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Abstract: Ovarian cancer is among the most lethal gynecological cancers, primarily due to the lack of specific symptoms

leading to an advanced-stage diagnosis and resistance to chemotherapy. Drug resistance (DR) poses the most significant

challenge in treating patients with existing drugs. The Food and Drug Administration (FDA) has recently approved three

new therapeutic drugs, including two poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib and niraparib) and one

vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) for maintenance therapy. However, resistance to

these new drugs has emerged. Therefore, understanding the mechanisms of DR and exploring new approaches to

overcome them is crucial for effective management. In this review, we summarize the major molecular mechanisms of

DR and discuss novel strategies to combat DR.

Abbreviation
OC Ovarian cancer
DR Drug resistance
VEGF Vascular endothelial growth factor
HGSC High-grade serum ovarian cancer
PARPi Poly (ADP-ribose) polymerase inhibitors
TME Tumor microenvironment
PLD Pegylated liposomal doxorubicin
CR Clinical response
DDR DNA damage repair
CTR1 Copper transporter 1
HR Homologous recombination
P-gp P-glycoprotein
ROS Reactive oxygen species
Bcl-2 B-cell lymphoma 2
MMEJ Microhomology-mediated end joining

EphB4 Ephrin type-B receptor 4
MDR Multidrug resistance
CSCs Ovarian cancer stem cells
ASO Anti-sense oligonucleotides
OPNPs Organometallic polymeric nanoparticles

Introduction

Ovarian cancer (OC) is an endocrine-related cancer [1],
ranking as one of the most common and deadliest
gynecological cancers worldwide, with 313,959 new cases
and 207,252 deaths in 2020 [2–4]. Despite advancements in
various cancer treatment modalities, including surgical
techniques, chemotherapy, radiotherapy, targeted therapies,
and hormone therapy [5], OC remains a leading cause of
death among gynecological cancers. Furthermore, OC has a
high recurrence rate, with the mean time to recurrence
being approximately 2 years. Post-relapse treatments are
more aggressive, resulting in increased toxicity, resistance to
chemotherapeutic drugs, and substantial financial burdens
on patients, along with a diminished quality of life [5]. One
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of the primary reasons for the poor prognosis of OC is drug
resistance (DR), particularly to platinum-based compounds.
Around one-third of patients do not respond to initial
platinum-based chemotherapy, and over time, 80% of other
patients develop chemotherapy resistance, rendering disease
recurrence practically incurable [6].

DR is characterized by cancer cells’ ability to survive
exposure to anticancer drugs [7]. It occurs when diseases
become tolerant to pharmaceutical agents [8]. DR results
from various factors that pose a significant challenge in
practical medicine, leading to cellular tolerance and
ineffectiveness against one or more pharmaceutical agents
[9]. Chemoresistant OC can be attributed to overexpressed
proteins and alterations in signaling pathways. Genes
associated with DR affect cellular processes, such as drug
efflux, apoptosis, and DNA damage and repair. Additionally,
cancer stem cells (CSCs) within ovarian tumor tissue
contribute to chemoresistance [10].

The prognosis and therapeutic recommendations for OC
depend on various prognostic factors, including patient age at
diagnosis, performance status, and disease stage [3]. Several
biological mechanisms impact the prognosis of OC, with
aging playing a significant role. These mechanisms include
alterations in cellular and humoral immunity, inflammation,
inflammaging factors like interleukin 6 and C-reactive
protein, vascular endothelial growth factor (VEGF) and its
modulation, cell cycle control, methylation changes, low
Vitamin D levels, the insulin/IGF-1 pathway, and oxidative
stress [11]. The treatment of OC involves a multidisciplinary
approach, including cytoreductive surgery to remove
tumors, systemic chemotherapy, and, on rare occasions,
radiotherapy [3]. Currently, five treatment options are
considered standard for late-stage OC:

1) Cytoreducing surgery followed by platinum/taxane
intravenous chemotherapy; 2) Cytoreducer surgery with
intraperitoneal/intravenous chemotherapy; 3) Cytoreducing
surgery followed by platinum/taxane-based intravenous
chemotherapy in combination with bevacizumab and
bevacizumab; 4) Neoadjuvant chemotherapy (NACT) with
cytoreductive surgery performed between cycles 3 and 6,
followed by chemotherapy; 5) Chemotherapy for patients
who are not suitable for surgery or who progress during
NACT [3]. Recent years have seen the emergence of
potential therapeutic targets for OC, including anti-VEGF/
VEGF receptor angiogenic inhibitors, non-VEGF angiogenic
inhibitors, poly (ADP-ribose) polymerase (PARP) inhibitors,
epidermal growth factor receptor (EGFR) inhibitors, folate
receptor inhibitors, and epidermal growth factor receptor
(EGFR) inhibitors [12]. Targeted therapies like bevacizumab
and PARP inhibitors have become part of the standard first-
line treatment for OC [13]. These therapies have improved
progression-free survival (PFS) when administered
concurrently with chemotherapy and/or maintenance
therapy [13].

Despite initial responses to treatment, most women
diagnosed with high-grade serum OC (HGSC) experience
recurrent disease and chemotherapy resistance. The 5-year
survival rate for women with HGSC ranges from 35% to
40%, primarily due to primary treatment resistance in 15%–
25% of patients and the development of chemotherapy

resistance in the majority of the remaining cases [14].
Therefore, this review aims to explore the use of chemical
drugs in OC treatment, the mechanisms of DR, and novel
strategies to overcome DR in OC.

