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ABSTRACT

Rice is an essential part of the human diet in most parts of the world; On the other hand, the industrialization of
societies has led to pollution of the environment, including heavy metal contamination of soil and water, which
negatively affects rice production and quality. Therefore, finding ways to increase the yield and quality of this
strategic crop seems essential. Several studies have been conducted in recent decades to find effective and
inexpensive solutions to reduce the adverse effects of heavy metals in rice fields. Due to the negative effect of
cadmium pollution on rice quality and yield, the current study aimed to investigate cadmium absorption and
transfer mechanisms in rice (from absorption by roots to loading in grains), and its effects on rice morphology,
physiology, and biochemistry (such as biomass, nutrient absorption, antioxidant defenses). Also, rice’s natural
mechanisms for detoxifying cadmium were discussed. This study also intended to identify the absorption and
transfer pathways of silicon and selenium in rice, their roles in improving rice structures, and their antagonistic
effects on reducing cadmium stress (absorption, transport, and toxicity of cadmium).
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1 Introduction

Rice is the most consumed grain on the earth, which is the primary food source for more than 50% of the
world’s population [1,2], and approximately 55%–80% of an individual’s calories come from rice, according
to research [3]. The majority of people in many countries, such as China, eat rice as a staple food [4], and in
Pakistan, rice is the second most consumed crop after wheat [5]. The population of the world will reach
9 billion by 2050, so rice production must also increase to ensure food security around the world,
therefore scientists are always looking for ways to improve rice yields [6,7]. Recent changes in attitudes
about food quality have led researchers to shift from quantitative to qualitative views of rice production,
which in addition to producing high-yielding cultivars, maintains high standards for rice production, and
directly improves human health [8–10].

The contamination of soils with heavy metals (such as lead, cadmium, nickel, and chromium) has
become a major issue worldwide [1,11], which, in addition to reducing crop production, also increases
crop contamination risks [1,12]. Cadmium is one of the most toxic heavy metals that is widely distributed
throughout the environment today and has become a global concern [13,14]; Moreover, this element is
extremely toxic to all organisms (plants, animals, and humans) in its ionic form [1,15]. Cd is also one of
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the most potential dangers to humans today due to its high stability, strong activity, and lack of
decomposition by microbes [16,17]. Human activities such as mining, metal smelting, coal burning, and
rock destruction contribute substantially to the pollution of Cd [18–20]; Additionally, Cd accumulation in
the soil is caused by irrigation with sewage, sludge, long-term use of phosphate fertilizers, pesticides, and
atmospheric deposition [20–22].

Studies have found that after lead (Pb) and mercury (Hg), Cd is the third most toxic metal in soil [7], and
the US Environmental Protection Agency (EPA) and the Agency for Toxic Substances and Disease Registry
(ATSDR) rank Cd seventh among the top 20 priority hazardous substances [23]. Additionally, studies in
China have shown that 16.1% of soil samples collected throughout the country and 19.4% of arable land
are contaminated with Cd [24]. The high bioavailability and extractability of Cd allow it to be easily
absorbed by plant roots and other plant organs [20,25]; Therefore, Cd can enter the human food chain
through plants, particularly grains, accumulate in the body, and endanger human health [16,26].
According to research, almost all food sources contain cadmium, meaning that most human populations
are at risk [27], and because of Cd’s long half-life (30 years), it can accumulate in the body over time and
cause irreversible damage [7,28]. The accumulation of Cd in the human body has been linked to diseases
such as prostate cancer, lung cancer, osteoporosis, cardiovascular disease, kidney tubular necrosis, and
neurotoxicity [29–32].

The national food safety standards of China (GB 2762-2020) made it illegal to sell products containing
Cd at levels higher than 0.2 mg/kg [33]. However, it has been observed that plants contain Cd at levels
ranging from 0.1 to 2.4 mg/kg dry weight (Table 1) [34]. Due to rice’s ability to absorb Cd from soil and
transfer it to the seeds more efficiently than other grains [35], it is known as a Cd accumulator [14],
which is the main source of Cd in dietary throughout the world [2]. Since rice is a staple food in most
Asian countries and is an important tradable commodity worldwide [36,37], thus finding suitable
solutions to reduce the effects of phytotoxic and Cd accumulation in rice grains can contribute
significantly to human health [38,39].

