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ABSTRACT

Brassinosteroids (BRs), a class of steroid phytohormones, play a critical role in plant growth and development.
The DWF4 gene encodes a cytochrome P450 enzyme (CYP90B1), which is considered a rate-limiting enzyme
in BR biosynthesis. Here, we identified a homologous gene of DWF4 in chrysanthemum, CmDWF4. This gene
was predicted to encode 491 amino acid residues with a molecular weight of 56.2 kDa and an isoelectric point
(pI) of 9.10. Overexpression of CmDWF4 in chrysanthemum was found to significantly increase growth rate,
number, and length of lateral buds. Transcriptome analysis showed that multiple xyloglucan endotransglycosy-
lase/hydrolase (XTH) family encoding genes associated with cell wall modification were up-regulated in
CmDWF4-overexpressing lines. qRT-PCR assay confirmed the up-regulation of CmXTH6, CmXTH23, and
CmXTH28 in CmDWF4-overexpression line. Overall, this work establishes a mechanism by which BR
biosynthetic gene CmDWF4 promotes lateral bud outgrowth in chrysanthemum, possibly through regulating cell
elongation and expansion.

KEYWORDS

BR; axillary bud; shoot branching; XTHs; cell elongation

1 Introduction

Shoot branching is a major determinant of plant morphogenesis and a key trait that determines the yield
potential of agricultural, horticultural, and forestry crops [1]. Optimizing shoot architecture significantly
improves the ornamental value of cut flowers, especially that of chrysanthemums [2]. Shoot branching
can be divided into two important stages, namely the formation of the axillary meristem (AM) and the
outgrowth of axillary buds. The formation of AM is regulated by internal factors [3], while the outgrowth
of axillary buds is controlled by both internal and external factors, including environment,
phytohormones, developmental stage, and key genes [3–5].

Among a range of factors that regulate bud outgrowth, hormonal signaling plays a principal role. Auxin
was the first phytohormone discovered to be involved in the regulation of shoot branching by maintaining
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apical dominance and inhibiting the growth of axillary buds [6,7]. In addition, strigolactone (SL) was found
to inhibit bud outgrowth [8,9]. Cytokinin (CK) was reported to antagonize auxin and SL to promote bud
outgrowth [10–12]. Auxin-CK-SL is a classic model to explain the control of bud outgrowth, which is
summarized as ‘the second messenger model’ and/or ‘the auxin transport canalization-based model’ [13–
15]. Apart from these three hormones, recent reports suggested that BR is also involved in the regulation
of shoot branching development [16,17].

BRs, a class of steroid plant hormones, were originally characterized for their function in cell elongation
[18]. They were discovered to have a crucial function in plant growth and development [19,20]. In rice, BR
deficient mutants as well as BR signal transduction blocked mutants showed significantly reduced tiller
numbers compared with the wild type [16,21]. Conversely, transgenic rice with enhanced BR signaling
developed more tillers compared with the wild type [16]. In Arabidopsis, BES1, a positive regulator of
the BR signaling pathway, regulates shoot branching through SLs-mediated signaling [22–24]. This
leaves doubts about the branching regulation function of BRs in dicotyledonous plants. However, in the
latest study, BRs have been found as the major signal integrating multiple pathways to control bud
outgrowth in tomato [17]. In general, the function of BR in the regulation of bud outgrowth is still rarely
reported. More evidence is needed to understand the role of BR in the regulation of shoot branching in dicots.

The biosynthesis of BR requires a variety of enzymes, which are encoded by the genes STE/DWF7,
DWF5, DWF1/DIM, DWF4/CYP90B1, CPD/CYP90A1, DET2/DWF6, ROT3/CYP90C1, and CYP85A1/2/
BR6OX1/2 [25,26]. In the process of steroid biosynthesis, these genes were obviously up-regulated [27].
The DWF4 gene encodes a cytochrome P450 enzyme (CYP90B1) that mediates multiple 22α-
hydroxylation steps, which is a rate-limiting step in BR biosynthesis [28,29]. CYP90B1 forms a complex
with uniconazole or brassinazole, further inhibits BR biosynthesis [30]. Overexpression of DWF4 leads to
increased vegetative development, seed number, and seed yield in Arabidopsis and maize [31,32], as well
as improved stress tolerance in Brassica napus and potato [33,34] and enhanced fruit quality in tomato
[35]. However, the mechanism by which DWF4 regulates shoot branching remains unclear.

