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ABSTRACT

As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.
oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result of
the disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remote
sensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutions
offer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapid
dispersal under suitable conditions, making it difficult to track the disease at a regional scale with a single sensor
in practice. Therefore, it is necessary to identify or construct features that are effective across different sensors for
monitoring RBLB. To achieve this goal, the spectral response of RBLB was first analyzed based on the canopy
hyperspectral data. Using the relative spectral response (RSR) functions of four representative satellite or UAV
sensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M) and the hyperspectral data, the corresponding broad-band
spectral data was simulated. According to a thorough band combination and sensitivity analysis, two novel spec-
tral indices for monitoring RBLB that can be effective across multiple sensors (i.e., RBBRI and RBBDI) were
developed. An optimal feature set that includes the two novel indices and a classical vegetation index was formed.
The capability of such a feature set in monitoring RBLB was assessed via FLDA and SVM algorithms. The result
demonstrated that both constructed novel indices exhibited high sensitivity to the disease across multiple sensors.
Meanwhile, the feature set yielded an overall accuracy above 90% for all sensors, which indicates its cross-sensor
generality in monitoring RBLB. The outcome of this research permits disease monitoring with different remote
sensing data over a large scale.
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1 Introduction

Rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv. oryza) is a foliar
disease that causes 10%–50% yield loss, and its prevalence has been increasing in recent years [1]. Given
the disease tends to disperse over the field rapidly, timely monitoring of RBLB is crucial to the control
and prevention of the disease at a regional scale [2].

Traditional visual inspection of crop diseases and pests is time-consuming and subjective, which makes
it difficult to achieve effective and rapid monitoring within a large area. As remote sensing (RS) technology
can obtain spatially continuous information over a large area efficiently, it is of great potential to be applied in
the monitoring of crop diseases and pests [3]. Considering the diversity of the symptoms of crop diseases and
pests, it is essential to understand the spectral response of a certain pest or disease before its RS monitoring
[4]. Zhang et al. [5] diagnosed the rice sheath blight disease by in-situ hyperspectral data and selected 494,
666, and 842 nm as sensitive wavelengths, which achieved an overall accuracy of 95.92%. To detect and
discriminate the southern corn rust disease, Meng et al. [6] identified 572, 766, and 1445 nm wavelengths
from the in-situ leaf reflectance spectra to develop a specific index. Based on this index, the disease
detection model achieved an overall accuracy of 87%. In detecting rice blast disease, Mandal et al. [7]
found that the Triangular Vegetation Index (TVI) can serve as an effective surrogate, and the accuracy of
the regression model reached R2 of 0.85. The spectral characteristics of crop diseases and pests can
provide important reference information for developing the RS monitoring models at a large scale.

Despite recent studies concerning spectral analysis on crop diseases or pests relying mainly on leaf/
canopy level hyperspectral data, the satellite-based hyperspectral data is of insufficient spatial resolution,
swath width and revisit period. While for the unmanned aerial vehicle (UAV) based hyperspectral data,
the cost of collecting and processing is relatively high [8,9]. By contrast, the multispectral satellite and
UAV data are superior in spatial/temporal resolutions and data availability. Some recent multispectral
remote sensors also have optimized channel settings and many of them include red-edge channels which
are critical in crop stress monitoring [10]. Chen et al. [11] mapped wheat rust using the ZY-3 satellite
imageries with indices like the Soil Adjusted Vegetation Index (SAVI) and Modified Triangular
Vegetation Index (MTVI), and the overall accuracy achieved higher than 90%. Based on the UAV
multispectral data, Gu et al. [12] assessed the severity of the rice narrow brown leaf spot disease
according to the indices such as the Visible-band Difference Vegetation Index (VDVI), Excess Green
minus excess Red index (ExGR) and an inversion model, which generated an accuracy as R2 of 0.93. In
detecting the European spruce bark beetle, Abdullah et al. [13] compared Sentinel-2 with Landsat-8, and
found that the Red Edge Normalized Difference Vegetation Index (RENDVI) from the Sentinel-2 was
more effective in mapping the pest at the green-attack stage with a detection rate of 67%. The above
study cases showed that broad-band sensors have great potential in monitoring crop diseases and pests.
However, given different multispectral sensors have varied channel settings, before the monitoring, it is
necessary to assess the feasibility of the sensors according to their relative spectral response (RSR)
function and the spectral response characteristics of the disease or pest. By taking the RSR function
simulation and statistical analysis, Yuan et al. [14] conducted a feasibility study for several representative
sensors to evaluate the capability to detect some important wheat diseases and pests.