Studies showed that Si is an effective technology for controlling Cd pollution in paddy soils, but its
effectiveness depends on the dose, application method, and soil Si content [40]. Si also by improving soil
ventilation, increasing soil pH, increasing the bioavailability of nutrients, and forming silicate complexes
stabilizes Cd and reduce the extractable Cd for plants [13,16,41,42]. As shown by Ma et al., Si improves
soil health without adversely affecting the soil bacterial community; the bacterial diversity is maintained,
but the bacterial community’s structure is selectively changed, which reduces the risk of Cd
contamination [16].

In several studies, it has been shown that low doses of Se can help plants grow and develop, as well as
reduce biotic stress (such as plant diseases and pests) and abiotic stress (such as drought, heat, cold, salt,
Ultraviolet radiation, heavy metals) for a wide range of plants [7,40,43,44]. Researchers have shown that
Se can reduce rice’s absorption of heavy metals such as arsenic (As), Cd, mercury (Hg), lead (Pb), and
antimony (Sb) [24,43]. In addition, the application of Se in different forms, such as soil application and

Table 1: Different regulations on cadmium in food and drinking water and their range in terrestrial plants.
Nomenclature is as proposed by Boorboori and Zhang [34]; and Hussain et al. [33]

Metal Content measured
in different plants
(µg/g DW)

WHO
(mg/kg)

Canada (in row
herbal materials)
(mg/kg)

China
(herbal
material)
(mg/kg)

Indian standards

Food (mg/kg) Water (mg/L)

Cadmium 0.1–2.4 0.3 0.3 0.2 1.5 0.01
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foliar spraying, reduces the absorption and accumulation of heavy metals in rice [45,46]. The present study
examines the molecular and morphophysiological mechanisms by which silicon and selenium reduce
cadmium toxicity and accumulation in rice.

2 The Absorption, Transfer, and Effect of Cadmium (Cd) on Rice

Cd-contaminated soils cause physiological, morphological, biochemical, and molecular changes in rice
[5,47], some of which will be discussed below. In addition to preventing seed germination and seedling
growth, Cd causes a decrease in chlorophyll content and consequently a decrease in photosynthesis,
damage to DNA, and dysfunction of some proteins, inhibiting the activity of enzymes involved in CO2

stabilization, leaf chlorosis, disruption of water balance, changes in carbohydrates, and ultimately
inhibited rice growth and yield [15,35,38,48–50]. Additionally, Cd can inhibit the absorption of nutrients
such as calcium (Ca), phosphorus (P), potassium (K), iron (Fe), zinc (Zn), and magnesium (Mg),
resulting in nutrient imbalances in plants. [36,50,51]. Also, Cd creates reactive oxygen species (ROS)
such as superoxide anion (O2−), hydrogen peroxide (H2O2), and hydroxyl free radical (OH−), raising
malondialdehyde (MDA) levels, and affecting antioxidant enzymes [35,38,52].

Several studies have been conducted on the molecular mechanisms of Cd absorption and accumulation
in rice, but in general, Cd transfer from soil to rice grain can be divided into five stages: 1) absorption from
soil to symplast in root tissue, 2) sequestration in the root cells or flow to the xylem, 3) transport through the
xylem, 4) transfer from xylem to phloem in nodes, 5) transfer through the phloem to the seeds [44,53,54].
Since Cd is absorbed by the roots, and the cell wall of the roots is the outermost protective layer of the
cell against cadmium toxicity, identifying the pathways of Cd absorption and transfer in rice can greatly
help to reduce the plant’s exposure to this heavy metal [12,55].

