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Abstract: Background: Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death

worldwide. Therapeutic failure in lung cancer (LUAD) is heavily influenced by drug resistance. This challenge stems

from the diverse cell populations within the tumor, each having unique genetic, epigenetic, and phenotypic profiles.

Such variations lead to varied therapeutic responses, thereby contributing to tumor relapse and disease progression.

Methods: The Genomics of Drug Sensitivity in Cancer (GDSC) database was used in this investigation to obtain the

mRNA expression dataset, genomic mutation profile, and drug sensitivity information of NSCLS. Machine Learning

(ML) methods, including Random Forest (RF), Artificial Neurol Network (ANN), and Support Vector Machine

(SVM), were used to predict the response status of each compound based on the mRNA and mutation characteristics

determined using statistical methods. The most suitable method for each drug was proposed by comparing the

prediction accuracy of different ML methods, and the selected mRNA and mutation characteristics were identified as

molecular features for the drug-responsive cancer subtype. Finally, the prognostic influence of molecular features on

the mutational subtype of LUAD in publicly available datasets. Results: Our analyses yielded 1,564 gene features and

45 mutational features for 46 drugs. Applying the ML approach to predict the drug response for each medication

revealed an upstanding performance for SVM in predicting Afuresertib drug response (area under the curve [AUC]

0.875) using CIT, GAS2L3, STAG3L3, ATP2B4-mut, and IL15RA-mut as molecular features. Furthermore, the ANN

algorithm using 9 mRNA characteristics demonstrated the highest prediction performance (AUC 0.780) in Gefitinib

with CCL23-mut. Conclusion: This work extensively investigated the mRNA and mutation signatures associated with

drug response in LUAD using a machine-learning approach and proposed a priority algorithm to predict drug

response for different drugs.

Introduction

Lung cancer is the leading cause of cancer-related deaths and
one of the most commonly diagnosed malignancies globally
[1]. Approximately 85% of lung cancer patients are
diagnosed with Non-Small Cell Lung Cancer (NSCLC).
Within this category, the dominant histological subtypes are
lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) [2,3]. Treatment options for non-small
cell lung cancer include surgical resection, chemotherapy,

radiation, targeted therapy, immune therapy, and or a
combination of these. Polychemotherapy for NSCLC
frequently consists of a platinum-based drug (such as
cisplatin or carboplatin) combined with additional
treatments with a different action mechanism [3].
Chemotherapy and radiation treatment have been shown to
extend the time to progression and Overall Survival (OS) in
patients with inoperable stage III NSCLC [4]. However,
drug resistance is a primary culprit for therapeutic failure in
NSCLC, culminating in tumor recurrence and disease
progression. This resistance stems from the tumor’s diverse
cell population, each possessing varied genetic, epigenetic,
and phenotypic traits, leading to a spectrum of responses to
treatment.

Research evidence indicates that the LUAD subtype be
considered when selecting a chemotherapeutic drug [5–7].
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Veronesi et al. [5] revealed that second-line paclitaxel therapy
was more effective in LUAD following cisplatin
administration for lung cancer. Gemcitabine-platinum and
taxane-platinum regimens tend to increase median survival
time for adenocarcinoma, albeit the former has higher
objective response rates and a trend to improve OS [7].
High-throughput sequencing technology and bioinformatics
approaches have been applied to elucidate disease
pathogenesis [8,9] and highlight the underlying genetic
features that define subtypes of lung cancer [10,11]. These
cutting-edge technologies aided in the discovery of a
complex network of driver mutations that are intricately
linked to varied therapy response rates. This correlation,
underscored by the multifaceted interplay between genetic
abnormalities and therapeutic efficacy, provides vital
insights for tailoring precision medicine strategies,
enhancing therapeutic outcomes, and expanding our general
understanding of lung cancer biology. EGFR TKIs have a
high response rate (60%–70%) in EGFR-mutated cancers
[12], while Anaplastic Lymphoma Kinase (ALK) inhibitors
have a comparable response rate (60%) in patients with
ALK translocations [13].

