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ABSTRACT

Deficiencies of essential vitamins, iron (Fe), and zinc (Zn) affect over one-half of the world’s population. A sig-
nificant progress has been made to control micronutrient deficiencies through supplementation, but new
approaches are needed, especially to reach the rural poor. Agronomic biofortification of pulses with Zn, Fe,
and boron (B) offers a pragmatic solution to combat hidden hunger instead of food fortification and supplemen-
tation. Moreover, it also has positive effects on crop production as well. Therefore, we conducted three separate
field experiments for two consecutive years to evaluate the impact of soil and foliar application of the aforemen-
tioned nutrients on the yield and seed biofortification of mungbean. Soil application of Zn at 0, 4.125, 8.25, Fe at
0, 2.5, 5.0 and B at 0, 0.55, 1.1 kg ha−1 was done in the first, second and third experiment, respectively. Foliar
application in these experiments was done at 0.3% Zn, 0.2% Fe and 0.1% B respectively one week after flowering
initiation. Data revealed that soil-applied Zn, Fe and B at 8.25, 5.0 and 1.1 kg ha−1, respectively, enhanced the
grain yield of mungbean; however, this increase in yield was statistically similar to that recorded with Zn, Fe
and B at 4.125, 2.5 and 0.55 kg ha−1, respectively. Foliar application of these nutrients at flower initiation signifi-
cantly enhanced the Zn contents by 28% and 31%, Fe contents by 80% and 78%, while B contents by 98% and
116% over control during 2019 and 2020, respectively. It was concluded from the results that soil application of
Zn, Fe, and B enhanced the yield performance of mungbean; while significant improvements in seed Zn, Fe, and B
contents were recorded with foliar application of these nutrients.
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1 Introduction

Mungbean, being recognized as poor man’s meat, contains a sufficient amount of quality proteins [1]. Its
nutritional profile revealed that its seed contains 367 mg phosphorus and 132 mg calcium per 100 g of seed;
whereas, carbohydrates, protein, ash, fibre and fats are 50%, 26%, 4%–5%, 3%–4.5% and 3%, respectively
[2]. It is usually grown in semi-arid and arid regions of the world [3]. It is considered the main pulse crop of
Pakistan and was cultivated on an area of 0.231 million hectares with a total production of 0.204 million
tonnes [4]. Its average yield (0.88 tonnes ha−1) is however far less than the developing countries.
Improving the yield of this vital crop both quantitatively as well as qualitatively can further make it more
profitable economically and beneficial from a health’s point of view.

Micronutrients, though required in smaller amounts, are necessary for human health, normal plant
growth and the development of all crops [5,6]. A little quantity of micronutrients is needed for better
growth and production of all crop plants [7]. Shenkin [8] suggested the application of Zn, B, Se, and Fe
to be beneficial in improving the immune system of plants besides increasing their growth and
development. Micronutrient malnutrition is threatening the world’s population, especially in developing
countries [9]. Approximately 2 billion people across the globe are Zn deficient [10] and its deficiency
ranks 5th in causing deaths in developing parts of the world while 11th in the overall world [11]. About
33% of children and 40% of mothers in Pakistan are suffering from Zn deficiency, particularly in the
rural areas [12]. Fe deficiency is also a global issue that is affecting about 2 billion of the world’s
population especially children and women in Latin America, South Asia, and Africa [13]. About 40% of
women in their reproductive age are anemic in South Asia which constitutes 37.5% of global anemic
cases [14]. While in South America, the Caribbean and Central America about 46.2%, 42.9%, and 33.9%
population respectively is anemic with more prevalence in children under 11 months of age [15].
Bioavailable Zn is deficient in about 50% of the world’s cultivated land [16]. In Pakistan, the situation is
even worse with the prevalence of Zn deficiency in 70% of the soils [17]. The prolonged scarcity of Zn
leads to poor vegetation, sexual development and low Zn contents in grain [18], reduction in leaf size and
internodal length [19]. Zn deficiency in humans is directly linked with the soil’s Zn deficiency [20]. Fe is
not deficient in our soils but is less bio-available due to very little accessibility to plants in readily
available form (ferric form, Fe3+) and high pH of the soil [21]. In calcareous soils, low Fe bioavailability
and chemical solubility are serious problems for crop plants [22]. Pakistani soils (approximately 82%) are
also deficient in B. Its availability is affected by high soil pH, calcareousness and low organic matter
[23]. Zn is necessary for plants as it plays an important role in enzyme activation and nucleic acid,
protein, carbohydrates and lipids metabolism [24]. It improves plant photosynthesis, growth, nitrogen
fixation and ultimately the yield of crops [25]. After nitrogen and phosphorus, Zn deficiency ranks third
in Pakistan in limiting plant performance [26]. Zn foliar application at flowering and grain filling
enhanced pod’s number, pod’s weight, seeds per pod, biological yield, 100-seed weight, and seed yield as
compared to control [27]. Negative effects of Zn deficiency in humans are pronounced on immunity,
bones, skin, brain and reproductive system [28] causing several disorders including cancer, diarrhea, and
pneumonia [29]. Humans consuming Zn deficient food products may suffer from Zn deficiency-related
health issues such as poor birth outcome, susceptibility to diseases, stunted growth, enhanced mortality,
poor immune system and brain functioning [30,31]. Rehman et al. [32] suggested the economical,
feasible and sustainable approach for overcoming Zn deficiency in human food which is the
biofortification of Zn in grains to increase the concentration and bioavailability of Zn in food.