Researchers have found that OsNramp5, a member of the macrophage protein family associated with
rice’s natural resistance, plays an important role in transferring cadmium from soil solution to root cells
[15,56]. In addition, studies have found that OsHMA3 (heavy metal ATPase 3), a positional tonoplast
transporter, transports Cd into root cell vacuoles [15,57]. In their studies, Nocito et al. observed that
OSPC expression increased significantly in rice roots treated with Cd, suggesting this protein is involved
in Cd transport to roots [58]. On the other hand, studies showed that OsHMA2, a homolog of OsHMA3,
is located in the plasma membrane of onion epidermal root cells and is involved in the transfer of
cadmium from roots to rice stems [15,45].

Cd must be transported from the roots to the rice grains through several nodes in the stem, where
vascular bundles connect to the roots, leaves, and spikes [59]. During the transition of cadmium from the
xylem to the phloem, the highest node in the stem plays a crucial role in accumulating this heavy metal
in rice grains [59], As a result, increasing the inhibitory capacity of this node through agricultural
methods or gene manipulation is crucial to reducing the accumulation of Cd in rice grains grown in soil
contaminated with Cd [60]. There is evidence that the OsLCT1 and OsHMA2 genes are involved in the
transfer of Cd from the phloem to the rice grains [15,61]; Moreover, Chen et al. showed that grains
stored less Cd when OsLCT1 was knocked down in the uppermost nodes and leaf blades [60] (Fig. 1).

The largest amount of Cd stored in rice grains is transferred through the phloem and xylem during the
grain-filling period [60,62]. In addition, during grain filling, the Cd deposited in the leaf blades is also
transferred through the phloem to the grains after being re-directed in the nodes [46]. According to
Rizwan et al. rice may accumulate excessive amounts of Cd as a result of increased tolerance due to
chelation with organic acids and proteins, removal of Cd to tissues with less sensitivity, ionic
homeostasis, the expression of different genes and increase plant growth regulators (PGR) [63].
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In order to maintain natural rice growth and reduce human exposure to cadmium it is particularly
important to reduce toxicity, transportation, and accumulation of cadmium in rice [5,45,64]. Cd is
naturally reduced by several mechanisms in plants, including the following: 1) Chelating secretions such
as organic acids with Cd and reducing the absorption of this heavy metal by roots [65], 2) reducing the
apoplastic transfer of Cd in the xylem by creating exoderm and endoderm [66], 3) preventing symplastic
transfer between cells by stabilizing Cd in cell walls and isolating it in vacuoles [35]. Although Cd
increases ROS in tissues, however, rice naturally regulates it through low molecular weight substances
like peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT),
glutathione reductase (GR), glutathione peroxidase (GSH-Px), and ascorbic acid (AsA) [35,36,67].

Rice also detoxifies Cd through phytochelatin (PC) synthesis [68,69]; PC is a thiol-rich lipid that is
synthesized from GSH by PC synthase (PCS) and has the general structure (γGlu-Cys)n-Gly (n = 2–12)
[69]. PC can complex with Cd and reduce the amount of free Cd2+ within a cell, moreover, the PC-Cd
complex is transported into vacuoles for storage [14,69]. In contrast to other cereal crops, rice has special
aerenchyma that transports oxygen from the shoot to the roots, forming a micro-oxidation zone in the
paddy soil [64,70]. In this case, Fe2+ ions in waterlogged soils can be oxidized to Fe3+ ions in the
rhizosphere of rice roots, forming a red deposit known as iron plaques (IP) on the roots [70]. Research
has shown that IP can adsorb cadmium on root surfaces and create a barrier to heavy metal uptake due to
its large surface area for metal binding [71]. According to Gill and Tuteja, oxygen, which is one of the
main products of ROS degradation, has a direct effect on radial oxygen loss (ROL) and IP formation
[72]. Researchers have also focused on organic, inorganic, and farm management remediation methods to
reduce cadmium accumulation in rice in recent years [59,73]. Among the proposed solutions are soil
amendment, water management, and screening of rice varieties with low cadmium accumulation [41,74,75].