It is noteworthy that recent investigations focusing on Remote Sensing (RS) features and models for
monitoring crop diseases and pests primarily rely on data from a single sensor [15–17]. However, certain
crop diseases and pests, such as RBLB, exhibit outbreak and rapid spread, presenting a limited time
window for RS monitoring. This temporal constraint raises concerns about the ability of a single sensor
to capture the disease occurrence event effectively. Consequently, addressing this challenge necessitates
the development of spectral features and models that are robust and transferable across different sensors.
This attempt not only enhances the effectiveness of RS monitoring but also significantly increases the
likelihood of capturing and tracking crop diseases and pests promptly, particularly when they manifest
swiftly. To achieve this goal, further exploration and refinement of features with cross-sensor applicability
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are crucial for the advancement of robust RS-based monitoring systems in agriculture. In this study, the cross-
sensor spectral features were constructed for four representative satellite and UAV broad-band sensors,
including commonly employed Sentinel-2 and GF-6 data with relatively large swath width, high-
resolution Planet, and a widely-utilized UAV sensor, Rededge-M.

To facilitate the RS monitoring of the RBLB over a large area, the overarching objectives of this study
are: (1) to analyze the spectral response characteristics of the RBLB based on the canopy hyperspectral data,
which provided a foundation of spectral feature development; (2) by conducting the spectral simulation of
four representative satellite and UAV broad-band sensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M)
based on their RSR functions, to develop the cross-sensor disease sensitive spectral features; (3) by
utilizing two classic machine learning algorithms, Support Vector Machines (SVM) and Fisher’s Linear
Discriminant Analysis (FLDA), to evaluate the capabilities of the aforementioned features in cross-sensor
disease monitoring systematically. This comprehensive approach contributes to the establishment of a
robust foundation for the remote sensing monitoring of crop diseases and pests on a broad scale.

2 Data and Methods

2.1 Study Sites and Data Acquisition
The field experiment was conducted in Fenghua, Zhejiang Province (121.474925E, 29.687503N) from

6–7 September 2022. The rice was in the filling stage and infected with naturally occurring RBLB. Spectral
observations and disease severity assessments were carried out in areas with uniform disease incidence.
According to the Chinese national standard of RBLB severity investigation (GB/T 17980.19-2000), the
damage caused by RBLB was classified into three levels: healthy (HE), mild (MI), and severe (SE)
(Fig. 1). The specific criteria for categorizing diseases at each level are provided in Table 1. Given the
varied infection status of the RBLB, two fields were chosen to experiment. Mild and severe infection
samples were situated in one field, whereas the healthy samples were situated in another field, and the
infection levels of these fields were consistently aligned. Canopy spectra collection and infection level
measurement were conducted at 200 plots from these fields simultaneously, and the number of plots for
each infection level is shown in Table 1. Each plot was in the size of 1 m � 1 m.