Ovarian Cancer: Pathogenesis, Histological Heterogeneity,
and Progression

As of now, no widely accepted pathogenesis has been
established for OC [15]. One of the significant challenges
lies in the fact that OC is not a single disease; rather, it
comprises a diverse group of tumors that can be categorized
based on distinct morphological and molecular genetic
characteristics [16,17]. Ovarian carcinoma may originate
from any of three potential sites: the ovarian surface,
fallopian tube, or the peritoneal cavity lined with
mesothelium [18]. The tumorigenesis of ovarian carcinoma
then progresses through a sequential mutation process,
leading from a slow-growing borderline tumor to either a
well-differentiated carcinoma (Type I) or a genetically
unstable high-grade serous carcinoma that metastasizes
rapidly (Type II) [18,19]. During the initial stages of
tumorigenesis, the cells of ovarian carcinoma undergo an
epithelial-mesenchymal transition, involving changes in the
expression of cadherin and integrin, along with an
upregulation of proteolytic pathways [18,20]. Carried by
peritoneal fluid, cancerous cell spheroids evade anoikis and
preferentially attach to the abdominal peritoneum or
omentum, where they revert to their epithelial phenotype
[18]. Early metastatic stages are regulated through
controlled interactions of adhesion receptors and proteases,
while late metastasis is marked by rapid oncogenic growth
of tumor nodules on mesothelium-covered surfaces,
resulting in ascites, intestinal obstruction, and tumor
cachexia [18]. Approximately 90 out of every 100 ovarian
tumors originate from epithelial cells [21]. The most
common types of ovarian carcinoma based on histology are
serous, clear-cell, endometrial, and mucinous tumors, all
falling under the epithelial category [22]. Surface epithelial
ovarian carcinoma is further divided into two subtypes:
Type 1 and Type 2 tumors [16,17]. Type I tumors consist of
low-grade serous carcinomas, low-grade endometrial
carcinomas, clear cell carcinomas, mucinous carcinomas,
and transient cell (Brenner) tumors [22]. Common genetic
alterations in Type I tumors include Kirsten Rat Sarcoma
Viral Oncogene Homolog (KRAS), V-Raf murine sarcoma
viral oncogene homolog B1 (BRAF), Phosphatase and tensin
homolog (PTEN), phosphatidylinositol-4,5-bisphosphate 3-
kinase, catalytic subunit alpha (PIK3CA), Catenin Beta 1
(CTNNB1), and AT-rich interactive domain-containing
protein 1A (ARID1A) [23]. Type II is more lethal and is
primarily linked to continuous ovarian cycles, leading to
inflammation and endometriosis [16] and is characterized
by mutations in the tumor protein p53 (TP53) gene [23].

Numerous genetic and epigenetic changes are
responsible for the transformation of ovarian carcinoma
cells [18,19]. OC can be categorized into low-grade and
high-grade tumors based on genetic alterations. Low-grade
tumors often exhibit mutations in KRAS, BRAF, and
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PIK3CA, loss of heterozygosity (LOH) on chromosome Xq,
microsatellite instability, and expression of amphiregulin.
High-grade tumors, on the other hand, are associated with
TP53 aberrations and potential BRCA1 and BRCA2
aberrations, as well as LOH on chromosomes 7q and 9p
[24]. It has also been demonstrated that there is a 3.6%
increase in OC mortality, which is positively linked to the
Environmental Quality Index (EQI) comprising five
domains: air, water, land, built environment, and
sociodemographic factors [25].

The most commonly used biomarker for detecting OC is
cancer antigen 125 (CA125), but its limited specificity
constrains its utility. To enhance diagnostic accuracy, recent
developments include the creation of multimarker panels
that combine molecular biomarkers such as human
epididymis secretory protein 4 (HE4), ultrasound findings,
and menopausal status. Clinical applications of risk
assessment tools like the Risk of Ovarian Malignancy
Algorithm (ROMA), the Risk of Malignancy Index (RMI),
and OVA1 tests have shown improved sensitivity and
specificity. Ongoing research efforts are exploring novel
biomarkers like autoantibodies, circulating tumor DNA
(ctDNA), microRNAs (miRNAs), and DNA methylation
signatures to provide early detection methods for OC [26].

Tumor heterogeneity in OC may arise from different
anatomical sites [27], and this is a primary contributor to
therapeutic failures and resistance to cancer treatments [28].
Key determinants of pharmacoresistance in OC include

pharmacological parameters [29], molecular mechanisms
[30,31], CSCs [32], and agents within the tumor
microenvironment (TME) [33].

CSCs have been identified as crucial tumor-initiating
factors that play a significant role in tumor recurrence after
chemotherapy, employing various mechanisms to resist
chemotherapy [34]. These mechanisms include ATP-
binding cassette transporters, aldehyde dehydrogenase, DNA
repair, and signaling pathways [32].

DR in OC is attributed to a variety of molecular
mechanisms [30], which may relate to the development of
resistance to chemotherapeutic agents, including alterations
in drug transport, changes in cellular proteins involved in
detoxification, modified drug targets, shifts in DNA repair
mechanisms, and increased tolerance to drug-induced DNA
damage [30,31].

Non-coding RNAs, including long non-coding RNAs,
microRNAs, and circular RNAs, have been implicated in the
development of DR in OC. Aberrantly expressed non-coding
RNAs can promote resistance to OC by inhibiting apoptosis,
inducing protective autophagy, enhancing abnormal tumor
cell proliferation, driving epithelial-mesenchymal transition,
promoting abnormal glycolysis, facilitating drug efflux, and
restricting the apoptosis of cancer cells [35].

Recent research highlights the significant role of the TME
in OC tumorigenesis [33]. The TME encompasses the tumor’s
vasculature, connective tissue, infiltrating immune cells, and
the extracellular matrix (ECM) [36].

FIGURE 1. Schematic illustration of resistance mechanism of platinum. Resistance to platinum-based drugs has been associated to several
mechanisms including influx and efflux transporters, DNA damage repair (DDR), Apoptotic pathways and Autophagy.
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Mechanisms of DR in OC

DR is a significant concern in medical practice as it leads to
reduced cell sensitivity and failure to respond to one or
more drugs. Initially, DR was observed in bacterial
infections that were resistant to antibiotics, but later it was
identified in various human disorders, including cancer [37].
DR is a major contributor to high mortality rates in cancer,
and addressing it remains an urgent necessity [38,39].
Studies conducted over the past few decades have revealed
that cancer cells possess distinct metabolic pathways
compared to healthy cells. These pathways are responsible
for their resistance to various chemotherapeutic drugs [40].
A cell’s metabolic pathways include a network of interacting
genes, proteins, and metabolite reactions, all of which are
regulated by structures like proteins and signaling molecules
[41]. In cancer cells, many of these regulatory networks are
dysregulated, leading to uncontrolled growth and
proliferation [41]. Besides altered metabolic and signaling
pathways, changes in the expression and activity of drug-
metabolizing enzymes also play a vital role in DR [42].
Several mechanisms contribute to the development of DR,
depending on the drug and cancer tumor [43]. Therefore,
understanding the various mechanisms of resistance is
crucial for planning effective therapies and improving

outcomes for cancer patients (Figs. 1–3). In this review, we
will delve into the mechanisms of resistance that occur with
conventional chemotherapeutic drugs approved by the Food
and Drug Administration (FDA) for the treatment of OC.