Chrysanthemum (Chrysanthemum morifolium) is a commercially important ornamental species with
various branching types. However, remove lateral buds in chrysanthemum cultivation is labor and time
consuming. Therefore, controlling chrysanthemum branch number is essential and has long been attracted
the attention of breeders. Here, we identified a BR biosynthetic gene CmDWF4, and generated transgenic
chrysanthemum, we found that CmDWF4 regulates shoot branching in chrysanthemum. Then, the
regulatory mechanism of CmDWF4 was explored by transcriptome sequencing and quantitative analysis
of transgenic lines. This study provides a further understanding of the function of the DWF4 gene and
adds evidence for the role of BR in regulating shoot branching in chrysanthemum.

2 Materials and Methods

2.1 Plant Materials and Growth Conditions
The chrysanthemum cultivar ‘Jinba’ was used as the wild type (WT). Transgenic plants OX-2, OX-10,

and OX-23 were obtained via the Agrobacterium-mediated leaf disc method in the background of WT.
Chrysanthemum was propagated asexually by cuttings. The cuttings were cultivated in 12 × 6 aperture
disks with a mixture of vermiculite and nutritional soil (1:1, vol/vol). After rooting, the consistent plants
were transferred to pots containing the same substrate. The plants were cultivated in a controlled
environment (22°C ± 2°C, 16 h of light and 8 h of darkness, 200 μmol·m−2·s−1 light intensity, 70%
relative humidity) [36]. When the plants were relocated to the pots for 30 days, water was supplied once
a week using a nitrogen-rich nutrient solution.

2.2 Isolation of CmDWF4 and Sequence Analysis
The sequence information of the BR biosynthetic gene CmDWF4 was obtained from chrysanthemum

transcriptome and TAIR website (https://www.arabidopsis.org/Blast/index.jsp). The full-length ORF
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sequence of CmDWF4 (1467 bp) was cloned with the primer pair CmDWF4-F and CmDWF4-R from the
cDNA of ‘Jinba’. All primers used in this study (Table S1) were designed using the Primer Premier
5 software. Amino acid sequence alignment with functionally reported genes AtDWF4 [31], StDWF4
[34], GhDWF4 [35], and ZmDWF4 [32] was performed using DNAMAN software. The construction of a
phylogenetic tree was carried out using the MEGA-X software [37].

2.3 Vector Construction and Chrysanthemum Transformation of pORE-R4-CmDWF4
Restriction enzyme sites BamH I and EcoR I were inserted into the cloned CmDWF4 gene by primers

CmDWF4-BamH I-F and CmDWF4-EcoR I-R (Table S1). The PCR products and pORE-R4 vector were
digested with 2.5 μL BamH I and 2.5 μL EcoR I (Takara, Japan). To join the target gene fragment with
the target vector, 5.0 μL Solution I (Takara, Japan) was utilized. The generated vector pORE-R4-
CmDWF4 was transferred into Agrobacterium tumefaciens EHA105 using the electro-transformation
approach. The Agrobacterium-mediated leaf disc transformation method [36] was used to infect pORE-
R4-CmDWF4 into chrysanthemum ‘Jinba’. MS solid medium with 7 mg·L−1 kanamycin was used to
screen for normal rooting lines. DNA was extracted from rooted seedlings for identification to obtain
CmDWF4-overexpressing lines.

2.4 Treatment and Measurement of Lateral Buds
When the plants were 45 days old, the leaves and shoot apex above the third node were removed with a

disinfection blade as a decapitation treatment. Nodes were numbered from top to bottom and the first fully
expanded leaf was the first node. After decapitation for 6 days, the length of the first three lateral buds from
the stem to the top of the bud was measured with a 20 cm measuring ruler as the total elongation. As we have
found that the first three lateral buds elongated significantly after decapitation in chrysanthemum ‘Jinba’.
Lateral bud length of intact plants was measured starting from the stem and was simulated from the 6th to
the 39th node by HeatMap of TBtools software [38].