Figure 1: Overview of the study area and RBLB-infected canopies with different infection levels
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Canopy hyperspectral reflectance was collected by a FieldSpec 4 spectroradiometer (Analytical Spectral
Devices, Boulder, USA) under wind-free and cloud-free weather from 10:00 to 14:00. The ASD
spectroradiometer had a spectral range of 350–2500 nm with varied spectral resolutions (3 nm at 700 nm,
10 nm at 1400 and 2100 nm), and was coupled with a fiber-optic cable (1.5 m, with a field of view FOV
of 25°). At each experimental plot, ten replicates were measured at nadir positions from a height of 1 m
above the top of rice plants and then averaged to represent the plot reflectance. The spectrum of a white
reference panel was measured once before every measurement, and then the radiance signals were
converted to spectral reflectance by the white reference panel according to the following formula:

Reftarget ¼ Radtarget
Radwhite reference

� Refwhite reference � 100% (1)

where Reftarget is the reflectance of the observing target, Refwhite reference is the reflectance of the white
reference panel, Radtarget is the radiance of the observing target, and Radwhite reference is the radiance of the
white panel.

2.2 Data Analysis and Processing
In this study, data processing and analysis were carried out in three parts (Fig. 2): spectral analysis of

RBLB, construction and optimization of an RBLB-sensitive feature set with cross-sensor applicability
based on simulated broad-band sensor data, and assessment of broad-band sensors’ capability in
monitoring RBLB.

2.2.1 Analysis of Spectral Response Based on Canopy Hyperspectral Reflectance
The analysis of spectral response conducted on a canopy scale forms the foundational basis for

subsequent large-scale remote sensing monitoring. To reduce random errors stemming from factors like
solar elevation angle and mitigate noise introduced by soil background, a spectral ratio procedure was
conducted to identify specific wavelengths that demonstrate a significant response to the disease. The
spectral ratio analysis served to mitigate background noise and enhance distinctions among spectra from
different samples [18], which divided the averaged spectra of stressed samples by the averaged spectra of
healthy samples:

Ratioi ¼
Ref i;Dð Þ
Ref i;Hð Þ

(2)

where Ref i;Dð Þ and Ref i;Hð Þ are the average reflectance of disease and healthy samples at wavelength i.

Apart from the ratio analysis, an independent t-test was adopted to assess the significance of spectra
among different infection levels. The t-test was conducted between each pair of infection levels (HE vs.
MI, HE vs. SE, MI vs. SE), and wavelengths with significance of p-value < 0.001 were selected. Based

Table 1: RBLB infection level classification scheme used in this study

Infection level Percentage of infected areas in the field Number of plots

Healthy (HE) No visual symptom or fragmentary infection 40

Mild (MI) 25%–33% 80

Severe (SE) >33% 80
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on the selected wavelengths, the overlapped significant wavelengths of all the pairs of infection levels were
recognized as sensitive wavelengths of RBLB.

2.2.2 Parameters of Broad-Band Sensors and Simulation of Multispectral Data
Broad-band sensor data was simulated by RSR function and hyperspectral data to construct RBLB-

sensitive features with cross-sensor applicability [19]. The RSR function of a sensor’s channel describes its
range and response at different wavelengths. The simulated multispectral reflectance of different infection
levels was calculated by:

Ref ¼ R bend
bstart

f kð Þdk (3)

where Ref is the simulated reflectance of a specific channel of the broad-band sensor, bstart and bend indicate
the start and end wavelengths of the channels, and f kð Þ represents corresponding RSR function of the channel.

In the context of selecting broad-band sensors, given the acknowledged advantages of the red-edge band
in indicating crop health in vegetation remote sensing [20], this study opted for four broad-band sensors
equipped with red-edge channels. These sensors encompass the satellite-based Sentinel-2, GF-6, and
Planet sensors, as well as the UAV-based Rededge-M sensor. These sensors are highly representative
since they are commonly used in agricultural remote sensing. Their basic parameters are summarized in
Table 2, and their RSR functions are displayed in Fig. 3. Based on the simulated data of the four sensors,
the cross-sensor sensitive broad-band vegetation indices for detecting RBLB were then constructed. The
vegetation indices (VIs) were derived from the common channels shared among these sensors,
encompassing the blue, green, red, red-edge, and near-infrared (NIR) channels. These channels were
specifically chosen for their potential to detect both crop physiological status and stress. The same
independent t-test method as Chapter 2.2.1 was applied to evaluate the sensitivity of each channel from
the four sensors to RBLB.