Influx and efflux transporters
Platinum resistance in OC is caused by the dysregulation of
influx and efflux pumps, such as copper transporter 1
(CTR1), ATPase copper-transporting alpha (ATP7A), and
ATPase copper-transporting beta (ATP7B), which affect the
transport of cisplatin. Cells sensitive to cisplatin express
higher levels of CTR1, allowing for increased cisplatin
influx. In contrast, overexpression of ATP7A/B in cisplatin-
resistant cells leads to the efflux of platinum. Clinical
investigations have provided evidence supporting the
predictive significance of ATP7B expression levels in
individuals with ovarian and endometrial cancer undergoing
cisplatin chemotherapy. The negative feedback loop caused
by rapid CTR1 downregulation following cisplatin exposure
is suggested to contribute to cisplatin resistance [44,45]. In
the case of paclitaxel, overexpression of efflux pumps, such
as P-gp, can reduce its intracellular concentration and
decrease its effectiveness. Recent research findings have
indicated that mutations occurring in P-gp can inhibit the
efflux process and result in a shift from efflux to influx

FIGURE 2. Schematic illustration of resistance mechanism of paclitaxel. Resistance to paclitaxel including efflux by P-glycoprotein, Phosphoinositide
3-kinase/protein kinase B pathway, glutathione S transferase 1 and B-cell lymphoma 2 family.
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pumps. Drug efflux pumps, such as ABCB1, also contribute to
OC resistance to PARP inhibition by actively effluxing drugs
from cells [46–48].

DNA damage repair (DDR)
Once platinum drugs are transported into the cytoplasm
through the CTR1 protein, they subsequently enter the
nucleus, where they interact with DNA to create both
intrastrand and interstrand crosslinks. The DNA lesions
induced by platinum drugs, such as cisplatin, can lead to
cell death through apoptosis [44]. Resistance to platinum
compounds can be induced through DNA damage repair
pathways or by ignoring the damage that has occurred.
Double-strand DNA damage is typically repaired through
two main pathways: homologous recombination and non-
homologous end-joining (NHEJ). These mechanisms are
responsible for restoring the integrity of the DNA molecule.
On the other hand, single-strand lesions are primarily
repaired through a process called nucleotide excision repair
(NER), which helps correct any abnormalities in the DNA
structure [49]. In the NER pathway, specific endonucleases
such as excision repair cross-complementation group 1
(ERCC1)-XPF and XPG cleave the site of damaged
nucleotides, followed by DNA synthesis to restore genetic
integrity [50]. Higher levels of ERCC1 expression tend to be
associated with platinum resistance in epithelial OC [51,44].

Early studies in several preclinical models suggested a
correlation between NER proficiency and cisplatin resistance
[52]. Tumor suppressors BRCA1 and BRCA2, which encode
proteins involved in DDR, are important components of the
homologous recombination mechanism. Mutations in
BRCA1/2 are associated with high sensitivity to DNA-
damaging agents and an enhanced overall response to
platinum therapy. In other words, the restoration of tumor
suppressor BRCA activity can increase resistance in OC
[51,53]. Also, resistance to PARP inhibition is commonly
caused by DNA repair activity, and patients with impaired
homologous recombination pathways respond better to
PARP inhibition treatment. BRCA1/2 secondary mutations
can enhance the microhomology-mediated end-joining
(MMEJ) pathway, allowing OC cells to overcome PARP
inhibition [54–56].

Apoptotic pathways
The effectiveness of chemotherapy heavily relies on the
capacity of OC cells to undergo apoptosis triggered by drug
treatment. The activity of the apoptotic pathways is
controlled by the balance of proapoptotic and antiapoptotic
proteins of the B-cell lymphoma 2 (BCL2) family [57].
Alterations in the expression levels of these proteins can
exert a substantial influence on chemotherapy response and
contribute to the development of DR. In the context of OC

FIGURE 3. Schematic illustration of resistance mechanism of PARP inhibitor. Resistance to paclitaxel including DNA repair, Efflux transporters
and Autophagy.
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cells, an increase in the expression of anti-apoptotic proteins
or a decrease in proapoptotic proteins can grant resistance
to the commonly employed chemotherapy drug, cisplatin.
Anti-apoptotic proteins like BCL2 and BCL-XL counteract
apoptotic signals, favoring cell survival. Elevated expression
of these proteins can impede the initiation of downstream
apoptotic pathways, diminishing the effectiveness of
cisplatin treatment. Conversely, diminished expression or
compromised function of proapoptotic proteins, such as
BAX and BAK, can also play a role in cisplatin resistance.
These proapoptotic proteins promote apoptosis by
facilitating the release of cytochrome c from the
mitochondria and the activation of caspases, which are
pivotal executors of the apoptosis process. When their levels
decrease or their functions are impaired, the apoptotic
response to cisplatin is hindered, enabling OC cells to
survive and continue their proliferation [58].

Autophagy
Autophagy is a cellular process involved in the degradation
and recycling of damaged or unnecessary cellular
components, including proteins, lipids, and organelles. It has
been suggested that autophagy may play a role in resistance
to PARP inhibitors. PARP inhibitors work by blocking the
activity of an enzyme called PARP, which is involved in
repairing damaged DNA. In cancer cells with defects in
other DNA repair pathways, such as those caused by
mutations in the BRCA1 or BRCA2 genes, PARP inhibitors
can lead to DNA damage accumulation and cell death.
However, recent studies have suggested that cancer cells can
develop resistance to PARP inhibitors through various
mechanisms, such as the activation of autophagy. In
particular, autophagy has been shown to promote the
survival of cancer cells treated with PARP inhibitors by
removing damaged proteins and organelles, thereby
reducing the accumulation of toxic cellular debris and
promoting cell survival [43,59].

Previous studies have also indicated that autophagy in
cisplatin-resistant ovarian. At present, autophagy in cancer
cells is considered a potential DR mechanism [60].

Induction of reactive oxygen species
Reactive oxygen species (ROS) are highly reactive molecules
that can inflict damage upon cells and tissues [61].
Chemotherapy drugs such as cisplatin and doxorubicin can
trigger ROS production as part of their mechanism of action
[62]. Nevertheless, prolonged and excessive ROS production
can lead to chemoresistance [63]. This can transpire
through the upregulation of antioxidant enzymes, which can
scavenge ROS and diminish their harmful effects [64].
Additionally, ROS can activate signaling pathways that
bolster cell survival and inhibit apoptosis, culminating in
chemoresistance [65].