2.5 Quantitative Real-Time PCR (qRT-PCR) Analysis
After decapitation treatment inWT, the first three lateral buds were collected from each plant at 0, 12, 24,

36, 60, 84, and 108 h, respectively, and three plants were used as one biological replicate. The root, stem,
leaf, top bud, and axillary bud of WT were also sampled for analysis of the expression pattern of
CmDWF4, using three plants as a biological replicate. Transgenic plants OX-2, OX-10, and OX-23 were
extracted from the leaves, with three plants used as a biological replicate. Total RNA was extracted using
the Quick RNA isolation Kit (Huayueyang, China) according to the operation manual. The
chrysanthemum CmUbiquitin [39] gene was used as the reference sequence. The primer pair CmDWF4-
RT-F and CmDWF4-RT-R and other quantitative primers used in this study are listed in Table S1. The
qRT-PCR reaction system was as follows: 10 μL SYBR Premix Ex Taq™ II (Takara, Japan), 2 μL primer
F/R (1 μM), 0.5 μL template cDNA (50 ng·μL−1), and 5.5 μL ddH2O. The 2−ΔΔCt method [40] was used
to calculate relative expression levels. The results are shown as the average of three biological replicates.

2.6 Transcriptome Analysis
Quantitatively validated transgenic lines OX-2, OX-10, OX-23, and WT were sent to the Annoroad

Gene Tech. (Beijing) Co., Ltd. (China) for RNA sequencing. RNA was extracted from 30-day-old
chrysanthemum leaves. To predict unigene expression levels in the four samples, we used the fragments
per kilobase of exon model per million mapped fragments (FPKM) method. FPKM of different samples
was visualized by HeatMap of TBtools software [38]. The RNA-seq raw data of 12 samples generated in
this study have been deposited in the National Center for Biotechnology Information (NCBI) under
accession number PRJNA915417.
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2.7 Statistical Analysis
The expression of CmDWF4 in different tissues and qRT-PCR analysis of CmDWF4 with the 20 mM

sucrose treatment was performed by statistical variance analysis using the IBM SPSS Statistics
25 software. Other data were analyzed for significance using Student’s t-test. The differences between
mean values were separated at a level of p < 0.05 or p < 0.01.

3 Results

3.1 CmDWF4 Potentially Regulates Lateral Bud Outgrowth in Chrysanthemum
According to an effective culturing system using two-node stems [41], the BR biosynthetic gene

CmDWF4 was up-regulated with the 20 mM sucrose treatment, which promoted the growth of the upper
bud [42]. Our qRT-PCR verification showed that CmDWF4 was up-regulated by 4.01-folds in the upper
buds treated with 20 mM sucrose (Fig. S1).

To further identify the potential role of CmDWF4 in lateral bud growth, 45-day-old chrysanthemum
seedlings were used for decapitation treatment. We then analyzed CmDWF4 expression using the RNAs
extracted from the axillary buds at 0, 12, 24, 36, 60, 84, and 108 h. Results showed that decapitation led
to a rapid increase in the transcriptional level of CmDWF4 within 12 to 24 h (Fig. 1), indicating that
CmDWF4 may play an important role in lateral bud outgrowth in chrysanthemum.

3.2 Expression Pattern of CmDWF4
Next, we examineed the expression of CmDWF4 in root, stem, leaf, top bud, and axillary bud of the 45-

day-old chrysanthemum seedlings. We found highest expression of CmDWF4 in leaves, which was
14.93 times than that in roots. Moreover, we found that the transcriptional level of CmDWF4 in axillary
buds was 1.43 times higher than that in the top buds (Fig. 2).

3.3 Cloning and Characterization of CmDWF4
The full-length CmDWF4 sequence was cloned by specific primers (CmDWF4-F and CmDWF4-R,

Table S1) from the cultivar ‘Jinba’ cDNA. Sequence analysis revealed that the open reading frame (ORF)
of CmDWF4 was 1476 bp, which was predicted to encode 491 amino acid residues with a molecular
weight of 56.2 kDa and an isoelectric point (pI) of 9.10. The predicted amino acid sequence of CmDWF4
contained four conserved features of the CYP450 family: domains A, B, and C and heme-binding domain
(Fig. 3A). A phylogenetic analysis implied that CmDWF4 was most closely related to Artemisia annua
protein AaDWF4 (Fig. 3B).
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Figure 1: Expression pattern of the CmDWF4 gene in axillary buds in response to decapitation. Data are
presented as means ± SE (n = 3). Significant differences are indicated by different letters (p < 0.05)
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Figure 2: Expression profiles of CmDWF4 in different tissues of chrysanthemum. Data are presented as
means ± SE (n = 3). Significant differences are indicated by different letters (p < 0.05)