Figure 2: Flowchart of data analysis and processing
Note: SF is the abbreviation of spectral features.
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2.2.3 Construction of Cross-Sensor Broadband RBLB Sensitive VI
To facilitate cross-sensor monitoring of RBLB, this study aims to develop a universally applicable

broad-band vegetation index set using simulated datasets from the aforementioned broad-band sensors.
Utilizing the common channels across the previously mentioned four sensors, indices were constructed
in a simple and generalized applicable format to facilitate their practical application in real-world
scenarios. The selected formats encompassed the ratio spectral index (RSI), difference spectral index
(DSI), and normalized difference spectral index (NDSI). The DSI and RSI exploit additive and
multiplicative combinations to accentuate disparities between spectral bands, providing an effective
means to mitigate background noise. This approach proves particularly valuable when dealing with
complex agricultural scenarios, enhancing the clarity of relevant signals. On the other hand, the
Normalized Difference Spectral Index (NDSI) strategically integrates the advantages of both DSI and
RSI while ensuring that the resulting values are constrained within a specific range. This not only
facilitates effective noise reduction but also maintains the interpretability of the data. The formulas for
these indices are depicted in Eqs. (4)–(6):

DSI ¼ band1 � band2 # (4)

RSI ¼ band1
band2

# (5)

Table 2: Parameters of the selected broad-band sensors

Sensors GF-6 Sentinel-2 Planet Rededge-M

Producer China EU USA USA

Revisit period 4 d 10 d 1 d

Swath width 860 km 290 km 32.5 km

Spatial resolution 16 m (WFV) 10–60 m 3 m 8 cm (120 m
flight height)

Channels

Coastal blue CB: 400–450 nm CB: 411–456 nm CB: 431–452 nm

Blue* B: 451–520 nm B: 457–522 nm B: 465–515 nm B: 465–485 nm

Green* G: 521–590 nm G: 536–582 nm G1: 513–549 nm G: 550–570 nm

G2: 547–583 nm

Yellow Y: 591–630 nm Y: 600–620 nm

Red* R: 631–690 nm R: 646–685 nm R: 650–682 nm R: 663–673 nm

Red-edge* RE1: 691–730 nm RE1: 696–714 nm RE: 697–713 nm RE: 712–722 nm

RE2: 730–748 nm RE2: 730–748 nm

RE3: 773–793 nm

NIR* NIR: 771–890 nm NIR1: 790–894 nm NIR: 845–885 nm NIR: 820–860 nm

NIR2: 855–875 nm

Water vapor WV: 935–955 nm

Cirrus Cirrus: 1360–1390 nm

SWIR SWIR1: 1360–1390 nm

SWIR2: 2100–2280 nm
Note: * indicates the selected channels for feature construction.
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NDSI ¼ band1 � band2
band1 þ band2

(6)

where band1 and band2 represent different channels from a sensor, respectively.

The specific methodology for constructing and selecting RBLB-sensitive VIs involves a pairwise
combination of the simulated channel data from each sensor in the three aforementioned forms. This
process results in the creation of broad-band VIs based on various channel combinations. Based on these
newly constructed VIs, the same sensitivity analysis, as described in Chapter 2.2.1, was applied to select
VIs capable of distinguishing among all the infection levels. Subsequently, their sensitivity was ranked
based on the averaged p-value obtained from three independent t-tests conducted between each pair of
infection levels. The top three VIs with the smallest p-value were recognized as the sensor-specific
features sensitive to RBLB. The common sensitive features across all four sensors were then selected as
cross-sensor RBLB-sensitive features.

In addition to the newly constructed VIs, several classical VIs were incorporated to form a cross-sensor
feature set for monitoring RBLB. Some of these indices are sensitive to pigment content, such as modified
anthocyanin reflectance index (mARI), red-edge chlorophyll index (RECI), chlorophyll vegetation index
(CVI), structure-intensive pigment index (SIPI), and pigment-specific simple ratio (PSSRb). Other indices
reflect crop health status and canopy structure, including normalized difference vegetation index (NDVI),
enhanced vegetation index (EVI), green-red normalized difference vegetation index (GRNDVI), infrared
percentage vegetation index (IPVI), and greenness index (GI). The formulas of these indices are provided
in Table 3.