Iron is an essential part of hemoglobin and myoglobin proteins which provide oxygen from lungs to
tissues and muscles respectively [33,34]. Fe is an essential component for the growth, development, and
synthesis of connective tissues and hormones for normal cellular functioning [34]. About half the
population of women and preschool children in Asia and Africa is suffering from Fe deficiency anemia
(IDA) [35]. IDA reduces immunity and physical as well as cognitive development. It enhances the risk of
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perinatal and maternal mortality and also affects the work performance of all age groups individuals [36]. In
plants, B is essential for carbohydrate and RNA metabolism, sugar transport, membrane transport,
bioaccumulation of essential elements and respiration [37]. The cell wall of all the plants is strengthened
by minute amounts of B compounds [38]. Some biological functions, i.e., calcium and insulin
metabolism, bone growth and maintenance and life cycle completion in humans are supported by Hunt
[39]. Boron actively accumulates in bones instead of soft tissues, so it is involved in the calcification and
maintenance of bones and has a positive influence on the central nervous system, maintaining structural
integrity and cell membrane functions [37]. B compounds have anti-inflammatory, and antioxidant
properties [40]. The deficiency of B causes several pathological disorders such as Cancer and several
forms of osteoarthritis and osteoporosis [41].

In a bid to cater the food needs of an ever-increasing human population, food quality and human health
have been overlooked [42]. To overcome micronutrient deficiency for quality food production, two
approaches are suggested in agriculture. A sustainable and long-term solution to the problem is the
development of cultivars with high micronutrient concentration in the sink by breeding and genetic
engineering; however, this approach takes too much time and expertise for the solution. The other well-
known strategy is agronomic bio-fortification by soil and foliar application of these micronutrients [43].
To combat Zn deficiency in cereals, several foliar sprays of dilute Zn solutions are recommended from
booting to grain initiation stage, due to partial phloem mobility and possible leaf burning by the toxicity
of excessive Zn [44]. Hussan et al. [45] suggested that soil application of Zn can enhance the yield but
the foliar application is a better option to enhance Zn concentration in grains.

A significant progress has been made to control micronutrient deficiencies through supplementation, but
some of these approaches are too costly and time consuming. A substantial approach has been adopted to
invest $192 million for the biofortification of Fe in beans, especially in the food system of Latin America,
East Africa, and South Asia [46]. Harvest-Plus and Pan Africa Bean Research Alliance (PABRA) has
claimed a “Nutrition success story” in biofortification of Bean with Fe, by citing a trial with human
efficacy [47]. Due to the limited resources of rural families which cannot change their traditional eating
habits biofortification is the only approach to be believed to have the ability to target these families [48].
Keeping in view the above facts and the need for biofortification in mungbean, the current study was thus
planned to enhance the concentration of Zn, Fe and B in grain and mungbean productivity by
hypothesizing that these micronutrients will play a key role in several metabolic processes, enzyme
activation, crop growth and development and will also enhance the concentration of these nutrients in
source which will ultimately be remobilized to sink.