Figure 3: Sequence analysis of CmDWF4 and related DWF4s. (A) Polypeptide alignment of
CmDWF4 with DWF4s from Arabidopsis, potato, cotton, and maize. The conserved features of the
CYP450, domains A, B, and C, and heme-binding domain were indicated by underlining. (B)
Phylogenetic tree of CmDWF4 and related DWF4s. The GenBank accession numbers of P450s are as
follows: PeDWF4 (Populus euphratica, HQ452827.1), GhDWF4 (Gossypium hirsutum,
NP_001313765.1), BrDWF4 (Brassica pekinensis Rupr., Bra030023.1), AtDWF4 (Arabidopsis thaliana,
NP_190635.1), StDWF4 (Solanum tuberosum, XM_006340546.1), OsDWF4 (Oryza sativa,
AB206579.1), ZmDWF4 (Zea mays, EF519871.1), BdDWF4 (Brachypodium distachyon, KQK22730.1),
DcDWF4 (Daucus carota var. sativa Hoffm., DCAR_017553), LsDWF4 (Lactuca sativa,
XP_023770054.1), HaDWF4 (Helianthus annuus, XP_021998202.1), and AaDWF4 (Artemisia annua,
PWA81420.1)
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3.4 Effects of CmDWF4 on Lateral Bud Initiation and Outgrowth
To further investigate the function of CmDWF4 in chrysanthemum, we generated the overexpression

lines of CmDWF4 in the cultivar ‘Jinba’ by introducing the plasmid pORE-R4-CmDWF4. Positive
transgenic lines were identified by conducting a genomic PCR assay using primers pORE-R4-F and
CmDWF4-R2 (Table S1). Finally, three independent transgenic lines were obtained: OX-2, OX-10, and
OX-23 (Fig. S2). qRT-PCR analysis revealed that the transcriptional level of CmDWF4 in OX-2, OX-10,
and OX-23 was 3.02, 5.19, and 8.19 times than that in WT, respectively (Fig. 4C).

The 45-day-old CmDWF4 transgenic lines OX-2, OX-10, OX-23, and WTwere decapitated at the same
time. The growth of three lateral buds at the top of the plants was observed after 6 days in the long-day culture
chamber. It was found that the first three lateral buds of the overexpression lines OX-2, OX-10, and OX-
23 were significantly longer than those in WT (Fig. 4A). Statistical analysis showed that the length of the
total three lateral buds of OX-2, OX-10, and OX-23 was 5.17, 5.00, and 5.20 cm, respectively, which
were significantly greater than the 3.13 cm length of lateral buds in WT (Fig. 4B), indicating an essential
role of CmDWF4 in lateral bud initiation and outgrowth in chrysanthemum.

Figure 4: Effects of CmDWF4 on lateral bud initiation and outgrowth after decapitation. (A) Lateral bud
outgrowth phenotypes of overexpressed CmDWF4 lines in the ‘Jinba’ background after decapitation for
6 days. Scale bars represent 1.0 cm. (B) Statistics of the total length of the first three lateral buds. Data
are presented as means ± SE (n = 6). (C) qRT-PCR analysis of relative expression of CmDWF4 in
transgenic lines. Data are presented as means ± SE (n = 3). Significant variations from WT are indicated
with asterisks (**p < 0.01)
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3.5 Effects of CmDWF4 on the Number and Length of Lateral Buds
The phenotype of 65-day-old CmDWF4 transgenic lines was identified. It was found that the

overexpressed lines OX-2, OX-10, and OX-23 had more and longer buds compared with WT (Fig. 5A).
The length of lateral buds at the same node (from node 6 to node 39, S6–S39) was compared by a color
scale. The results showed that 73.52% of the buds of OX-2, 85.29% of the buds of OX-10, and 70.59%
of the buds of OX-23 were longer than the buds of WT (Fig. 5B). Statistical analysis showed that the
number of lateral buds greater than 0.5 cm in OX-2, OX-10, and OX-23 was 36.0, 35.5, and 38.0,
respectively, which was significantly larger than 30.0 in WT (Fig. 5C). The total lateral bud length of
OX-2, OX-10, and OX-23 was 68.95, 69.33, and 58.30 cm, respectively, which was also significantly
greater than 43.73 cm in WT (Fig. 5D). These results indicated that CmDWF4 positively regulates the
growth of lateral bud in chrysanthemum plants.