Figure 3: RSR functions of 4 broad-band sensors (a) GF-6, (b) Sentinel-2, (c) Planet, (d) Rededge-M
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The sensitivity analysis and selection process for cross-sensor classical vegetation indices are identical
to those employed for novel vegetation indices. Moreover, a correlation analysis was conducted among the
novel and classical sensitive vegetation indices to mitigate information redundancy. Combined with the result
of the t-test and correlation analysis, features with smaller p-value were prioritized, and sensitive features
with R2 < 0.8 were retained as the disease-sensitive feature set for each sensor. Building upon this, the
intersection was taken among the sensitive feature sets of each sensor, forming the ultimate cross-sensor
feature set for remote sensing monitoring of RBLB.

2.2.4 Assessment of Sensors’ Capability in Monitoring RBLB
Utilizing the cross-sensor RBLB monitoring feature set, the sensors’ capability in monitoring RBLB

was assessed through the adoption of two representative machine learning algorithms, namely Fisher
Linear Discriminant Analysis (FLDA) and Support Vector Machine (SVM). In constructing the SVM
model, a linear kernel function was utilized, with the regularization parameter set to 1. To minimize
random errors related to sample division and avoid overfitting, modeling was conducted using a 5-fold
cross-validation method. Within each fold, samples were randomly divided into two parts for training
(60%) and validation (40%). The assessment of capability relied on the median values of overall accuracy
(OAA) and Kappa.

3 Results

3.1 Spectral Response of RBLB across Different Infection Levels
To compare the spectral response at different infection levels of RBLB, the averaged reflectance curves

for each infection level (Fig. 4a), ratio curves (Fig. 4b), and p-value curves (Fig. 4c) for each pair of infection
levels (HE vs. MI, HE vs. SE, MI vs. SE) are presented in Figs. 4a–4c, respectively. It can be observed from
Fig. 4a that there are noticeable differences among the infection levels, with the most significant wavelengths
located at 750–1300 nm of the NIR plateau.

The reflectance of the stressed samples exhibited a decrease across this spectral region. Simultaneously,
an elevated infection level led to an increase in reflectance within the 600–700 nm range, accompanied by a
reduced slope over the red-edge region. This pattern is also evident in the ratio curves, as illustrated in

Table 3: Summary of classical vegetation indices for monitoring RBLB

Variable Definition Formula Reference

NDVI Normalized difference vegetation index (RNIR − RR)/(RNIR + RR) [21]

EVI Enhanced vegetation index 2.5 × (RNIR − RR)/(RNIR +
6 × RR − 7.5 × RB + 1)

[22]

PSSRb Pigment specific simple ratio RNIR/RR [23]

SIPI Structure intensive pigment index (RNIR − RB)/(RNIR − RR) [24]

RECI Red-edge chlorophyll index RNIR/RRE − 1 [25]

mARI Modified Anthocyanin reflectance index RNIR × (1/RG − 1/RRE) [25]

GI Greenness index RG/RR [26]

IPVI Infrared percentage vegetation index RNIR/(RNIR + RR) [27]

GRNDVI Green red normalized difference vegetation index (RNI − RR − RG)/
(RNIR + RR + RG)

[28]

CVI Chlorophyll vegetation index (RNIR/RG) × (RR/RG) [29]
Note: The indices presented in this table are calculated by utilizing the NIR2 (855–875 nm) and RE2 (696–714 nm) channels of Sentinel-2, the RE1
(690–730 nm) channel of GF-6, and the G2 (547–583 nm) channel of Planet.
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Fig. 4b. The curves of stressed samples exhibited an increase in the regions spanning from 380 to 500, 600 to
700, and 2010 to 2200 nm, as well as a decrease in the NIR region from 750 to 1000 nm. The extent of these
changes intensified with the rising infection levels. In comparison to healthy samples, stressed samples
demonstrated the most pronounced response in the regions of 630–700 and 780–900 nm. The reflectance
of SE and MI increased by 56% and 24% in the red region of 630–700 nm, while the reflectance of SE
and MI decreased by 33% and 12% in the NIR region of 780–900 nm.