Phosphoinositide 3-kinase/protein kinase B pathway
The Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)
pathway holds substantial significance in metastasis and DR
across a range of cancer types, including OC. In OC,
alterations in key elements of this pathway play a role in

activating pro-survival signals and fostering resistance to
chemotherapy, particularly drugs like paclitaxel. One crucial
regulator of the PI3K/AKT pathway is the phosphatase and
tensin homolog (PTEN), which functions as a negative
regulator by inhibiting PI3K activity and dampening
downstream AKT signaling. However, OC frequently
exhibits a loss of PTEN function, which can transpire
through various mechanisms such as genetic mutations or
epigenetic changes, resulting in decreased PTEN expression
or complete absence of PTEN protein. The absence of
PTEN function leads to hyperactivation of the PI3K/AKT
pathway, causing enhanced cell survival, proliferation, and
resistance to chemotherapy. Moreover, mutations in the
PI3K gene itself can also contribute to pathway
dysregulation in OC. These mutations can sustain PI3K
activation, even in the absence of growth factors or other
stimuli. This sustained activation fosters cell survival,
proliferation, and resistance to chemotherapy agents like
paclitaxel. Another common alteration observed in OC is
the hyperactivation of AKT, a downstream effector of the
PI3K pathway. This hyperactivation can result from both
PTEN loss and PI3K mutations. Activated AKT promotes
cell survival and proliferation by phosphorylating and
deactivating various downstream targets that participate in
cell cycle regulation and apoptosis. When paclitaxel is
administered, the excessive activation of the PI3K/AKT
pathway suppresses the drug’s anti-proliferative signals, thus
contributing to resistance and treatment failure [66].

Glutathione S-transferase 1
In healthy cells, increased activity of protein arginine
methyltransferase 6 (PRMT6) inhibits the formation of the
precursor of glutathione S-transferase GSTP1. However, in
the case of cancer cells, the downregulation of PRMT6 leads
to an increased production of GSTP1. When cancer cells are
exposed to paclitaxel, GSTP1 plays a crucial role in DR by
capturing and detoxifying paclitaxel within the cells. This
capturing process prevents paclitaxel from binding to its
intended target, tubulin, which is essential for its anti-cancer
effects. By efficiently sequestering paclitaxel, GSTP1
decreases the concentration of the drug available for binding
to tubulin, thus disrupting microtubule dynamics. This
mode of action results in reduced sensitivity of cancer cells
to the cytotoxic effects of paclitaxel, contributing to the
development of DR [67].

B-cell lymphoma 2 family
The Bcl-2 family encompasses pro-apoptotic factors such as
Bcl-2–associated death promoter and Bcl-2–associated X
protein, as well as anti-apoptotic factors, including Bcl-2, B-
cell lymphoma-extra-large, and myeloid leukemia 1 [68].
Some studies have proposed that paclitaxel can convert Bcl-
2 into a pro-apoptotic factor by triggering the release of
cytochrome c from the mitochondria [69]. However, the
upregulation of anti-apoptotic members of the Bcl-2 family
is also associated with resistance to paclitaxel, as these
proteins hinder the production of Fas ligand (FasL), a ligand
involved in cell death, by inhibiting its gene transcription
[44,68].
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Alterations in tubulin
Paclitaxel, a widely employed chemotherapy medication,
exerts its anti-cancer properties through its interaction
with tubulin, a pivotal protein crucial for cell division.
Nevertheless, modifications in tubulin can markedly
influence the interaction with paclitaxel, potentially
compromising its capacity to interfere with microtubule
formation. Mutations in the genes responsible for
tubulin can lead to substitutions of amino acids within
paclitaxel’s binding site or alter tubulin’s overall structure.
Additionally, post-translational adjustments like acetylation,
phosphorylation, or glycosylation can also impact how
paclitaxel binds to tubulin. These alterations can take place
at specific amino acid positions in tubulin, affecting the
accessibility or shape of paclitaxel’s binding site.
Consequently, changes in the tubulin structure might reduce
paclitaxel’s affinity for binding, which, in turn, limits its
ability to disrupt microtubule formation and hinder the
division of cancer cells [69,70].

Alterations in drug metabolism
Paclitaxel, a widely employed chemotherapy medication,
undergoes transformations within the liver and is
eventually removed from the body through bile.
Modifications in drug metabolism can have a profound
impact on how paclitaxel behaves within the body,
potentially affecting its effectiveness in treating cancer. The
liver plays a vital role in processing paclitaxel through
various enzymatic reactions. Among these, cytochrome
P450 3A4 (CYP3A4) is a crucial enzyme responsible for
converting paclitaxel into its active forms that exhibit anti-
cancer properties. Alterations in the function or production
of CYP3A4 can influence how paclitaxel is metabolized.
For example, genetic variations or interactions with other
drugs that impact CYP3A4’s activity can alter the rate at
which paclitaxel is processed. Impaired metabolism of
paclitaxel can result in changes in the drug’s levels in the
body, potentially diminishing its therapeutic effectiveness.
Additionally, variations in other enzymes and transporters
involved in paclitaxel metabolism can also contribute to
changes in how the drug behaves in the body. These
variations in enzyme and transporter function can arise
from genetic factors, drug interactions, or underlying
health conditions, all of which can influence how paclitaxel
is absorbed, distributed, metabolized, and excreted,
ultimately affecting its therapeutic response [71,72].

Ephrin type-B receptor 4
Ephrin type-B receptor 4 (EphB4) is a tyrosine kinase receptor
that plays a role in blood vascular morphogenesis and
angiogenesis [73]. Li et al. demonstrated that EphB4 is
overexpressed in bevacizumab-resistant OC. Ephrin type-B
receptor 4 (EphB4) promotes angiogenesis by interacting
with its ligand, ephrin-B2, expressed on endothelial cells,
and promoting endothelial cell migration and proliferation,
leading to the formation of new blood vessels within the
tumor. This can contribute to tumor growth, metastasis, and
resistance to anti-angiogenic therapies. EphB4 also activates
downstream signalling pathways, such as PI3K/Akt and

mitogen-activated protein kinase/extracellular signal-
regulated protein kinase, which promote cell survival and
proliferation. Additionally, EphB4 promotes tumor cell
invasion by regulating cytoskeletal dynamics and cell
motility [74,75].

Alterations in endothelial cell function
The mechanism of DR is not well understood in this case, but
it is probably related to alterations in endothelial cell function
[76] and VEGF pathway signalling [77]. One possible cause of
resistance to bevacizumab is the presence of different varieties
of VEGF proteins in OC. A study by van der Bilt et al. showed
that in OC we can find VEGF-A, VEGF-C and VEGF-D,
which may be the reason for resistance of these changes to
bevacizumab [78].

New Approaches to Overcome DR

There is limited information available regarding the
emergence of DR in OC [79]. In recent years, several
alternative strategies for treating DR have emerged. In this
section, we will explore these new approaches to overcome
DR in OC.