3.6 CmDWF4 Promotes Lateral Bud Outgrowth through Regulating Cell Elongation and Expansion
To explore the mechanism of CmDWF4 in regulating chrysanthemum bud outgrowth, we performed

transcriptome sequencing using CmDWF4-overexpressing lines OX-2, OX-10, and OX-23. Five
differentially expressed genes related to BR signaling were identified, and their expression levels were
up-regulated in CmDWF4-overexpressing lines (Fig. 6B). In addition, multiple xyloglucan
endotransglycosylase/hydrolase (XTH) family encoding genes were up-regulated in OX-2, OX-10, and
OX-23 compared to WT (Fig. 6A). XTHs modify a major structural component of the plant cell wall,
xyloglucan, and therefore may influence cell elongation and expansion [43–45]. qRT-PCR was used to
verify the transcript levels of XTHs in CmDWF4-overexpressing transgenic lines. Result showed that
three XTHs genes in OX-2, OX-10, and OX-23 lines were significantly up-regulated compared with WT

Figure 5: Effects of CmDWF4 on the number and length of lateral buds in intact chrysanthemum plants. (A)
Lateral bud outgrowth phenotypes of overexpressed CmDWF4 lines. Scale bar represents 5.0 cm. (B)
Comparison of lateral bud length at the same node with the color scale. S6–S39 represents the 6th to the
39th node. (C) The number of lateral buds longer than 0.5 cm in (A). (D) Total lateral bud length of the
plants in (A). Data are presented as means ± SE (n = 4). Significant variations from WT are indicated
with asterisks (*p < 0.05, **p < 0.01)
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plants (Figs. 6C–6E). The expression levels of CmXTH6/CmXTR10 in OX-2, OX-10, and OX-23 were 1.74,
1.47, and 1.89 times that of WT, respectively (Fig. 6C). The expression levels of CmXTH23/CmXTR6 in OX-
2, OX-10, and OX-23 were 1.82, 1.78, and 2.87 times that of WT, respectively (Fig. 6D). The expression
levels of CmXTH28/CmEXGT-A2 in OX-2, OX-10, and OX-23 were 2.05, 1.87, and 1.86 times that of
WT, respectively (Fig. 6E). The data implied that overexpression of CmDWF4 might regulate the
expression of cell wall-related genes to stimulate cell elongation and expansion to promote lateral bud
outgrowth.

4 Discussion

Plant growth and development are aided by BRs, a class of plant-specific steroid hormones. BRs
promote tillering in rice [16] and bud outgrowth in tomato [17]. The cytochrome P450 enzyme
(CYP90B1) encoded by the DWF4 gene is a rate-limiting step in BR biosynthesis [28–30]. Previous
studies have demonstrated that the BR biosynthetic gene CmDWF4 was up-regulated in the growing bud
with the 20 mM sucrose treatment (Fig. S1) [41,42]. The role of sucrose in promoting plant bud
outgrowth has been widely reported [46,47]. In this study, the expression of CmDWF4 increased in lateral
buds of WT within 12 to 24 h in response to decapitation treatment (Fig. 1). Therefore, we speculated
that CmDWF4 was involved in the regulation of lateral bud outgrowth in chrysanthemum.

Transgenic experiments were conducted to verify whether CmDWF4 was involved in the regulation of
lateral bud outgrowth. After obtaining CmDWF4 overexpressing lines OX-2, OX-10, and OX-23, the growth
rate, number, and length of the lateral buds were observed in the intact plants or decapitated plants. The

Figure 6: Transcriptome analysis and quantitative validation of CmDWF4 overexpressing lines. (A)
Expression levels of XTHs genes in WT, OX-2, OX-10, and OX-23 RNA-seq data. (B) BR signaling-
related genes expression levels in WT, OX-2, OX-10, and OX-23 RNA-seq data. Data are presented as
means (n = 3) of FPKM by log2 scale and row scale. (C) The relative expression level of CmXTH6 by
qRT-PCR analysis. (D) The relative expression level of CmXTH23 by qRT-PCR analysis. (E) The relative
expression level of CmXTH28 by qRT-PCR analysis. Data are presented as means ± SE (n = 3).
Significant variations from WT are indicated with asterisks (*p < 0.05, **p < 0.01)
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results showed that the initiation and sustained growth of lateral buds were promoted in OX-2, OX-10, and
OX-23 lines (Figs. 4 and 5). In Arabidopsis, AtDWF4 functions to increase vegetative growth and seed yield
[31]. In maize, ZmDWF4 improves photosynthetic ability and enhances yield [32], indicating that CmDWF4
has functional similarity with AtDWF4 in Arabidopsis and ZmDWF4 in maize in shoot branching regulation.
However, in Arabidopsis and maize, no reports showed how DWF4 regulates the lateral bud outgrowth. In
other species, the function of DWF4 in regulating lateral bud outgrowth has not been reported. This study
provides new clues on the shoot branching regulation of the DWF4 gene in different species by the
homologous transformation of CmDWF4 in chrysanthemum.