2 Materials and Methods

2.1 Experimental Details
To evaluate the impacts of Zn, Fe and B on mungbean, three different experiments were carried out with

soil and foliar application (% solution w/v) of each nutrient individually at the research farm of Cereals and
Pulses Section of Agronomic Research Institute, Faisalabad using randomized complete block design
(RCBD) and replicating each experiment thrice. The first experiment comprised of Zn with five
treatments viz. control (no Zn application), soil application of Zn at 4.125 kg ha−1, soil application of Zn
at 8.25 kg ha−1, foliar application of Zn at 0.3% at flowering initiation, and foliar application of Zn at
0.3% at one week after flowering initiation. The second experiment comprised of Fe with five treatments
viz. control (no Fe application), soil application of Fe at 2.5 kg ha−1, soil application of Fe at 5.0 kg ha−1,
foliar application of Fe at 0.2% at flowering initiation, and foliar application of Fe at 0.2% at one week
after flowering initiation. The third experiment comprised of B with five treatments viz. control (no B
application), soil application of B at 0.55 kg ha−1, soil application of B at 1.1 kg ha−1, foliar application
of B at 0.1% at flowering initiation and foliar application of B at 0.1% at one week after flowering initiation.
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The field was cultivated twice at field capacity, rotavated, planked, and again cultivated once for seedbed
preparation. Mungbean was sown in 60 cm apart rows with help of a hand drill on 30.05.2019 and
04.05.2020 during the first and second year of study, respectively. NPK at 23:58:30 kg ha−1 was applied
to the crop at sowing as a basal dose. Soil application of micronutrients was done with first irrigation and
foliar application was done at flower initiation using 300 liters of solution per hectare.

Soil analysis of the experimental site was done before sowing and the results are presented in Table 1.

2.2 Weather Conditions during the Research
Weather data for both years was collected from the meteorological observatory of Agronomic Research

Institute Faisalabad and are presented in Fig. 1.

2.3 Data and their Collection/Analysis Procedures
Five plants from each treatment were selected and tagged at physiological maturity. After taking plant

height with the help of a meter rod from the base of the soil to the tip of plants, they were cut from the base.
Primary branches and the number of pods were counted per plant and averaged. Five pods were removed
from each plant, their length was taken with help of a measuring scale and the numbers of seeds were
counted in each pod and averaged. The crop was harvested at harvest maturity, dried, and threshed to get
the seed yield. Three samples of 1,000 seeds were collected, weighed with help of a weighing balance
and averaged thereof to calculate the 1,000-seed weight. Seed samples were collected and dried for grain
analysis. After that, seeds were ground, sieved and used for dry ashing and wet digestion. Seed B
contents were measured by dry ashing [49] and subsequent determination was done by colorimetry using
Azomethine-H [50]. Seed Zn and Fe contents were determined on Atomic Absorption Spectrophotometer
after wet digestion [51] of seed samples. Methods of B, Fe, and Zn determination are mentioned in

Table 1: Soil properties in the experimental field

Year Soil depth (cm) pH N (%) Available P
(mg kg−1)

Available K
(mg kg−1)

Zn (mg kg−1) Fe (mg kg−1) B (mg kg−1)

2019
1–6 7.7 0.039 3.5 103.3 0.63 8.8 0.13

7–12 7.9 0.032 1.16 94 0.25 5.8 0.14

2020
1–6 8.2 0.031 10 260 0.67 1.65 0.43

7–12 8.2 0.034 11.4 240 0.87 2.29 0.52

Figure 1: Weather data during 2019 and 2020
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ICARDA Manual by Estefan et al. [52]. Firstly, grain samples were dried at 60°C in an oven. Later, after
being grounded, grains were passed through a 1 mm sieve before wet digestion. Next, the contents of B,
Fe and Zn were determined based on nitric–perchloric acid digestion method.

2.4 Statistical Analysis
All the recorded data were analyzed statistically using Fisher’s analysis of variance technique and the

difference between treatments’ means was compared using Tukey’s Honestly Significant Difference
(HSD) test [53]. Correlation (Pearson) analysis was also performed for all parameters.

3 Results

3.1 Effects of Zn Application on Performance of Mungbean
Data in Table 2 shows that all the yield and yield components were enhanced by the application of Zn