Combination therapy
Combination chemotherapy is a treatment approach utilized
in OC to target cancer cells using two or more
chemotherapeutic drugs. However, some cancer cells can
develop resistance to this treatment. Resistance to standard
combination chemotherapy in OC can occur through
various mechanisms, such as altered drug metabolism,
increased drug removal, the development of drug-resistant
cell clones, a more aggressive cancer phenotype, immune
evasion, and the creation of a hostile microenvironment
[78,80]. For the past two decades, a combination of
platinum and paclitaxel has been the accepted OC
treatment. Recently, two PARP inhibitors (Olaparib and
Niraparib) and a vascular endothelial growth factor
inhibitor (Bevacizumab) have received FDA approval as
maintenance treatments for OC [44]. As a result, novel
approaches to combination therapy have emerged in recent
years. One such approach involves the use of specific
epigenetic drugs to delay the development of resistance [81].
Belinostat, a pan-histone deacetylase (HDAC) inhibitor, and
decitabine, a DNA methyltransferase inhibitor, have
demonstrated increased effectiveness in single-agent therapy
in mice and in vitro [82]. A targeted treatment strategy that
involves inhibiting HDAC6 in tumors with mutated AT-rich
interaction domain 1A (ARID1A) has shown improved
survival in xenografts. This success is attributed to the direct
deacetylation of Lys120 by the cellular tumor antigen p53,
inducing apoptosis in a specific cell type [83]. While
combination chemotherapy may increase toxicity and side
effects, it helps delay the emergence of resistance [84].
Therefore, alternative approaches to tackle this issue have
emerged in recent years.

Approved drugs used in OC and their mechanism are
presented in Table 1, while drug combinations used in OC
are presented in Table 2.
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NSC23925
(2-(4-methoxyphenyl)-4-quinolinyl) (2-piper-idinyl)methanol
(NSC23925), a compound that suppresses the expression of
Pgp, has been shown to reduce the development of resistance
to paclitaxel [106], Pgp is significantly overexpressed in all
resistant cell lines [106]. When the ability of NSC23925 to

reverse DR in multidrug-resistant (MDR) OC cell lines was
evaluated, it was found to be 50 and 20 times more potent
than verapamil and cyclosporin A (CsA), respectively [107].
Co-administration of NSC23925 with paclitaxel increases
apoptosis, potentially preventing the development of
paclitaxel resistance. The toxicity of NSC23925, as

TABLE 1

Approved drugs used in OC and their mechanism

Approved drug [85] Mechanism of action

Alkeran (Melphalan) Alkylates guanine and inhibits DNA and RNA synthesis and cytotoxicity [86].

Alymsys (Bevacizumab) Binds to VEGF [87].

Avastin (Bevacizumab) Selectively binding circulating VEGF, inhibiting the binding of VEGF to its cell surface receptors,
reducing in microvascular growth of tumor blood vessels and limits the blood supply to tumor tissues
[88].

Mvasi (Bevacizumab)

Zirabev (Bevacizumab)

Paraplatin (Carboplatin) Forming reactive platinum complexes, causing the intra-and inter-strand cross-linkage of DNA
molecules within the cell, modifying the DNA structure and inhibiting DNA synthesis [89].

Cisplatin Crosslinking with the urine bases on the DNA, forming DNA adducts, preventing repair of the DNA
leading to DNA damage and inducing apoptosis [90].

Cyclophosphamide 1) attachment of alkyl groups to DNA bases, and preventing DNA synthesis and RNA transcription
from the affected DNA, 2) cross-linking bonds between atoms in the DNA and preventing synthesis
or transcription of DNA, and 3) inducing of mispairing of the nucleotides leading to mutations
[91,92].

Doxorubicin Hydrochloride 1) intercalating into DNA and disruption of topoisomerase-II-mediated DNA repair, 2) generating of
free radicals and damage to cellular membranes, DNA and proteins [93].

Doxil (Doxorubicin
Hydrochloride Liposome)

Decreasing the risk of cardiotoxicity by hanging tissue distribution and by decreasing the rate of drug
release [94].

Elahere (Mirvetuximab
soravtansine-gynx)

Binding to FRα, releasing the intracellular of DM4 via proteolytic cleavage, disrupting the
microtubule network within the cell, arresting the cell cycle and apoptotic cell death [95].

Gemzar (Gemcitabine
Hydrochloride)

Inhibit processes required for DNA synthesis by incorporation of dFdCTP into DNA and causes cell
death [96].

Infugem (Gemcitabine
Hydrochloride)

Uptaking into malignant cells, phosphorylating by deoxycytidine kinase, forming gemcitabine
monophosphate, converting to dFdCDP and dFdCTP, Incorporating of dFdCTP into the DNA chain,
and leading to chain termination, DNA fragmentation, and apoptotic cell death of malignant cells
[97].

Hycamtin (Topotecan
Hydrochloride)

Binding to the topoisomerase I-DNA complex, preventing relegation of these single-strand breaks,
inducing replication arrest and lethal double-stranded breaks in DNA, leading to apoptosis
(programmed cell death) [98].

Lynparza (Olaparib) Acts as PARP inhibitor: acts on PARP1, PARP2, and PARP3, acts as a selective competitive inhibitor
of NAD+ at the catalytic site of PARP1 and PARP2, inhibits the BER pathway, leads to the most toxic
form of DNA damage by the accumulation of unrepaired SSBs, cause to apoptotic cell death [99,100].

Zejula (Niraparib Tosylate
Monohydrate)

Inhibiting PARP enzymatic activity, increasing the formation of PARP-DNA complexes, damaging
DNA, apoptosis, and cell death [101].

Niraparib Tosylate Monohydrate

Paclitaxel Binding to an apoptosis-stopping protein called Bcl-2 and inducing programmed cell death
(apoptosis) [102].

Rubraca (Rucaparib Camsylate) Inhibiting PARP1, PARP2, and PARP3.6, inhibiting PARP traps the enzyme on damaged DNA,
halting the repair process and forming toxic PARP–DNA complexes, and by initiating DNA repair
processes such as error-prone NHEJ or alternative end-joining pathways, leading to mutations or
chromosomal change, damaging DNA and leading to cancer cell apoptosis and cell death [103].

Tepadina (Thiotepa) Cross-linking guanine nucleobases in DNA double-helix strands, directly attacking DNA, preventing
the cell from dividing, and stopping tumor growth [104].

Abbreviations: Bcl-2, B-cell leukemia 2; dFdCDP, Gemcitabine diphosphate; dFdCTP, Gemcitabine triphosphate; DNA, Deoxyribonucleic acid; FRα, Folate
receptor alpha; NAD+, Nicotinamide adenine dinucleotide; NHEJ, Nonhomologous end joining; PARP, Poly-ADP ribose polymerase; RNA, Ribonucleic acid;
SSBs, Single-strand breaks; VEGF, Vascular endothelial growth factor.
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determined by blood cell count, body weight, and organ
histology, is not significant whether NSC23925 is
administered alone or in combination with paclitaxel [108].