The significance of immunological research in cancer has
grown in recent years. A deeper understanding of immune
responses, particularly in the context of LUAD, might
provide valuable insights into disease pathogenesis and
therapeutic intervention. Like many cancers, LUAD
manipulates the immune system to promote tumor
progression and resistance to therapy. Research evidence has
demonstrated a complex interplay between tumor cells,
immune cells, and the tumor microenvironment in LUAD,
leading to immune evasion and disease progression. The
role of sepsis-associated genes in LUAD has particularly
piqued interest from researchers due to their potential as
therapeutic targets. Sepsis-associated genes play vital roles in
immunological responses, and their dysregulation can result
in immune dysfunction and contribute to LUAD
pathogenesis. Furthermore, immune-based therapeutic
strategies, including immunotherapy, have shown promise
in LUAD treatment, emphasizing the relevance of
immunological research. Understanding the complex
interactions between immune response, sepsis-associated
genes, and LUAD may give new insights into disease
mechanisms and pave the way for developing innovative,
targeted therapies.

Additionally, Machine Learning (ML), a specific subset
of artificial intelligence that enables autonomous learning
from data, has significantly contributed to genomics
research [14–16]. Several studies have used ML-based
approaches to predict treatment responses in various
diseases [17,18]. For instance, Ahn et al. (2021) used ML to
develop a clinical decision support algorithm to predict the
anti-PD-1 response in LUAD [18]. However, most research
focuses on predicting the response to a specific treatment
and providing an appropriate strategy. Extensive drug
response prediction and prediction accuracy comparison
between ML-based methods are warranted because various
treatments adapt to different approaches to estimate the
response rate.

The present investigation employed the genomics of drug
sensitivity in cancer (GDSC) database to retrieve the mRNA
expression dataset, genomic mutation profile, and drug
sensitivity information of NSCLS. Machine learning
methods, including Random Forest (RF), Artificial Neurol
Network (ANN), and Support Vector Machine (SVM), were
applied for each compound to predict the response status
based on the mRNA and mutation features selected by
statistical methods. The most suitable method for each drug
was proposed by comparing the prediction accuracy of
different ML methods, and the selected mRNA and
mutation features were identified as molecular features for
the drug-responsive cancer subtype (Fig. 1).

Materials and Methods

Data resource
The mRNA expression datasets, gene mutation profile, and
drug response sensitivity of LUAD were downloaded from
Genomics of Drug Sensitivity in Cancer (GDSC) [19]. A
total of 55 cell lines with the treatment of 175 drug
compounds were analyzed, and 50% inhibitory
concentration (IC50) and Area Under Curve (AUC) were
retrieved to represent the drug sensitivity of cell lines. In
addition, 37,263 genes with Transcripts Per Kilobase Million
(TPM) value were extracted, and a mutation profile
containing 19,913 genes was included.

Identification of drug response-related genes
The Pearson correlation coefficient was calculated between the
values of IC50/AUC and the expression of each gene for each
drug to select gene features for response prediction. A gene
correlated to IC50 with |cor| > 0.5 and correlated to AUC
with |cor| > 0.5 was deemed a drug response-related gene.

Identification of drug response-related mutation
To select feature mutations for response prediction, the
corresponding cell lines for each drug were divided into
mut-type groups and wild-type groups based on the

FIGURE 1. Workflow of drug response prediction in mutation-
subtype-specific LUAD with machine learning approach.
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mutation status of the gene. t-test was then applied to
determine the significance of differences between mut-type
and wild-type groups. p-values were determined, and p-
value < 0.05 were used to screen out significantly different
pairs. p-values of t-test of IC50 < 0.05 and AUC < 0.05
denoted drug response related mutations.

Survival analysis
We retrieved the mRNA profiles and clinical data of LUAD
samples from the TCGA database. The survival risk of
patients was predicted using a Cox proportional hazards
model-based survival analysis. Patients were divided in half
based on the median gene expression levels of a selected
marker gene. The R program “Survival” [20] was used to
perform a Kaplan-Meier curve analysis, and the p-value
between the two groups was determined. Marker genes were
described as significantly correlated indicators for LUAD
prognosis (p < 0.05).