either through soil or foliar application during both years of study. The maximum number of primary
branches, plant height, pods per plant, pod length, seeds per pod, test weight, and grain yield were
recorded when Zn was applied into the soil at 8.25 kg ha−1 followed by soil application of Zn at
4.125 kg ha−1 and foliar-applied Zn at 0.3% while the minimum was recorded with control (no Zn
application). In 2019, the number of primary branches was statistically more for soil-applied Zn at
8.25 kg ha−1 as compared with foliar application of 0.3% Zn at one week after flowering initiation.
During the second year of the experiment, there was a non-significant difference between soil-applied Zn
at 4.125 and 8.25 kg ha−1 and 0.3% foliar Zn spray for the number of primary branches at flowering
initiation and one week after the flowering initiation stage. Plant height was also recorded as statistically
at par when soil application of Zn was done at 8.25 and 4.125 kg ha−1 and foliar application of 0.3% Zn
at one week after flowering initiation during both study years. The minimum values for the same
parameter were recorded for the control without Zn application and foliar application of 0.3% Zn at
flowering initiation. Similarly, Zn application at 4.125 and 8.25 kg ha−1 recorded a higher number of
pods per plant with a non-significant effect between these rates. Pod length was also similar (p ≤ 0.05)
for soil application of Zn at 4.125 and 8.25 kg ha−1 during both years and foliar application of 0.3% Zn
in 2019. Furthermore, minimum values for pod length were recorded for the control treatment which was
statistically the same as the foliar application of 0.3% Zn at both stages. The numbers of seeds per pod
were statistically same for both soil and foliar application of Zn during both years of study. Soil
application of Zn at 4.125 and 8.25 kg ha−1 produced maximum but statistically same values for test
weight and seed yield followed by foliar application of 0.3% Zn and control without Zn application
during both study years. Foliar application of 0.3% Zn produced maximum but statistically similar grain
Zn concentration to soil application of Zn at 8.25 kg ha−1 during both study years followed by soil
application of Zn at 4.125 kg ha−1 (Fig. 2). The minimum values for Zn concentration were recorded for
the control without Zn application. A strong correlation of all parameters was found with grain yield
however there was a non-significant correlation for grain Zn contents with all other parameters (Table 2A).

Table 2: Effects of Zn application on performance of mungbean

Treatments 2019 2020 2019 2020

Primary branches Plant height (cm)

Control 1.97B 1.90B 64.0B 56.3B

S.A of Zn at 4.125 kg ha−1 2.40AB 2.77A 69.0AB 59.7AB

S.A of Zn at 8.25 kg ha−1 2.50A 2.87A 72.3A 62.0A

F.A of Zn at 0.3% at F.I 2.10AB 2.53A 66.7B 57.3AB

F.A of Zn at 0.3% at one week after F.I 2.00B 2.57A 67.3AB 56.7AB

Tukey’s HSD at p ≤ 0.05 0.49 0.528 5.25 5.44
(Continued)
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Table 2 (continued)

Treatments 2019 2020 2019 2020

Pods/plant Pod length (cm)

Control 14.47B 16.73B 7.83B 7.53C

S.A of Zn at 4.125 kg ha−1 21.9A 24.87A 8.63A 8.57A

S.A of Zn at 8.25 kg ha−1 23.3A 25.67A 8.73A 8.70A

F.A of Zn at 0.3% at F.I 15.53B 19.53B 8.1AB 8.10B

F.A of Zn at 0.3% at one week after F.I 15.47B 18.20B 7.97B 7.93BC

Tukey’s HSD at p ≤ 0.05 4.008 3.099 0.664 0.439

Seeds/pod Test weight (g)

Control 6.73B 8.03C 35.17C 32.73D

S.A of Zn at 4.125 kg ha−1 7.30AB 9.87A 40.43A 39.60A

S.A of Zn at 8.25 kg ha−1 7.50A 10.17A 40.90A 40.27A

F.A of Zn at 0.3% at F.I 7.60A 9.43AB 38.43B 37.70B

F.A of Zn at 0.3% at one week after F.I 7.57A 8.87B 38.53B 35.57C

Tukey’s HSD at p ≤ 0.05 0.652 0.809 0.787 1.341

Grain yield (kg ha−1)

Control 466C 620B

S.A of Zn at 4.125 kg ha−1 542AB 721A

S.A of Zn at 8.25 kg ha−1 569A 745A

F.A of Zn at 0.3% at F.I 488BC 668B

F.A of Zn at 0.3% at one week after F.I 497BC 644B

Tukey’s HSD at p ≤ 0.05 58.6 52.31
Note: S.A = Soil Application, F.A = Foliar Application, F.I = Flowering Initiation. Means not sharing a letter in common differ significantly at 5%
probability level.

Figure 2: Effect of zinc (Zn) application rates on Zn contents in the grains of mungbean. T1, control; T2,
soil application of Zn at 4.125 kg ha−1; T3, soil application of Zn at 8.25 kg ha−1; T4, foliar application of Zn
at 0.3% at flowering initiation (FI) stage; T5, foliar application of Zn at 0.3% at one week after FI. The values
are means ± SE, n = 3. Significant differences are shown by lowercase letters (at p ≤ 0.05)
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3.2 Effects of Fe Application on Performance of Mungbean
Fe application increased yield and yield components of mungbean during both study years (Table 3). Our