Ethacrynic acid
Ethacrynic acid (EA) is a FDA-approved specific inhibitor of
GST, which has been shown to enhance the cytotoxicity
of anticancer drugs and reverse DR [109]. Overexpression of
GST is often associated with resistance to cytotoxic agents
[110]. OC cells that developed resistance after exposure to
low-dose melphalan for seven days or incrementally
increased doses of melphalan for over a year showed elevated
GST activity and mRNA levels compared to their parental
cells [111]. Howeverthe seven-day melphalan-resistant cells
quickly reverted to a drug-sensitive phenotype within two
weeks of treatment withdrawal, indicating that the resistance
was not stable. In contrast, the one-year treated cell line
maintained a permanent resistant phenotype, even when
melphalan treatment was discontinued. These results suggest
a possible explanation for the improved efficacy of
intermittent chemotherapy compared to continuous drug
delivery in clinical settings [112]. Co-incubation with EA
during the seven-day melphalan treatment in OC cells
prevented the development of melphalan resistance, and this
effect increased in a dose-dependent manner through a
reduction in GST gene expression [111].

Selenium compounds
The anticarcinogenic effects of selenium, a crucial dietary
trace element, have been extensively studied [113].

Selenium-containing compounds, such as selenite and
selenomethionine, have been shown to enhance the
effectiveness of common cytotoxic drugs while reducing the
adverse effects of chemotherapy [114]. Studies conducted on
OC patients in both in vitro and in vivo settings have
demonstrated that selenium compounds can delay the
emergence of DR to melphalan, cisplatin, and carboplatin
[115,116]. Notably, selenium-containing substances have
been shown to prevent the amplification of the GST gene, a
process that occurs during the development of melphalan
resistance [116]. Selenium compounds can also reduce the
levels of the antioxidant glutathione, which is known to
increase after cisplatin treatment [117]. Treatment with
cisplatin was more prolonged and effective when selenite
compounds were added, preventing the growth of ovarian
tumor xenografts [115]. These findings support the
hypothesis that selenium compounds have genetic or
epigenetic effects that hinder the development of DR [118].

OC stem cells in multiDR
CSCs have the capacity to differentiate into any cell type
within a tumor, self-replicate, and contribute to
chemotherapy resistance. These characteristics play a
significant role in the growth and recurrence of malignant
tumors. Experimental studies suggest that dysregulation of
ovarian CSCs may contribute to resistance to
chemotherapeutic drugs [119]. One strategy to target CSCs
is to inhibit signaling pathways [120]. In OC cells, platinum
resistance can be overcome by knocking down β-catenin or
using the Wnt-specific inhibitor iCG-001, which also
reduces the number of stem cells [121]. Gamma-secretase
inhibitors or siRNAs can render ovarian CSCs more
sensitive to platinum. The combination therapy of GSI and
cisplatin targets both CSCs and non-CSCs and has a more
potent synergistic cytotoxic effect than cisplatin alone [122].
The anticancer effects are significantly enhanced when GSI
and paclitaxel are combined in platinum-resistant xenografts
[123].

ncRNAs
There is growing evidence of an increasing number of
aberrantly expressed microRNAs (miRs) in OC, and these
miRs’ expression patterns have been linked to tumor
subtypes, tumor stage, prognosis, and MDR [124]. In
various preclinical studies, ncRNAs have been targeted to
treat OC and reverse DR. Two fundamental miR-based
treatment approaches have been employed to counter
multiDR in OC: anti-miR therapy (antagomiRs) and miR
replacement therapy (miR mimics). MiR mimics are short,
synthetic double-stranded oligonucleotides chemically
modified to resemble native miRs. Transfecting the miR-634
mimic into OC cells promotes apoptosis and resensitizes
resistant cells to cisplatin [125]. AntagomiRs are anti-sense
oligonucleotides (ASOs) that have undergone chemical
modification to interfere with oncomiRs and hence disrupt
miR-related pathways. AntagomiR (anti-miR-21 inhibitor
transfection) decreases and increases PDCD4 and c-IAP2
expression, respectively, to revert the cisplatin-resistant
phenotype in ovarian cell lines [124]. Technologies for
lncRNA silencing, including ASOs and siRNA, have been

TABLE 2

Drug combinations used in OC [105]

Drug Components

BEP: B = Bleomycin

E = Etoposide Phosphate

P = Cisplatin (Platinol)

CARBOPLATIN-TAXOL: Carboplatin

Paclitaxel (Taxol)

GEMCITABINE-
CISPLATIN:

Gemcitabine Hydrochloride

Cisplatin

JEB: J = Carboplatin (JM8)

E = Etoposide Phosphate

B = Bleomycin

PEB: P = Cisplatin (Platinol)

E = Etoposide Phosphate

B = Bleomycin

VAC: V = Vincristine Sulfate

A = Dactinomycin (Actinomycin-
D)

C = Cyclophosphamide

VeIP: Ve = Vinblastine Sulfate (Velban)

I = Ifosfamide

P = Cisplatin (Platinol)
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used to overcome chemoresistance. When HOTAIR is
destroyed, OC becomes more chemosensitive in living
conditions [126].

Autophagy
In the formation of MDR, autophagy, a survival mechanism
utilized by organisms to handle various types of stress, has
taken on a novel role [127]. Toxic elements can be removed
via increased autophagy, potentially leading to a rise in
MDR and enhanced cancer cell survival. Thus, suppressing
autophagy [128] could have two possible effects: re-
sensitizing cancer cells that are resistant to treatment and
increasing tumor cell death. To stop autophagy, specific
target-siRNA or inhibitors have been used. Increased
cisplatin-induced cell death and drug resensitization in
A2780CP cells are possible with berlin-1-targeted siRNA
[129]. Autophagy inhibitors come in two different varieties:
early-stage inhibitors, including Wortmannin, LY294002,
and 3-MA [130]. And late-stage inhibitors, such as
bafilomycin A1, chloroquine (CQ), and lysosomal protease
inhibitors, which prevent autophagic cargo from being
destroyed inside autolysosomes and the fusion of
autophagosomes and lysosomes [131].

Clonal evolution tumor heterogeneity
Recent studies suggest that tumor heterogeneity, driven by
clonal evolution, may contribute to MDR in OC by
promoting tumor sampling bias and phenotypic variance
[28]. However, the mechanisms responsible for its
emergence remain poorly understood. It has been proposed
that genetically diverse clones may already exist within the
tumor bulk prior to treatment. Subclones that acquire
advantageous mutations can survive and proliferate.
Chemotherapeutic drugs eliminate previously dominant
sensitive clones, making way for resistant clones [132].
Furthermore, amplification of the AKT2 gene in OC is
associated with paclitaxel resistance [133]. Results from a
study involving 92 high-grade serous OC patients initially
exhibiting refractory, resistant, sensitive, and acquired
resistant disease demonstrated that mutations in tumor
suppressor genes, including PTEN, retinoblastoma 1,
neurofibromin 1, and RAD51B, lead to acquired
chemotherapy resistance [132]. Various genes, the epigenetic
silencing of which is hindered by heterogeneity, have also
been linked to the development of platinum-based resistance
in OC. These genes include armadillo repeat-containing X-
linked 2, COL1A1, MDK, and mesoderm-specific transcript
[134]. The application of cutting-edge treatments targeting
specific molecular heterogeneities has shown promise in
reversing DR (DR) in OC. In a phase I clinical trial
involving high-grade epithelial OC patients unresponsive to
platinum and taxanes, individuals with PTEN and PIK3CA
mutations in the PI3K/AKT pathway appeared to benefit
from the combination of the AKT inhibitor perifosine and
docetaxel [135].