Moreover, Fig. 4c reveals noticeable significance between HE and SE, MI and SE across various spectral
regions, whereas the distinction between HE andMI appears more subtle. The spectral regions demonstrating
significance across all infection levels are at 368–514, 600–697, 752–917, and 2027–2044 nm, with a
p-value threshold less than 0.001.

Figure 4: Comparison of the spectral response of different pairs of infection levels (a) canopy hyperspectral
reflectance curves, (b) spectral ratio curves (Stressed/healthy), (c) p-value of independent t-test of different
pairs of infection levels
Note: Fig. 4a illustrates the mean (line) and standard deviation (shaded area) of spectral reflectance for rice canopy groups at different
infection levels. The wavelengths of 1351–1500, 1801–2009, and 2301–2500 nm have been omitted due to significant water vapor
absorption.
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3.2 Construction of Cross-Sensor RBLB Sensitive Vegetation Indices
Table 4 illustrates the discriminative capability of simulated broad-band channels of the sensor for

various levels of RBLB. In general, the blue, red, and NIR channels exhibited heightened sensitivity to
the disease, while the green and red-edge channels displayed a comparatively weaker response.
Sensitivity matrices of DSI, RSI, and NDSI derived from these channels are presented in Fig. 5. Because
the majority of VIs resulting from channel combinations exhibited an exceedingly significant level
(p-value < 0.001), illustrating the sensitivity differences using p-value matrices becomes intricate. To
address this challenge, this study employed t-values to construct sensitivity matrices for these VIs. A
higher t-value serves as an indicator of the heightened sensitivity of the VI to RBLB. It can be observed
from Figs. 5a–5l that VIs derived from various combinations of channels (i.e., DSI, RSI, NDSI) generally
demonstrated consistent sensitivity. Nonetheless, subtle differences existed among these VIs. Specifically,
RSI exhibited relatively high sensitivity, followed by NDSI, while DSI registered the lowest sensitivity.
Simultaneously, it is noteworthy that the sensitivity matrices of normalized and difference indices exhibit
favorable symmetry, i.e., the results are largely consistent when interchanging the R1 and R2 bands.
However, for certain combinations of bands in ratio indices, there are noticeable differences in feature
sensitivity between the original configuration and the one formed by exchanging the R1 and R2 bands. In
terms of specific results for different band combinations, indices involving the near-infrared band
combined with other bands generally exhibit higher overall sensitivity.

Another important observation is that features derived from the combination of two highly sensitive
channels (i.e., blue, red, or NIR channels) often show less sensitivity compared to features obtained by
combining channels with both high and low sensitivities. In essence, the combination of “strong-weak”
channels tends to outperform the “strong-strong” combination in the majority of scenarios, despite the
latter exhibiting excellence in specific situations. Among all the VIs considered, combinations involving
the NIR and red-edge channels demonstrated the highest sensitivity, attaining a statistically significant
level with t-values > 10. The sensitivity of VIs based on the NIR and red-edge combination consistently
ranked within the top three across all sensors. Notably, some of these indices emerged as the most
sensitive across multiple sensors, as detailed in Table 5. Consequently, the newly proposed VIs derived
from the ratio and difference combination of NIR and red-edge channels have been designated as the
Rice Bacterial Blight Ratio Index (RBBRI) and Rice Bacterial Blight Difference Index (RBBDI). The
normalized difference combination of the two channels was exactly in the same form as the Red Edge
Normalized Difference Vegetation Index (RENDVI), thereby considered as a candidate for the cross-
sensor feature set. It is noteworthy that Sentinel-2, Planet, and GF-6 are equipped with multiple channels