3 Silicon (Si) and Cadmium Antagonism in Rice

Silicon, the second most abundant element on earth, is found in all plants [77]; though it is not an
essential element for plants, its absence causes irreparable damage to them and eventually to the
agricultural economy [13,41]. Si accounts for approximately 10% of rice dry weight, making it a Si
accumulator [36,40], and since Asian countries play an important role in rice production worldwide, due
to the large cultivation of rice and the increase in temperatures have faced a lack of silica in the soil

Figure 1: Genes involved in Cd uptake and translocation in rice. Nomenclature is as proposed by Ai et al.
[76]

[36,78]. Furthermore, since most silicon in the soil is not bioavailable, it is necessary to use accessible
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forms of this element to improve rice production economically [79,80]. Besides adding Si fertilizers to paddy
soil, solution spray is also effective for fertilizing with Si since the cuticles and stomas of the leaves absorb
and internalize it [41,81]. The growth stage of rice also affects Si absorption efficiency, and according to
research, the best time to apply Si fertilizer is during tillering and booting [41,82].

Si is absorbed and transferred through Lsi1, Lsi2, and Lsi6 genes in rice [47]; and high silicon content in
rice tissues increases resistance against biotic and abiotic stress through physical and biochemical
mechanisms [60,83]. Among various stresses, heavy metals are a major risk for rice cultivation, and
several studies have shown that silicon reduces the risk of heavy metals like lead (Pb), arsenic (As), Cd,
and chromium (Cr) in rice [1,13,45]. As a result, the Si application is one of the effective methods to
reduce the absorption, transfer, and distribution of Cd in rice, which is an accessible and affordable
solution [44,83,84]. Silicon reduces cadmium stress in rice in two general ways: internal (in planta) and
external (ex planta) [83] and the effect of Si on reducing the risk of Cd will be discussed in more detail below.

Researchers on rice have found that Si can enhance the cell wall’s stability, which improves Cd’s
absorption capacity into the endoderm wall, thus preventing apoplastic movement of Cd [16,50,60,85],
and Si also reduces the free Cd content in cells by increasing chelation [16]. In addition, Chen et al.
found that Si increases Cd segregation in vacuoles and prevents its mobility in plant tissues [60].
According to studies the addition of silicon in various forms reduces the transfer of Cd from the roots to
the shoots [1,31,86], such that Shi et al. reported a 24% reduction in Cd content in rice shoots [87].
According to studies, Si foliar spraying significantly reduces Cd transfer from node I to internode I,
which decreases Cd accumulation in the rice grain along with the root and node [59,60]. The researchers
found that silicon is most effective in reducing cadmium levels during transplanting, tillering, and
clustering [36]. As a result of studies conducted on the apoplasts and symplasts of rice roots, leaves, and
stems, silicon application during transplanting has a greater impact on the cadmium content in the roots,
whereas silicon application at the beginning of the cluster has a more effect on the cadmium
accumulation in grains [41,50].

By adding Si to rice under Cd stress, cell division, cell length, carboxylation efficiency, chlorophyll
content, transpiration efficiency, and gas exchange characteristics are improved [46,49,88,89], which
ultimately increases plant photosynthesis, biomass, yields, and seed quality [41,90,91]. The application of
Si in different forms, in addition to preventing the transfer of Cd from the roots to the aerial parts of rice,
helps to improve the content of P, N, Ca, K, Mn, Zn, Fe, and Mg in rice organs, resulting in an improved
plant nutrition [60,92]. Adding Si also enhances the ability to inhibit ROS generated by Cd stress by
improving enzymatic and non-enzymatic activity mobility [47]. Si reduces oxidative stress in rice by
improving the activities of POD, GSH, PC, SOD, CAT, APX, GPx, sucrose, and urease, as well as
reducing MDA, OH−, O2−, H2O2, EL, NADPH oxidase, and lipid peroxidation in Cd-contaminated
environments [16,31,45–47,93].