results showed that Fe application at 5.0 kg ha−1 recorded the maximum number of primary branches and pods
per plant which was statistically similar to 2.5 kg ha−1 while the minimumwas recorded for the control without Fe
application and foliar application at 0.2% Fe at both growth stage during 2020 and both years, respectively.
However, in 2019, there was a non-significant difference in the treatments. Soil application of Fe at 2.5 and
5.0 kg ha−1 and foliar application of 0.2% Fe produced statistically similar plant height while minimum
values were recorded for the control treatment and foliar application of Fe at 0.2% at one week after
flowering initiation during the first study year. However, in 2020, all treatments recorded statistically similar
values for plant height. Similarly, for pod length seeds per pod, there was a non-significant difference among
the treatments in 2019, however, Fe application at 5.0 kg ha−1 increased the same parameter in 2020 followed
by soil-applied Fe at 2.5 kg ha−1. While minimum pod length and seeds per pod were recorded for control
treatment which was statistically at par with foliar application of 0.2% Fe at both stages. Results also showed
that maximum test weight was recorded when for soil application of Fe at 5.0 kg ha−1 which was statistically
similar (p ≤ 0.05) to soil application of Fe at 2.5 kg ha−1 followed by foliar application of Fe at 0.2%. The
minimum value of test weight was recorded for the control treatment. As compared with control, Fe
application either by the soil or foliar spray enhanced grain yield during both years, however, there was a
non-significant difference among the treatments. The minimum grain yield was recorded for the control
treatment during both study years. Foliar application of 0.2% Fe at flowering initiation recorded maximum
grain Fe content followed by foliar spray of 0.2% Fe one week after flowering initiation, soil application of
Fe at 5.0 and 2.5 kg ha−1 (Fig. 3). The minimum Fe content was recorded for the control treatment during
both study years. Furthermore, as shown in Table 3A, a correlation also exists between the collected
parameters with grain yield; however, there was a non-significant correlation found with grain Fe contents.

Table 2A: Correlation (Pearson) analysis showing the strength of association of parameters of mungbean
affected by application of zinc

G-Zn GY PB PH PL PPP SPP

2019 2020 2019 2020 2019 2020 2019 2020 2019 2020 2019 2020 2019 2020

GY 0.25NS 0.46NS

PB 0.21NS 0.78NS 0.96** 0.86NS

PH 0.41NS 0.36NS 0.97** 0.97** 0.90* 0.76NS

PL 0.24NS 0.55NS 0.97** 0.99** 0.99** 0.93* 0.91* 0.92*

PPP 0.12NS 0.37NS 0.98** 0.99** 0.99** 0.84NS 0.91* 0.96* 0.99** 0.98**

SPP 0.92* 0.67NS 0.42NS 0.95* 0.31NS 0.94* 0.58NS 0.87NS 0.37NS 0.98** 0.27NS 0.93*

TW 0.54NS 0.64NS 0.92* 0.96* 0.86NS 0.94* 0.93* 0.87NS 0.90* 0.98** 0.86NS 0.94* 0.71NS 0.99**
Note: G-Zn = Grain Zinc Concentration, GY = Grain Yield, PB = Primary Branches, PH = Plant Height, PL = Pod Length, PPP = Pods per Plant,
SPP = Seeds per Pod, TW = 1000 − Grain Weight.

Table 3: Effects of Fe application on performance of mungbean

Treatments 2019 2020 2019 2020

Primary branches Plant height (cm)

Control 1.97 1.90C 64.0C 56.3

S.A of Fe at 2.5 kg ha−1 2.20 2.60AB 67.3AB 58.0

S.A of Fe at 5.0 kg ha−1 2.30 2.70A 68.0A 58.7
(Continued)
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Table 3 (continued)

Treatments 2019 2020 2019 2020

F.A of Fe at 0.2% at F.I 2.07 2.23BC 65.3ABC 57.0

F.A of Fe at 0.2% at one week after F.I 2.10 2.10C 64.7BC 56.7

Tukey’s HSD at p ≤ 0.05 NS 0.464 2.79 NS

Pods/plant Pod length (cm)

Control 14.47B 16.73B 7.8 7.5C

S.A of Fe at 2.5 kg ha−1 15.57A 19.00AB 8.2 8.3AB

S.A of Fe at 5.0 kg ha−1 15.97A 20.33A 8.3 8.3A

F.A of Fe at 0.2% at F.I 15.17AB 18.00AB 8.0 7.7BC

F.A of Fe at 0.2% at one week after F.I 15.27AB 17.00AB 8.0 7.7C

Tukey’s HSD at p ≤ 0.05 1.096 3.416 NS 0.56

Seeds/pod Test weight (g)