Pathway enrichment analysis
The Gene Set Enrichment Analyze (GSEA) [21] of biological
processes was performed using the Gene Set Variation
Analysis (GSVA) [22] R package. GO enrichment analysis
[23] and KEGG enrichment analysis [24] were performed
using the clusterProfiler [25] R package. The scores of
immune-related pathways were quantified using the GSEA
technique to investigate immune-relevant biological
processes; The genes implicated in these pathways were
retrieved from the Molecular Signatures Database
(MSigDB) [26].

Prediction of drug response with machine learning algorithm
Three ML approaches (including RF, SVM, and ANN) were
employed to predict drug response using R software. The
dataset was divided into a training dataset (70%) and a test
dataset (30%) for each compound. Subsequently,
experimentally measured IC50 values (the half-maximal
inhibitory concentration of a compound with respect to cell
viability) were used to train RF/SVM/ANN classification
models that predict IC50 of LUAD cell lines against each
compound, allowing for drug response prediction. The
prediction model was trained using a subset of the full data
matrix containing gene and mutation features. Finally, 10-
fold cross-validation was applied, and the confusion matrix
and AUC of the prediction model for train and test data
were calculated to measure the prediction efficiency.

Detection of cell apoptosis levels by flow cytometry
Cells are inoculated into a 6-well plate and washed twice with
PBS, then resuspended in 500 μL of sample buffer. According
to the instructions of the kit, the cells are labeled with Annexin
V-FITC/PI and then detected by flow cytometry.

Cell cycle detection method
Cells (A549 and NCI-H1975) in the logarithmic growth phase
are used, adjusting the cell density to 1 × 105/mL. The cells are
inoculated into a 6-well plate at 2 × 105 cells/well. siRNAs
transfection and hypoxia treatments are conducted as
previously described. Each group of cells is digested with
trypsin, collected, and washed once with PBS. They are then

added to 1 mL of DNA staining solution containing 10 μL
of permeabilizing solution, and the mixture is vortexed for
5–10 s for thorough mixing. After incubation at room
temperature, in the dark, for 30 min, the cell cycle is
detected by flow cytometry (n = 3 per group).

Hoechst 33342 staining of live cells
Cells are inoculated into a 6-well plate. After the cells are
cultured post si-1 and si-2 intervention, the culture medium
is discarded. The cells are fixed with ethanol, washed twice
with PBS, and stained with Hoechst 33342 stain for 15 min.
After washing twice with PBS, the cells are mounted with
glycerol water solution, and observed under a fluorescence
microscope. The cell nuclei appear as blue fluorescence.

Detection of protein expression levels by western blot
Cells are inoculated into a 6-well plate and cultured post si-1
and si-2 intervention. After the culture medium is discarded
and cells are collected, the cells are lysed on ice for 30 min
with lysis buffer. After the lysis solution is clarified by
centrifugation, the supernatant is collected, and protein
quantification is performed using a BCA kit. The protein
concentration is adjusted, followed by SDS-PAGE and
PVDF transfer. The membrane is blocked, and primary
antibodies (p-AKT and p-PI3K, diluted 1:500 and 1:800
respectively) are added, and the solution is incubated
overnight at 4°C. After washing twice with TBST, secondary
antibodies are added (diluted 1:3000), and the reaction is
developed using an ECL kit. The grayscale value is analyzed
using Image J software.

Detection of mRNA expression levels by RT-qPCR
Cells are inoculated into a 6-well plate and cultured post si-1
and si-2 intervention for 24 h. After the culture medium is
discarded and cells are collected, total RNA is extracted
using the Trizol method. The reaction system is prepared
according to the instructions of the kit, and the reaction is
performed at 37°C for 60 min, reverse transcribing mRNA
into cDNA. The PCR reaction system is prepared according
to the real-time fluorescence quantitative PCR kit: 2.5 ×
RealMaster Mix/20 × SYBR solution 4.5 μL, 1 μL each of the
forward and reverse primers, cDNA 2 μL, and nuclease-free
water 1.5 μL, total 10 μL. The primer sequences are given in
Table 1. The reaction conditions are as follows: initial
denaturation at 94°C for 15 min, followed by 40 cycles of
denaturation at 94°C for 20 s, annealing at 56°C for 30 s,
and extension at 68°C for 30 s. GAPDH is used as an
internal control to calculate the expression of the target RNA.

Statistical analysis
Unless otherwise stated, all analyses and visualisations were
performed using R software (version 4.2.1). Statistical
significance was set at p < 0.05.

