBP51s show
somewhat structural similarity to the PPIase domain of TF.
Indeed, as shown in Fig. 9, the 3D structure of the PPIase
domain belonging to the TF displays a concave shape,
which consists mainly of beta sheets with an alpha helix
branch inside. This structural organization closely resembles
the structure of the two PPIases domains of the FKBP51
protein, suggesting a possible similar function [84–87].

Notably, TF is a specialized chaperone supporting very
early the protein folding program [87]. This ribosome-
bound protein binds to short nascent chains as they emerge
from the ribosome. Around the first 40 amino acids of the
nascent chain are protected from the cytosol into the
ribosomal exit tunnel [88,89]. Crosslink experiments have
shown that TF binds to ribosomal proteins L23 and L29 in
the exit tunnel [87]. In particular, the interaction with L23
has been reported as critical [87]. Even if TF possesses
PPIase activity, the binding of TF to peptides is independent
of the presence of proline residues [90]; therefore, the
PPIase activity could not be required for the TF
chaperoning of nascent chains.

Given the non-luminal ER localization of FKBP51s and
the dependence of PDL-1 synthesis on the presence of a

FIGURE 11. FKBP51 interactions with signaling molecules. The graphical abstract is an overview of the pathways regulated by FKBP5
isoforms in cancer. For details, refer to the text. The illustration was started from scratch, created with BioRender.com original design.
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functional PPIase domain of FKBP51s, it could be conceivable
to speculate that FKBP51s could assist PDL-1’s nascent chain
as it emerges from the ribosome, thereby regulating its
biogenesis during the co-translational translocation process
driving the insertion of PDL-1 protein into the ER
membrane. Fig. 10 illustrates the proposed mechanism for
FKBP51s role in PDL-1 biogenesis.

Possible role as a scaffold in transcriptional complex
A recent finding raises the hypothesis that FKBP51s participates,
as the canonical FKBP51 in the events that govern cyclin-D
oscillation being part of the transcriptional complex bound to
CCND1 [63]. Following a study on mouse embryonic
fibroblasts (MEFs) demonstrating a role for cyclin-D in the
control of PDL-1 expression [91], a study conducted on
glioblastoma cell lines showed that the level of PDL-1 changed
during the cell cycle [63]. More precisely, PDL-1 mRNA
appeared to increase concomitantly to CCND1 on G1/S
transition, to decrease during exponential cell growth
progressively. In the temporal window of PDL-1 and CCND1
peak, when PDL-1 protein expression level increased on the
plasma membrane, FKBP51s localized in ER. On the decrease
of cyclin-D and cell proliferation, FKBP51s went nuclear. We
interrogated the CCND1 promoter and intronic sequences for
their H3K27me3 and H3K4me3 pattern in A375 melanoma
FKBP51-KO cells upon exogenous FKBP51 or FKBP51s
expression. Our data revealed that H3K4me3 modifications,
associated with high transcription activity, occurred in Flag-
FKBP51 immunoprecipitated chromatin to the detriment of
H3K27me3, thus producing a ratio of α-H3K4me3/α-
H3K27me3 >1. In FKBP51s overexpressing cells, ChIp
confirmed the binding to CCND1, but the α-H3K4me3/α-
H3K27me3 arrangement was consistent with a closed
chromatin conformation. In line with this finding, CCND1
mRNA levels were significantly reduced in FKBP51s
overexpressing cells, compared to empty vector (EV) levels.

Conclusions

Multiple cancer hallmarks are coordinately modulated in most
tumor types by classical oncogenic drivers, including NF-κB,
AKT, and TGF-β signaling. Additionally, genetic and
epigenetic alterations exert a pivotal role in cancer initiation
and progression. The scaffold function of FKBP51 supports
these protumoral factors helping in the intracellular
assembly of signaling molecules involved. With its splicing
isoform, the FKBP5 gene addresses the tumor requirement
to evade the immune system and survive immune attacks.
Fig. 11 summarizes FKBP51 interactions and signal
transduction pathways examined in this article. Preclinical
studies have shown that treatment with drugs that target
FKBP5 exerts antitumor effects on glioblastoma mouse
models [79,92]. A caveat is, however, envisaged. FKBP51,
whether on the one hand is aberrantly expressed by the
tumor cells, on the other hand, is constitutively expressed in
immune cells with a role in immune activation and
proliferation [40]. Thus, as it occurs for many anticancer

drugs, FKBP51-targeted therapy can impact the immune
system, which deserves careful assessment in clinical trials.
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