Control 6.73 8.03C 35.17C 32.73D

S.A of Fe at 2.5 kg ha−1 7.12 9.07B 38.33A 36.17B

S.A of Fe at 5.0 kg ha−1 7.23 9.30B 39.20A 37.10A

F.A of Fe at 0.2% at F.I 7.03 10.03A 36.13B 35.50BC

F.A of Fe at 0.2% at one week after F.I 6.77 9.87A 35.30BC 35.17C

Tukey’s HSD at p ≤ 0.05 NS 0.555 0.920 0.846

Grain yield (kg ha−1)

Control 466B 620B

S.A of Fe at 2.5 kg ha−1 505A 665A

S.A of Fe at 5.0 kg ha−1 513A 679A

F.A of Fe at 0.2% at F.I 508A 686A

F.A of Fe at 0.2% at one week after F.I 497AB 689A

Tukey’s HSD at p ≤ 0.05 34.7 41.4
Note: S.A = Soil Application, F.A = Foliar Application, F.I = Flowering Initiation; Means not sharing a letter in common differ significantly at 5%
probability level.

Figure 3: Effect of iron (Fe) application rates on Fe contents in the grains of mungbean. T1, control; T2, soil
application of Fe at 2.5 kg ha−1; T3, soil application of Fe at 5.0 kg ha−1; T4, foliar application of Fe at 0.2%
at flowering initiation (FI) stage; T5, foliar application of Fe at 0.3% at one week after FI. The values are
means ± SE, n = 3. Significant differences are shown by lowercase letters (at p ≤ 0.05)
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3.3 Effects of B Application on Performance of Mungbean
Application of B significantly influenced the growth and yield traits inmungbean except for plant height during

both years and the number of primary branches in 2019 (Table 4). In 2020, the number of primary branches was
statistically similar among soil applied application of B at 0.55 and 1.1 kg ha−1 and foliar application of B at 0.1%
solution at flowering initiation and one week after flowering initiation, while minimum values were recorded for the
control. Soil application of B at 1.1 and 0.55 kg ha−1 produced higher but statistically similar pods per plant and pod
length during both study years followed by the foliar application at 0.1%while theminimum value was recorded for
the control treatment. In 2019, maximum seeds per pod were recorded when B was applied to the soil application at
1.1 kg ha−1, however, the values were statistically similar with soil-applied B at 0.55 kg ha−1 and foliar application at
0.1%. During the second year of study, maximum and statistically similar seeds per pod were recorded for the foliar
spray of B at 0.1% at flowering initiation and one week after flowering initiation and soil application of B at
0.55 and 1.1 kg ha−1, while the minimum was recorded for the control treatment. Maximum test weight and
grain yield were recorded for soil application of B at 1.1 kg ha−1 which were statistically at par with soil
application of B at 0.55 kg ha−1, followed by foliar application of 0.1% B at flowering initiation and one week
after flowering initiation. The minimum values of these traits were recorded for the control treatment during
both years of study. Maximum grain B concentration was recorded for foliar application of 0.1% B at flowering
initiation followed by its spray with the same concentration one week after flowering initiation and soil
application of B at 0.55 and 1.1 kg ha−1. The minimum grain B concentration was recorded for the control
treatment without B application (Fig. 4). A correlation exists between grain yield and other collected parameters
but not with grain B contents (Table 4A).

Means not sharing a letter in common differ significantly at 5% probability level.

Table 3A: Correlation (Pearson) Analysis showing the strength of association of parameters of mungbean
affected by application of iron

G-Fe GY PB PH PL PPP SPP

2019 2020 2019 2020 2019 2020 2019 2020 2019 2020 2019 2020 2019 2020

GY 0.53NS 0.86NS

PB −0.02NS −0.06NS 0.81NS 0.44NS

PH −0.16NS −0.14NS 0.76NS 0.36NS 0.95* 0.98**

PL −0.01NS −0.19NS 0.85NS 0.34NS 0.98** 0.98** 0.98** 0.97**

PPP 0.18NS −0.10NS 0.90* 0.37NS 0.98** 0.97** 0.91* 0.99** 0.97** 0.93*

SPP −0.02NS 0.94* 0.81NS 0.97** 0.86NS 0.26NS 0.96* 0.16NS 0.93* 0.13NS 0.84NS 0.18NS

TW −0.26NS 0.33NS 0.68NS 0.76NS 0.93* 0.92* 0.99** 0.88* 0.95* 0.86NS 0.86NS 0.87NS 0.95* 0.61NS

Note: G-Fe = Grain Iron Concentration, GY = Grain Yield, PB= Primary Branches, PH = Plant Height, PL = Pod Length, PPP = Pods per Plant,
SPP = Seeds per Pod, TW = 1000 − Grain Weight.