Gene features for drug-response prediction
A total of 175 drug compounds corresponding to 55 lung
cancer cell lines from GDSC were analyzed, and gene
features for each drug were identified according to Method.
As a result, 47.86% (82/175) of drugs lacked gene features
and were thus excluded in downstream analysis. Most drugs
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(26.88%, 25/93) contained one gene feature, whereas 90.52%
(86/95) of the drugs had <10 characteristic genes (Fig. 2A).
OSI-027 is an orally bioavailable mammalian target of
rapamycin (mTOR) kinase inhibitor with potential
antineoplastic activity [27] and has the most characteristic
genes of any medication (416). Besides, Savolitinib has 263
characteristic genes and has been shown to promote anti-
tumour activity in patients with MET-amplified, EGFR
mutation-positive, advanced LUAD [28]. On the other
hand, most genes (89.39%, 1398/1564) are solely
characteristics of one drug, implying various response
mechanisms for different drugs (Fig. 2B).

Mutation features for drug response prediction
In addition to gene features, mutation characteristics played a
role in model construction, and 45 mutant genes were
identified as characteristic mutations for 78 drugs. A single
characteristic mutation existed in 38.46% (30/78) of all the
drugs (Fig. 3A). Ulixertinib and Uprosertib had the most
and second-most characteristic mutations among all the
drugs, with 9 and 8, respectively. Ulixertinib (BVD-523) is
an ERK1/2 kinase inhibitor with potent preclinical activity

in BRAF- and RAS-mutant cell lines [29]. Furthermore,
22.22% (10/45) of the mutations were identified as
characteristic mutations for at least 5 drugs, whereas 33.33%
(15/45) of the mutations were identified as characteristic
mutations in one drug (Fig. 3B). The mutant status of
ATP2B4 was significantly correlated with the drug response
of 29 compounds (Fig. 3C). Previous research revealed that
p38 MAPK activation induces internalization and
subsequent degradation of ATP2B4 through the endo/
lysosomal system, contributing to the low ATP2B4 steady-
state protein level and making it a putative metastasis
suppressor in BRAF mutant melanoma [30]. Ninety-three
compounds with 1564 feature genes and 78 compounds
with 45 feature mutations were selected for downstream
analysis using the feature selection method. Furthermore, 46
compounds had gene and mutation features used to
construct the prediction model (Fig. 4).

Drug response prediction
We employed three machine learning algorithms to develop
prediction models for 46 drugs containing both drug and
mutation characteristics to predict the response of LUAD to

FIGURE 2. Identification of gene signatures. Distribution of (A) drugs per signature gene and (B) signature genes per drug. Heatplot of the
correlation coefficient between expression of signature genes and (C) IC50 and (D) AUC form GDSC (signature genes per drug >5, drugs per
signature gene >3), respectively. (E) Boxplot of nature log of the fixed IC50 and (F) AUC in drugs with at least one signature gene.

TABLE 1

Primer of KREMEN2 used in this study

Gene Forward sequence (5′ to 3′) Reverse sequence (5′ to 3′)

KREMEN2 CACAACTTCTGCCGTAACCC CACAAAGCATCCCAGGTAGC

412 KEGANG JIA et al.



drugs based on the screened genes and mutation
characteristics related to drug response. The AUC value of
each model was determined to assess the prediction capacity
of different algorithms for different drug responses. SVM
(Support Vector Machine) is a widely used supervised
binary classification model, and it showed upstanding
performance in the response prediction model for 11 drugs.
Uprosertib (AUC = 0.94) (Fig. 5A) demonstrated stronger
predictive power than other drugs, followed by Dactolisib
(AUC = 0.90) (Fig. 5B), Afuresertib (AUC = 0.88) (Fig. 5C).
Furthermore, we used the neuralnet package of R to
construct an ANN model for drug response prediction and
calculated the accuracy and AUC value of each model. The
ANN model with accuracy, specificity, and AUC value > 0.5
is used as an effective model, and 17 effective ANN models
are obtained: Telomerase Inhibitor IX (AUC = 0.97), BMS-
536924 (AUC = 0.91), Taselisib (AUC = 0.87) (Fig. 6A),