CRISPR/Cas9
Genome editing allows for the modification of the genomes of
various cell types and organisms. This innovative approach
relies on the use of designed chimeric nucleases that

incorporate non-specific DNA cleavage modules connected
to DNA-binding domains with specific sequences (nuclease)
[136]. Some of these tools include transcription-activator-
like effector nucleases and zinc-finger nucleases [137].
Nevertheless, the CRISPR-Cas9 technique, which is now
gaining widespread acceptance, has revolutionized the field
of cancer modeling [138]. In a study, researchers
investigated whether the ABCB1 gene could be silenced in
the doxorubicin-sensitive, adriamycin-resistant (A2780/
ADR) OC cell line using CRISPR/Cas9 genome editing
technology. The findings of the study showed that the
CRISPR/Cas9 system could significantly reduce P-gp
expression. The abrupt reduction in ABCB1 gene expression
correlated with increased doxorubicin sensitivity in cells
transfected with sgRNAs. Using CRISPR-based approaches,
the A2780/ADR cell line was successfully edited to revert to
a nonmalignant phenotype, which proved effective in
downregulating the target gene [139].

Nanomedicine
Nanomedicine utilizes nanoscale materials, such as
biocompatible nanoparticles [140] and nanorobots [141] for
a variety of applications, including diagnosis [142], and drug
delivery [143].

Nanoparticles
Nanoparticles deliver cancer drugs through two key
mechanisms: they provide direct access to cells and serve as
platforms for drug combinations. Nanotechnology applied
to chemotherapy agents for cancer treatment overcomes DR
by targeting various mechanisms [144]. Factors like size,
properties, and the enhanced permeability and retention
(EPR) effect are essential considerations in nanoparticle
design [145]. In cancer therapy, nanoparticles with
diameters of 10–100 nm can achieve EPR, effectively
delivering drugs. However, particles smaller than 1–2 nm
can escape from normal vasculature and harm healthy cells,
while particles larger than 100 nm are eliminated from
circulation by phagocytes [145]. Surface modifications can
impact the bioavailability and half-life of nanoparticles.
Making nanoparticles hydrophilic, for example, can extend
their circulation times and enhance their penetration and
accumulation in tumors [146]. Nanocarriers for drug
delivery not only enhance the therapeutic efficiency of
chemotherapy drugs but also protect normal cells from
cytotoxicity. Nanoparticles can passively or actively target
cells, effectively delivering chemotherapeutic agents
[145,147]. Various types of nanoparticles are available for
cancer treatment and addressing DR. We will discuss them
in this section.

Liposomes
Liposomes, the most extensively studied nano-drug carriers
for drug delivery, consist of spherical vesicles formed by one
or more phospholipid bilayers. Liposomes offer significant
advantages over traditional drug delivery systems, including
targeted delivery, high biocompatibility, biodegradability,
easy functionalization, low toxicity, prolonged drug release,
and enhanced therapeutic efficacy. With the rapid
development of nanotechnology, the exploration of
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liposome composition has become increasingly
comprehensive. Varieties of liposome composition,
including long-circulating PEGylated liposomes, ligand-
functionalized liposomes, stimuli-responsive liposomes, and
advanced cell membrane-coated biomimetic nanocarriers,
impart unique physiological functions to drug delivery [148].

Polymeric and solid lipid nanoparticles
Polymeric nanoparticles stand out as essential tools for
enhancing drug bioavailability and specific delivery at the
target site. The versatility of polymers makes them suitable
for tailoring drug delivery systems to specific requirements
[149]. Drug-carrying polymer nanoparticles are created by
attaching a copolymer to a polymer matrix. Nano
formulations incorporate synthetic polymers and natural
polymers like polycaprolactone (PCL) and poly (lactic-co-
glycolic acid) [150]. Solid lipid nanoparticles (SLNs) are
colloidal particles with sizes ranging from 50 to 1000 nm,
composed of lipids, chemotherapeutic drugs, and
surfactants. SLNs typically exhibit improved efficacy and the
ability to combat DR by enhancing drug uptake in cancer
cells and inducing apoptosis [151].

Micelles
Micelles are colloidal particles with sizes ranging from 5 to 100
nm and are currently under investigation as carriers for
hydrophobic drugs in anticancer therapy [152]. Micelles
facilitate the permeability and endocytosis of OC cells,
preventing the targeting of normal cells OC cells [153].
They also mitigate DR through the EPR effect, active
internalization, endosome-induced drug release, and evasion
of water-insoluble chemotherapy drugs [154].

Dendrimers
Dendrimers are spherical nanoparticles with three-
dimensional, multi-branched structures that can be
engineered to have sizes ranging from 1 to 15 nm. These
nanoparticles possess unique features, including a low
polydispersity index, high water solubility, biocompatibility,
multivalency, and high molecular weight. Due to these
distinctive properties, dendrimers can encapsulate both
hydrophilic and hydrophobic medications [151].

Mesoporous silica nanoparticles
Surface modifications investigated to facilitate drug loading
show that mesoporous silica nanoparticles (MSNs) have
high drug loading efficiency because of their high pore
volume and surface area properties. In cancer cells, MSNs
are capable of targeted and controlled drug delivery, leading
to increased cellular absorption and delivery of therapeutic
drugs at cellular levels [154]. It is accepted that MSNs are
excellent drug delivery vehicles due to their enhanced
pharmacokinetics and therapeutic efficacy [145].

RNA interference therapy
In studies, small interfering RNAs (siRNA), short hairpin
RNAs, and antisense oligodeoxynucleotides have been
proposed as therapeutic possibilities for the treatment of
cancer [147]. siRNA-targeted MDR genes overcome DR by
silencing P-gp or MDR1, MDR-associated protein 1, Bcl2,

and breast cancer resistance protein. However, up to now,
the therapeutic efficacy of these RNA interference strategies
has been consistently unsatisfactory [151]. Therefore,
encapsulating siRNAs in nanoparticles to prevent the rapid
degradation of siRNA molecules leads to increased cellular
targeting, improved effective absorption, and limits
localization in normal cells [155].