Transcriptome analysis of CmDWF4 overexpressing lines showed that multiple xyloglucan
endotransglucosylases/hydrolases (XTHs) encoding genes were up-regulated (Fig. 6A). Enzymologically,
xyloglucan endotransglucosylase (XET) and xyloglucan endohydrolase (XEH) activities are used to
describe the XTHs family of enzymes. XTHs modify a major structural component of the plant cell wall,
xyloglucan, and thus may affect cell elongation and expansion [43–45]. It has been reported that
exogenous BL promotes the expression of XTHs genes [48,49]. The key brassinosteroid signaling
pathway transcription factor BES1 acts directly upstream of XTH19 and XTH23 to control their
expression [50]. However, the regulatory relationship of DWF4 on XTHs is rarely reported. The family of
33 Arabidopsis XTHs genes is divided into three major groups according to the genetic structure. XTH6
[51], XTH23 [50], and XTH28 [44] belong to group 1, group 2, and group 3, respectively [45].
Quantitative validation in our study showed that the expression of CmXTH6, CmXTH23, and CmXTH28
was significantly increased in OX-2, OX-10, and OX-23 lines (Figs. 6C–6E), suggesting that
overexpression of CmDWF4 might result in cell elongation and expansion by upregulating the expression
of the XTHs gene. Eventually promoted chrysanthemum shoot branching.

BR is widely known to promote cell elongation [18,52]. The response of XTH23 to BR regulation has
been recorded [50]. In this study, the transcriptional level of CmDWF4 was significantly increased in OX-2,
OX-10, and OX-23 lines (Fig. 4C). The expression levels of BR signaling-related genes were up-regulated in
CmDWF4-overexpressing lines, including BAK1 (BRI1 associated receptor kinase 1) [53,54], BSK5
(brassinosteroid-signaling kinase 5) [55], BEE1 (BR enhanced expression 1) [56], and BRL2 (BRI1-like
receptor kinase 2) [57] (Fig. 6B). This indicated that BR content in CmDWF4-overexpressing lines was
indeed increased. Together, these data provide strong evidence that the lateral bud outgrowth phenotypes
and associated gene expression level changes in transgenic lines are due to elevated BR levels.
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Supplementary Materials

Table S1: Primers used in this study

Primer name Sequence (5′ to 3′)

CmDWF4-F ATGGCTGTTTTTTGGATGGCA

CmDWF4-R TTAAAGGGCCAAATGGTCCAG

pORE-R4-F GACGCACAATCCCACTATCC

CmDWF4-R2 TGATGATATTCTGATTCTAGCCTTAACT

CmDWF4-BamH I-F CGGGATCCATGGCTGTTTTTTGGATGGCAATC

CmDWF4-EcoR I-R CGGAATTCTAAGGGCCAAATGGTCCAGCTTGA

CmUbiquitin-RT-F AGCTGAGCAGACTCCCGATG

CmUbiquitin-RT-R AGGCGATTCATCAGTACCAAGTG

CmDWF4-RT-F TGATACCAGCAGGTTGGAAGG

CmDWF4-RT-R GGACTCGAATGGATAAATGGGT

CmXTH6-RT-F TGGGAAGCAGATGATTGGGC

CmXTH6-RT-R CAGTTGGTTGGGTTGGACGC

CmXTH23-RT-F AAAGAACCAACCAATGAGGATACAC

CmXTH23-RT-R CTGAGCCACTGCCACAAGATG

CmXTH28-RT-F CCCCTTACATTGCTGAGTTTTCC

CmXTH28-RT-R TTTCGTCCTTTGTGATGGCGT

Figure S1: qRT-PCR analysis of CmDWF4 with the 20 mM sucrose treatment. Data are presented as the
means ± SE (n = 3). Significant differences are indicated by different letters (p < 0.05)
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Figure S2: Identification of CmDWF4 transgenic lines at the DNA level. M: DL2000 DNA Marker
(TaKaRa); 1: OX-2; 2: OX-10; 3: OX-23; 4: WT; 5: plasmid pORE-R4-CmDWF4
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