Vinorelbine (AUC = 0.87), TAF1_5496 (AUC = 0.85),
Gefitinib (AUC = 0.78) (Fig. 6B), Rapamycin (AUC = 0.78)
(Fig. 6C), Dactolisib (AUC = 0.75), Erlotinib (AUC = 0.74),
Vorinostat (AUC = 0.74), Mitoxantrone (AUC = 0.70), VX-
11e (AUC = 0.65), Trametinib (AUC = 0.61), BDP-
00009066 (AUC = 0.59), YK-4-279 (AUC = 0.58),
SCH772984 (AUC = 0.57), Vinblastine (AUC = 0.54). The
RF algorithm is a decision tree-based classifier ensemble
algorithm. We constructed a response RF model for each
drug using the randomForest package in R. The model
verification findings revealed that the RF algorithm has a
poor prediction effect, with the Erlotinib response model
having the best AUC value of 0.58 (Fig. 7). To summarize, a
comparison of the drug response models of the three
machine learning algorithms demonstrated SVM as the best
algorithm for constructing a drug response model for
LUAD, with an average value of 0.74 for the 46 drug

FIGURE 3. Identification of mutation signatures. Distribution of (A) drugs per signature mutation and (B) signature mutations per drug. (C)
overview of all the signature mutations for all drugs with p-value (IC50) < 0.05 and p-value (AUC) < 0.05.
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FIGURE 4. Comparison between drugs with gene
signatures and mutation signatures. (A) Forty-six
drugs included both signature gens and signature
mutations. (B) The mutatation status of 4 signature
genes was identified as signature mutations.

FIGURE 5. AUC of (A) Upeosertib, (B) Dactolisib, (C) Afuresertib model with SVM algorithm.

FIGURE 6. AUC plot of (A) Taselisib, (B) Geftinib, and (C) Rapamycin model with ANN algorithm.

FIGURE 7. AUC plot of (A) Erlotinib, (B) TAF1_5496, (C) NVP-ADW742 model with RF algorithm.
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response prediction models, followed by ANN (with an
average AUC value of 0.66), and the RF algorithm
performed the worst, with an average AUC of 0.23.

Prognosis analysis for signature genes and mutations
mRNA expression matrix and clinical information from
TCGA-LUAD were collected. Survival analysis was then
conducted on 1,564 signature genes and 45 mutations to
further examine the impact of drug response predictive
gene and mutation signatures on LUAD prognosis. Survival
analysis revealed that 111 signature genes for 36 drugs were
significantly linked to LUAD prognosis. RN7SKP129, the
signature gene of Savolitinib, was the most significant gene
related to LUAD prognosis (p-value = 0.00000053)
(Fig. 8A), and patients with high expression of RN7SKP129

had a better prognosis. Besides, LY86-AS1 was one of the
characteristic genes of IAP-5620, and survival analysis
revealed a significantly worse prognosis of LUAD patients
with high expression of LY86-AS1 (p-value = 0.00070)
(Fig. 8B). The rest of the top 10 significant prognosis-
related signature genes included MED15P9 (p-value =
0.00099) for OSI-027, MYO1H (p-value = 0.0013) for
AZD2014, MYEOV (p-value = 0.0014) for OSI-027,
CD83P1 (p-value = 0.0021) for AZD5991 and TAF1_5496,
TFAP2A (p-value = 0.0026) for IAP-5620, KREMEN2
(p-value = 0.0029), TRAV34 (p-value = 0.0032) for
Savolitinib, and PIMREG (p-value = 0.0033) for I-BET-762.
mut-STUB1 (p-value = 0.0038) (Fig. 8C), TRIM13 (p-value
= 0.0002) (Fig. 8D), mut-HTR3A (p-value = 0.039), mut-
BCKDHB (p-value = 0.039), TUBGCP6 (p-value = 0.002),

FIGURE 8. Survival analysis of (A) RN7SKP129, (B) LY86-AS1, (C) mut-STUB, and (D) mut-TRIM13 in LUAD with TCGA dataset.
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and mut-LIPA (p-value = 0.00015) were identified as feature
mutations and significantly related to LUAD prognosis.