Planetary ball-milled nanoparticles
Recently, there has been significant interest in planetary ball-
milled nanoparticles. The main challenges in other drug
delivery methods are poor aqueous solubility, limited
bioavailability, and absorption [156]. However, planetary
ball-milled nanoparticles are easy to manufacture. They
consist of a starch core coated with biodegradable
copolymers, resulting in a spherical shape and uniform
particle size [147]. This easy production process is due to
the starch core covered with biodegradable copolymers,
creating a spherical shape with a uniform particle size.
Furthermore, planetary ball-milled nanoparticles exhibit
100% loading efficiency for drugs, whether hydrophobic or
hydrophilic, and offer control over logP levels for drug
delivery [157]. In general, the round shape and particle size
of less than 100 nm make planetary ball-milled
nanoparticles highly effective for delivering drugs to tumor
cells [158]. Their potential for drug encapsulation has led to
the selective targeting of cancer cells, enhancing safety and
efficiency [147].

Dual-action organoplatinum polymeric nanoparticles
A groundbreaking approach to combat drug-resistant
organoplatinum polymeric nanoparticles (OPNPs) is the use
of “dual-action” organometallic polymeric nanoparticles.
These OPNPs are created by combining organoplatinum
payloads with the anionic block copolymer methoxy
polyethylene glycol-block-polyglutamic acid (MPEG5k-
PGA50). The OPNPs improve the solubility and
biocompatibility of hydrophobic organoplatinum payloads.
These payloads are gradually released from the core of the
OPNPs within the acidic environment of endosomes after
entering cancer cells through endocytosis. In contrast to
conventional platinum treatments, the organoplatinum
compound operates in a “dual-action” mode, causing both
mitochondrial and nuclear DNA damage. This dual-action
approach makes drug-resistant OC cells susceptible to the
organoplatinum payloads [159].

Cold responsive nanomaterial
A hybrid nanoparticle composed of phospholipids and
polymers has been developed to overcome MDR in cancer
stem cells using cold exposure. This cold-responsive hybrid
HCLPN-D nanoparticle was designed for targeted delivery
of chemotherapeutics (DOX) in vitro and in multidrug-
resistant tumors in vivo. It is composed of hyaluronic acid
(HA), chitosan, dipalmitoylphosphatidylcholine (DPPC),
and poly (N-isopropyl acrylamide) (PNIPAM). When
injected intravenously into the tail vein, the enhanced EPR
effect of tumor vasculature facilitates the more effective
delivery of drugs into tumors by HCLPN-D nanoparticles.
Moreover, at low temperatures (12°C), these nanoparticles
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rapidly and permanently disintegrate, leading to the burst
release of most of the enclosed medication. This
combination of cold-triggered DOX burst release and low
temperature effectively overcomes the resistance of NCI/
RES-ADR cells to multiple drugs [160].

The combination of gene and drug delivery
An additional strategy to enhance the success of oncotherapy
involves combining gene and drug delivery. For example, HA-
labeled poly(d,l-lactide-co-glycolide) nanoparticles loaded
with focal adhesion kinase (FAK) siRNA and paclitaxel
(PTX) were employed for OC treatment (HA-PLGA-NP-
PTX+FAK siRNA). Tumor cells uptake more HA-PLGA-
NP-PTX+FAK siRNA due to the presence of CD44, leading
to reduced cell viability by inducing apoptosis in both
SKOV3-TR and HeyA8-MDR cells. FAK siRNA effectively
inhibits the AKT pathway, which is associated with
metastasis and DR [161].

Gas plasma
The introduction of gas plasma in oncotherapy as a novel
therapeutic agent is expected to yield superior results
compared to traditional medications. Gas plasma can also
resensitize cancer cells that have become resistant to
chemotherapy while sparing healthy cells. Current
discussions emphasize the potential of combining cold
atmospheric plasma (CAP), plasma-activated liquid (PAL),
and traditional therapies such as chemotherapy, radiation
therapy, pulsed electric fields, nanoparticles, and plant-based
treatments to enhance efficacy. Recent research by Rasouli
et al. has focused on the selective effect of gas plasma in
oncotherapy and overcoming chemotherapy resistance
[162]. The study used A2780 CP, SKOV-3, and granulosa
cells as hypodiploid human cell lines, OC cell lines, and
normal primary cells, respectively. The results showed that
the selectivity indices of carboplatin and plasma-activated
medium (PAM) for A2780 CP and SKOV-3 were
significantly higher than those of traditional
chemotherapeutic drugs. Particularly, PAM with 10% FBS
exhibited the highest selectivity towards OC cells among all
plasma treatment methods, surpassing the selectivity of
various plasma therapies and conventional
chemotherapeutic drugs [163].

Metabolic approaches to overcoming chemoresistance in OC
Aerobic glycolysis and macromolecular synthesis are the
primary metabolic alterations in cancer that hinder cancer
cells from undergoing apoptosis. Many types of cancer
display metabolic changes, such as increased glycolysis and
mitochondrial dysfunction, which impede apoptosis and
result in a constant demand for energy. Consequently,
metabolic deprivation can significantly affect cancer cells.
Given the high prevalence of chemoresistance and the rapid
progression of OC, adopting metabolic strategies is a
prudent approach to enhance the bleak prognosis associated
with OC. The inhibition of glycolysis and other metabolic
stressors leading to metabolic scarcity, along with the
targeting of mitochondrial apoptotic machinery, appear to
be effective strategies. For instance, a synergistic effect can
be achieved in overcoming chemoresistance by combining

anticancer chemotherapeutics with metabolic modulators.
To gain a better understanding of the biomolecular
mechanisms underlying the metabolic alterations and
chemoresistance observed in OC, substantial basic and
clinical research is still required. This will inspire
researchers to develop novel drugs aimed at rectifying
metabolic dysregulation, thus substantially improving OC
management [135].

Conclusion

The emergence of DR in OC presents a significant hurdle to
effectively treating the disease, despite advancements in drug
delivery and targeted therapies. Chemotherapy resistance in
OC is a complex process influenced by multiple factors,
underscoring the necessity for a deeper comprehension of
the underlying molecular pathways to formulate innovative
strategies for conquering DR.

This knowledge is particularly invaluable for custom-
tailored therapies, which can anticipate the responses of
cancer cells to existing chemotherapeutic medications and
identify fresh therapeutic methods for managing OC. Novel
approaches to combat resistance encompass combining
therapies and employing personalized medicine, which may
prove more efficacious than conventional single-agent
therapies. In summary, an improved understanding of the
molecular mechanisms behind DR in OC is essential for
developing more efficacious treatments for this ailment.
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