According to studies, Si increases the expression of approximately 50 proteins in rice seedlings grown in
a Cd-contaminated medium [47]. A study by Lin et al. showed that Si stimulated the expression of the Lsi1
(OsNIP2;1) gene in roots of Cd-stressed rice, while OsHMA2,OsMHA3, andOsNramp5were inhibited [47].
In their studies on rice, Huang et al. also demonstrated that silicon decreased the expression of theOsNramp1
gene, which is a cadmium transporter [45]. Under Cd stress, silicon alters the transcription of OsBTF3,
Lhcb1, and RbcL genes and also improves the synthesis of psbA, Lhcb1, and RbcL proteins [44].
Additionally, Li et al. showed in their study that silicon reduced the toxicity of cadmium in rice by
inhibiting YOR1 and YCF1 (transport-related genes) when the pH of contaminated soils was increased
[94]. According to Wang et al., silicon reduces some genes expression in leaf (OsPCR1, OsHMA2,
OsCCX2, and OsLCT1) and pedicle (OSPCR1, TaCNR2, OsCCX2, and OsLCT1) in Cd-stressed rice,
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which plays a role in the re-transfer of Cd from leaves or pedicels to seeds, thereby reducing Cd accumulation
in rice grains [44].

4 Selenium (Se) and Cd Antagonism in Rice

Selenium is a vital micronutrient for humans and animals that plays an important role in a range of
biological functions [38,95]. As Se reduces oxidative stress, prevents fertility decline, improves the
immune system, improves cardiovascular health, and reduces cancer risk [43,96], and the recommended
daily consumption of Se for adults is between 40 and 300 grams [7]. Since excessive levels or lack of Se
can adversely affect human health, proper nutrition can reduce the risk of diseases in addition to
absorbing the right amount of Se [97]. The most abundant source of Se for humans is cereals, and since
rice is among the most popular foods, especially in Asia, research suggests it can meet almost the daily
need for Se [43,98,99]. The element Se exists in nature in various forms, in addition to organic forms that
can be easily absorbed by plant roots. It can be as Se (IV) which is the mold form of selenium in a well-
drained mineral environment, as well as Se (VI) which is the main species in Alkaline and oxidized
conditions [100]. Despite this, Se levels in the crust of the earth vary widely, such that 72% of Chinese
land lacks Se, and 0.7 billion people worldwide suffer from Se deficiency, according to statistics [24,101].

Although Se is not an essential element for plants, however, it plays an important role in improving their
physiological, morphological, and molecular structure if used in appropriate doses [38,102]. Plants absorb Se
primarily from the soil, and several factors, including soil Se content, soil acidity, the form of Se in the soil,
and the physical structure of the soil, influence this absorption [7]. The best plants for accumulating Se are
generally cruciferous plants, legumes, and cereals [103]. Although 75% of rice samples examined in the
world do not contain enough Se to satisfy human needs, the supply of Se required by these plants could
contribute to improving human nutrition [98,103]. The use of Se nanoparticles (SeNPs) in rice nutrition
has been investigated more in recent decades [104]; and since SeNPs have excellent bioavailability and
high biological activity, they are less toxic than Se (IV) and Se (VI), and after absorption, rice converts
them into Se (IV) and Se (VI) [105,106].

By a variety of mechanisms, Se reduces Cd absorption and accumulation in rice: 1) Reducing Cd’s
bioavailability, 2) The regulation of antioxidant systems and metabolites, 3) Repair damaged cell
membranes and regeneration of chloroplasts, 4) Increasing absorption of essential nutrients, and 5)
Reducing expression of cadmium transporter genes [35,44,55]. In their studies, Huang et al. found that
adding Se to Cd-contaminated soils, in addition to increasing soil pH, decreased the concentration of Cd
in both the soil mass and the rhizosphere solution, which, in turn, reduced Cd’s bioavailability [43].
Furthermore, they found that Se increases Cd levels bound to carbonates and oxides of Fe and Mn, and
therefore reduces exchangeable Cd in soil [43]; However, studies have shown that Se might reduce soil
Cd availability, but may not reduce rice Cd absorption, and it depends on the characteristics of rice and
the application time of Se [24,98,107].