Table 4: Effects of B application on performance of mungbean

Treatments 2019 2020 2019 2020

Primary branches Plant height (cm)

Control 1.97 1.90 B 64.0 56.3

S.A of B at 0.55 kg ha−1 2.10 2.63 A 67.7 59.0

S.A of B at 1.1 kg ha−1 2.27 2.77 A 68.3 59.7

F.A of B at 0.1% at F.I 2.10 2.53 A 65.3 57.3

F.A of B at 0.1% at one week after F.I 2.07 2.57 A 64.7 57.0
(Continued)
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Table 4 (continued)

Treatments 2019 2020 2019 2020

Tukey’s HSD at p ≤ 0.05 NS 0.397 NS NS

Pods/plant Pod length (cm)

Control 14.47 B 16.73 C 7.83 B 7.53 C

S.A of B at 0.55 kg ha−1 17.30 A 25.03 A 8.43 A 8.60 AB

S.A of B at 1.1 kg ha−1 17.43 A 25.70 A 8.50 A 8.97 A

F.A of B at 0.1% at F.I 15.60 AB 22.17 B 8.13 AB 8.27 B

F.A of B at 0.1% at one week after F.I 15.10 B 20.70 B 8.10 AB 8.07 BC

Tukey’s HSD at p ≤ 0.05 1.897 2.787 0.519 0.621

Seeds/pod Test weight (g)

Control 6.73 C 8.03 C 35.17 D 32.73 C

S.A of B at 0.55 kg ha−1 8.50 AB 10.17 B 40.13 AB 41.50 A

S.A of B at 1.1 kg ha−1 8.90 A 10.40 B 40.97 A 42.13 A

F.A of B at 0.1% at F.I 8.30 AB 11.10 A 39.33 BC 37.57 B

F.A of B at 0.1% at one week after F.I 8.03 B 11.20 A 38.50 C 38.27 B

Tukey’s HSD at p ≤ 0.05 0.620 0.649 1.165 1.448

Grain yield (kg ha−1)

Control 466 D 620 C

S.A of B at 0.55 kg ha−1 592 AB 795 A

S.A of B at 1.1 kg ha−1 615 A 807 A

F.A of B at 0.1% at F.I 538 BC 687 B

F.A of B at 0.1% at one week after F.I 517 CD 707 B

Tukey’s HSD at p ≤ 0.05 59.2 54.4
Note: S.A = Soil Application, F.A = Foliar Application, F.I = Flowering Initiation.Means not sharing a letter in common differ significantly at 5%
probability level.

Figure 4: Effect of boron (B) application rates on B contents in the grains of mungbean. T1, control; T2, soil
application of B at 0.55 kg ha−1; T3, soil application of B at 1.10 kg ha−1; T4, foliar application B at 0.1% at
flowering initiation (FI) stage; T5, foliar application of B at 0.1% at one week after FI. The values are means
± SE, n = 3. Significant differences are showed by lowercase letters (at p ≤ 0.05)
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4 Discussion

The application of macro and micro-nutrient is essential for all field crops for better yield and quality
[54]. Micronutrients (Fe, B, Zn and Se) [55] not only play a significant role in crop growth and
development but also stimulate the human immune system. In our experiment, the application of Zn
either through soil or foliar, significantly improved primary branches, plant height, pods per plant, pod
length, seeds per pod, test weight and grain yield of mungbean. A positive correlation was also recorded
among the recorded traits. However, soil application enhanced all these parameters more than foliar
application. This increase might be attributed to the role of Zn in the synthesis of protein, lipids,
carbohydrates, nucleic acid, nitrogen metabolism, cell division, photosynthesis [24], and all other
metabolic processes of cells [56,57]. Better growth and yield of mungbean might also be attributed to the
participation of Zn in several physiological processes during crop development [58], resistance to abiotic
stress [59], nitrogen use efficiency [60], photosynthesis and protein synthesis [61]. The presence of Zn in
cell triggers several enzymes involved in cell processes which ultimately enhance crop growth [62–64].
Zn plays a key role in auxin production which is involved in the enhancement of quantity and size of
cell, resulting in taller plant height [65]. It has been reported by several scientists that the application of
Zn at different levels enhanced the grain yield of mungbean [46,66–69]. Usman et al. [70] reported that
Zn-fertilization enhanced grain and biological yield by enhancing the number of grains per pod and test
weight of mungbean.