Pathways related to drug-response activities
Genes with specific expression play a pivotal role in drug
response dynamics. To delve into the molecular mechanisms
affecting LUAD drug response, we conducted an enrichment
analysis on these signature genes. The GO enrichment
analysis showed that the signature genes predominantly
participated in immune-related pathways, such as the
“cellular response to chemokine” (Fig. 9A). They were also
notably involved in ion transportation pathways, highlighting
the “stress response to metal ion,” “response to zinc ion,”
and “cellular response to copper ion” (Fig. 9B). The
enrichment outcomes align well with our understanding of
cell signaling within the LUAD microenvironment,
suggesting intricate functional mechanisms governing the
LUAD response to drug treatment”.

The impact of siRNA on LUAD cell apoptosis
In an endeavor to discern if the inhibition of LUAD lung
cancer cell growth in A549 and NCI-H1975 by si-1 and si-2
is associated with an enhancement of apoptosis pathway
activation, we examined the effect of si-1 and si-2 on
apoptosis in A549 and NCI-H1975 cells using flow
cytometry. The results demonstrated that si-1 and si-2
induced 10.93% and 10.78% apoptosis in A549 cells (p <
0.05), respectively; furthermore, we observed that si-1 and si-
2 triggered 5.21% and 5.73% apoptosis in NCI-H1975 cells
(p < 0.05), respectively, which was statistically significant.
Additionally, compared to the si-NC group, the mRNA
expression of si-1 and si-2 was markedly downregulated in
A549 and NCI-H1975 cells (p < 0.05) (Figs. 10A–10C).

Cell cycle detection after siRNA LUAD
In the cell cycle experiment, colorectal cancer cells A549 and
NCI-H1975 transfected with si-1 or si-2 were treated with cell

cycle detection kit, and the changes in cell cycle were detected
using flow cytometry. Compared with the control group (G0/
G1 phase 55.77%, S phase 22.01%, G2/M phase 22.22%), in
A549 cells transfected with si-1 and si-2, the proportion of
G0/G1 phase significantly increased (63.27%, 64.58%,
respectively); the proportion of S phase significantly
decreased (18.9%, 18.03%, respectively); the proportion of
G2/M phase also decreased (17.78%, 17.35%, respectively).
Similarly, in NCI-H1975 cells, we found that after
transfection with si-1 and si-2, compared with the control
group (G0/G1 phase 55.73%, S phase 22.21%, G2/M phase
22.03%), the proportion of G0/G1 phase increased
significantly (64.75%, 65.08%, respectively); the S phase
proportion decreased (17.74%, 18.1%, respectively); and the
G2/M phase proportion also decreased significantly (17.49%,
16.79%, respectively) (Figs. 10F and 10G). These results
suggest that inhibiting KREMEN expression causes cell cycle
arrest at G0/G1 in colorectal cancer cells.

siRNA transfection efficiency
The percentage of GFP-positive cells was statistically
significant between the control group and si-1 and si-2
groups (p < 0.01) (Figs. 10F and 10G). In A549 cells,
compared with si-NC (52.6%), the GFP-positive cell rate in
both si-1 and si-2 groups decreased (28.53%, 28.87%, p <
0.01, respectively); and in NCI-H1975 cells, compared with
si-NC (52.97%), the GFP-positive cell rate in both si-1 and
si-2 groups decreased (30.21%, 29.75%, p < 0.01, respectively).

Hoechst 33342 staining of living cells
Apoptotic cells exhibited strong blue fluorescence after
Hoechst 33342 staining, and the level of cell apoptosis can
be qualitatively determined from the number of positive
cells. Staining results in A549 and NCI-H1975 cells showed
that compared to the number of positive cells in the control
group, the number of positive cells decreased after
intervention with si-1 and si-2 (Figs. 10H–10J).

FIGURE 9. GO enrichment analysis of signatures genes.
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Western blot detection of phosphorylated protein expression of
AKT and PI3K
In A549 cells, we found that the expression of AKT and PI3K
after phosphorylation significantly decreased with si-1 and si-
2, and the difference was statistically significant compared
with the control group (p < 0.05). In NCI-H1975 cells, we
observed that the levels of p-AKT and p-PI3K proteins
decreased after intervention with si-1 and si-2, and the
difference was statistically significant compared with si-NC
(p < 0.05) (Figs. 10K and 10L).