Se increases rice root cell wall thickness, which increases mechanical strength, and a large amount of Cd
accumulates there as a result [55]. In addition, Se increases the resistance of rice by partitioning Cd in
vacuoles and creating the Se-Cd insoluble complex in the roots, preventing cadmium transfer to aerial
organs [11,38,59,108]. According to Wan et al., both Se (IV) and Se (VI) reduced Cd translocation from
the roots to shoots of rice seedlings [86], likely because Se reduces Cd loading in xylem sap [35]. In
addition to reducing Cd absorption and transformation from root to shoot, Se also reduces Cd
accumulation at nodes [38,59]; and due to the importance of the cluster node for allocating Cd to rice
grains, Se cannot only increase the absorption of mineral nutrients in node I but also prevent the transfer
of Cd from node I to the first internodes, and grain [59]. Besides the concentration, chemical form, and
method of application of Se, the effectiveness of Se in reducing Cd risks is also dependent on the type of
rice variety and stage of growth [24,29,107].
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In environments contaminated with Cd, the addition of Se improves the recovery and reconstruction of
cell structure (cell membranes and chloroplasts) [102] and enhances the efficiency of photosynthesis and
respiration in rice seedlings [40,45,107], thus growth, development, and biomass production improves
[38,107]. Additionally, selenium reduces the absorption and total level of cadmium in rice by increasing
IP formation on root surfaces and reducing radial oxygen losses (ROL) [71]. According to previous
studies, Se reduces Cd-induced oxidative stress by eliminating oxygen free radicals, reducing lipid
peroxidation, and increasing beneficial antioxidant activity [43,109]. Studies have demonstrated that
selenium increases the activities of POD, CAT, APX, SOD, and GPx, as well as the content of
phytochelatin and GSH in rice cultivated in Cd-polluted environments [35,44,45,55] while decreasing the
activity of NADPH oxidases and the content of MDA and H2O2 [38,44] (Fig. 2).

Recent studies have shown that adding Se to Cd-contaminated cultures regulates the expression of genes
involved in Cd absorption and transport to vacuoles in rice roots, including OsNramp1, OsNramp5,
OsHMA2, and OsHMA3 [45,55]. Cui et al. found that the addition of Se increases the activity of genes
involved in lignin synthesis (Os4CL3, OsCoMT, and OsPAL), leading to the increased thickness and
mechanical strength of cell wall, thus increasing Cd fixation on the cell walls [55]. Researchers found
that adding selenium reduces the expression of genes involved in Cd transfer in stressed rice leaves
(OsPCR1, OsHMA2, OsCCX2, and OsLCT1) and stalks (OSPCR1, TaCNR2, OsCCX2, and OsLCT1)
[44,55]. Further, Wang et al. found that selenium increases not only the transcription of the OsBTF3,
RbcL, and Lhcb1 genes but also the production of 23 different proteins, including RbcL, Lhcb1, and
psbA, which enhance chlorophyll content and RuBP carboxylase activity [44].

5 Conclusion

Based on the results of the study, silicon and selenium contribute to improving rice’s morphological,
physiological, and biochemical characteristics, as well as its ability to resist cadmium stress. Additionally,
the results indicated that the effectiveness of these elements in increasing resistance to cadmium stress
depends on the growth stage and variety of rice as well as the doses and application methods. Several

Figure 2: Protective roles of selenium on rice under cadmium stress. Se: Selenium. Cd: Cadmium. ROS:
Reactive oxygen species. According to the graph, green or red represents factors that increased or
decreased, respectively, with the addition of selenium in rice under cadmium stressed
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laboratory studies have investigated how silicon and selenium reduce cadmium stress in rice during recent
decades. However, to identify their unknown effects on rice under cadmium stress, further research is needed,
especially in field experiments and using different derivatives of these elements such as nanoparticles. Also,
to improve the quantity and quality of rice produced and thereby enhance human health standards, more
research is needed on the simultaneous application of silicon and selenium as well as the molecular
effects of these elements on rice under cadmium stress in the coming years.
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