The increase in grain Zn concentration might be attributed to the remobilization of Zn reserves from
vegetative parts to the grain [71]. Chen et al. [72] reported the increase in grain Zn concentration due to
an increase in source Zn concentration through the soil and foliar application of Zn. Foliar application is
an agronomic practice which is used for rapid biofortification of micronutrients in grains. Scientists
believed that agronomic biofortification of Zn in wheat was more rapidly achieved than genetic or
breeding biofortification [72,73]. Our study which indicates that Zn concentration of mungbean grains
was significantly enhanced by the application of Zn mostly with foliar application of Zn than with soil-
applied Zn are further supported by above-mentioned facts related to Zn. Scientists have reported the role
of Fe in the respiratory electron transport chain (ETC), cell wall metabolism, photosynthesis and
oxidative stress tolerance [74,75]. Fe being part of many enzymes is involved in the activation of a
number of enzymes, cytochrome (involved in ETC), chlorophyll synthesis and chloroplast structure [76].
Micronutrients, especially Fe has great importance in photosynthesis and respiration as it is involved in
several enzymatic activities and chlorophyll [21,77]. Moreover, it has been reported that Fe contributes in
the synthesis of chlorophyll [78] and several plant growth regulators. An increase in plant height of

Table 4A: Correlation (Pearson) Analysis showing the strength of association of parameters of mungbean
affected by application of boron

G-B GY PB PH PL PPP SPP

2019 2020 2019 2020 2019 2020 2019 2020 2019 2020 2019 2020 2019 2020

GY 0.26NS 0.06NS

PB 0.31NS 0.45NS 0.89* 0.87NS

PH 0.06NS 0.01NS 0.98** 0.96** 0.85NS 0.78NS

PL 0.22NS 0.25NS 0.99** 0.95* 0.87NS 0.91* 0.97** 0.96**

PPP 0.11NS 0.31NS 0.98** 0.96** 0.82NS 0.92* 0.99** 0.94* 0.98** 0.98**

SPP 0.55NS 0.77NS 0.94* 0.47NS 0.88* 0.84NS 0.83NS 0.32NS 0.93* 0.55NS 0.85NS 0.59NS

TW 0.52NS 0.23NS 0.95* 0.98** 0.88* 0.95* 0.86NS 0.92NS 0.94* 0.96** 0.88* 0.98** 0.99** 0.63NS

Note: G-B = Grain Boron Concentration, GY = Grain Yield, PB = Primary Branches, PH = Plant Height, PL = Pod Length, PPP = Pods per Plant,
SPP = Seeds per Pod, TW = 1000 − Grain Weight.
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mungbean has been reported by Khoulenjani et al. [79], however, an increase in test weight, number of
grains, grain and straw yield and grain Fe concentration in wheat has been reported by Ziaeian et al. [80].
An increase in grain Fe iron concentration might also be attributed to the availability of Fe at the
reproductive stage of mungbean due to foliar application. It has been previously observed that Fe
application significantly enhanced the grain Fe concentration in wheat and groundnut [81,82]. Our results
indicate that soil and foliar application of Fe significantly enhanced primary branches, plant height, pods
per plant, pod length, seeds per pod, test weight, grain yield by soil application and grain Fe
concentration by foliar application either in both years of study or in one are further supported by the
above-mentioned roles of Fe in crops.

Boron plays a key role in cell wall formation, carbohydrate, Indoleacetic acid (IAA) and Ribonucleic
acid (RNA) metabolism, membrane integrity, calcium uptake, translocation of sugars, flowering,
pollination and ultimately growth [83–85]. The increase in primary branches, pods per plant and pod
length is attributed to the role of B in cell elongation and maturation, protein synthesis, development of
meristematic tissues and eventually plant growth and yield [86–90]. Jing et al. [91] reported that the
application of B improves plant dry matter and pods per plant in groundnut. The foliar application of B at
the flowering stage enhances the concentration of B in the source which ultimately is remobilized to sink.
An increase in micronutrient concentration in flag leaf and grains was previously verified by Zeidan et al.
[92] and Gomaa et al. [93]. The results of our study which indicate that application of B improved pods
per plant, pod length, seeds per pod, test weight, grain yield and grain B concentration by soil application
and foliar application of B, are further supported by the above-mentioned facts related to B.

5 Conclusion

This study is unique of its kind as it has addressed the vitally important issue of hidden hunger and
presented a pragmatic solution for combating it as well. It was concluded that soil application of Zn, Fe
and B is beneficial for better growth and yield of mungbean. However, foliar application of 0.3% Zn,
0.2% Fe and 0.1% B solution (w/v) at flowering initiation of mungbean proved to be more beneficial in
enhancing the yield and grain contents of these micronutrients. A strong correlation of all parameters was
found with grain yield however there was no correlation of grain Zn, Fe and B contents with all other
collected parameters.
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