Discussion

In this investigation, we harnessed the capabilities of Machine
Learning (ML) to delve into the profound intricacies of
mRNA and mutation signatures associated with drug
response in lung adenocarcinoma (LUAD). The significance
of addressing drug resistance in LUAD, given its
predominant occurrence and the lethal nature among
cancers, cannot be overstated. Our findings have shed light
on pivotal molecular features that determine the
responsiveness of certain drugs, a crucial step towards
personalized medicine.

Our usage of the GDSC database, an acclaimed platform
in oncogenomics, endowed us with rich datasets,
encompassing mRNA expressions, genomic mutations, and
drug sensitivities. In comparison to previous studies which

typically focused on singular metrics (often just gene
expressions or mutations), our holistic approach
encompassed both mRNA and mutation profiles, offering a
more comprehensive view of the underlying mechanisms.

In the realm of machine learning, the debate over the
optimal predictive model is ceaseless. The versatility of
Random Forest (RF), the multi-layered sophistication of
Artificial Neural Networks (ANN), and the high-
dimensional prowess of Support Vector Machines (SVM)
have each found their acclaim in distinct applications [31–
33]. Our study uniquely positioned them in direct
competition under the same conditions. Our discovery that
SVM demonstrated exemplary performance in predicting
the response for Afuresertib is consistent with previous
research suggesting that SVM tends to outperform in cases
with high dimensionality and when the relationship between
features and response is complex. However, it is noteworthy
that ANN, with its deep learning capacities, excelled in
predicting Gefitinib’s response, underscoring that no
singular model universally dominates in all circumstances.

Comparing our results with similar endeavors, our
identification of 1,564 gene features and 45 mutational
features for 46 drugs stands out in its granularity. Studies
such as those by Smith et al. and Kaur et al. primarily
revolved around gene expressions, with a mere focus on a
handful of genes, potentially bypassing the intricate
interplay of myriad genes and mutations [34,35]. Our

FIGURE 10. Examination of si-1 and si-2’s impact on apoptosis, cell cycle, transfection efficiency, and protein expression in A549 and NCI-
H1975 cells. (A–C). Flow cytometry analysis of apoptosis in A549 and NCI-H1975 cells treated with si-1 or si-2. (D and E). Flow cytometry
analysis of the cell cycle in A549 and NCI-H1975 cells treated with si-1 or si-2. (F and G). Transfection efficiency of si-1 and si-2 in A549 and
NCI-H1975 cells. The GFP-positive cell rate significantly decreased in si-1 and si-2 groups compared to the si-NC group. (H–J). Hoechst 33342
staining of A549 and NCI-H1975 cells treated with si-1 or si-2. (K and L). Western blot analysis of the expression levels of phosphorylated AKT
and PI3K proteins in A549 and NCI-H1975 cells treated with si-1 or si-2. �p < 0.05, ��p < 0.01, ���p < 0.001.
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approach, in contrast, paints a more holistic picture, setting
the foundation for further nuanced research.

While our findings associated with Afuresertib and
Gefitinib are promising, the nuances of machine learning
predictions must be understood. Our chosen molecular
features, like CIT, GAS2L3, and ATP2B4-mut, while
instrumental in predictions, are pieces of a complex puzzle.
Earlier studies have posited various genes and pathways
linked to drug responsiveness, but the interpretation varies
based on patient cohorts, data preprocessing, and
methodologies adopted [36]. The overlaps and deviations
between our results and prior findings should be scrutinized
further, potentially unveiling novel insights or corroborating
existing hypotheses.

There are limitations to our study that should be
acknowledged. Despite the robustness of ML models, they
are, in essence, correlative. Our predictions, though highly
accurate, might not capture causative relationships.
Moreover, the inherent heterogeneity in tumor cells, as
stated in our background, means that a ‘one-size-fits-all’
approach might not always be feasible.

In conclusion, our study is a significant stride towards
harnessing ML in predicting drug responsiveness in LUAD,
laying emphasis on the intricate interplay of mRNA and
mutations. By juxtaposing our findings with those from
previous research, it becomes evident that the road to
conquering drug resistance in lung cancer is convoluted yet
achievable, necessitating multifaceted approaches like ours.
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