Table 4: Sensitivity of simulated broad-band sensors’ channels to varied-level RBLB

Channel\Sensors Sentinel-2 GF-6 Planet Rededge-M

Blue *** *** *** ***

Green * * * *

Red *** *** *** **

Red-edge ** * * *

NIR *** *** *** ***
Note: The results of the independent t-test are presented in this table. * indicates a p-value < 0.05, ** indicates a p-value < 0.01, *** indicates a p-value
< 0.001. The G2 channel of Planet, the RE1 channel of GF-6, RE2 and NIR1 channels of Sentinel-2 are included in this table as they exhibit higher
sensitivity to RBLB.
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in the NIR, green, and red-edge regions. The sensitivity of their combinations varies due to the distinct
spectral positions of these channels. The most sensitive VIs were calculated via using the NIR1 and RE2

(red-edge2) channels of Sentinel-2. In the case of GF-6, the optimal VIs were derived from the RE1 and
NIR channels.

Figure 5: t-value matrices for vegetation indices constructed from combinations of sensor channels
Note: The color in the matrices represents the results of the independent t-test based on the averaged t-values of vegetation indices
corresponding to the respective channels. (a)–(c) Represent t-values of GF-6 channels’ normalization, ratio and difference
combinations, (d)–(f) represent t-values of Sentinel-2 channels’ normalization, ratio and difference combinations, (g)–(i) represent t-
values of Rededge-M channels’ normalization, ratio and difference combinations, and (j)–(l) represent t-values of Planet channels’
normalization, ratio and difference combinations. GF, S2, R and P are the abbreviations for GF-6, Sentinel-2, Rededge-M and Planet.
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The sensitivity (t-value) of classical VIs is illustrated in Fig. 6. It is evident that most VIs exhibited a
high level of significance (p-value < 0.001). Among the classical VIs, those associated with pigment and
crop health status demonstrated higher sensitivity. While RECI and RENDVI maintained consistent
sensitivity across sensors, their sensitivity was weaker compared to the novel index RBBDI. To minimize
information redundancy, a correlation analysis was conducted among the novel and classical VIs. This
analysis identified three optimal features: RBBRI, RBBDI, and GI, which exhibited high consistency and
low redundancy across sensors. These three VIs were recognized as the cross-sensor feature set to further
investigate their capability in monitoring RBLB across different sensors.

3.3 Assessment of Sensors’ Capability in Monitoring RBLB Based on the Cross-Sensor Feature Set
Based on the above-mentioned optimized feature set including RBBRI, RBBDI, and GI, RBLB

monitoring models were established by using SVM and FLDA to assess the feature set’s capability across
different sensors. The results of the 5-fold cross-validation are presented in Fig. 7, indicating that the
robust capability of the optimized feature set. Furthermore, the models based on FLDA achieved a higher
Overall Accuracy (OAA) compared to SVM. The Overall Accuracy (OAA) medians of FLDA models
based on data from the four sensors ranged from 89.0% to 94.0%, while the Kappa medians ranged from
82.0% to 91.0%. The model utilizing Sentinel-2 data achieved the highest accuracy with an OAA median

Table 5: Sensitivity ranking of the optimal indices across different sensors

Formula Channels for
R1 and R2

Sensitivity ranking of indices across sensors

GF-6 Sentinel-2 Planet Rededge-M

RSI ¼ R1

R2

RNIR, RRE 1 3 1 1

DSI = R1 − R2 RNIR, RRE 1 2 2 1

NDSI =
R1 � R2

R1 þ R2

RNIR, RRE 1 2 1 1

Note: RE is the abbreviation for red-edge. The constructed NDSI is exactly in the same formula as an existing VI, RENDVI.

Figure 6: Sensitivity (t-value) of classical VI to RBLB
Note: The color bar in this figure indicates the averaged t-value of the independent t-test between each pair of infection levels.
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of 94.0% and a Kappa median of 90.0%. Following closely, the Planet model attained an OAA median of
93.0% and Kappa of 88.0%. The GF-6 and Rededge-M models achieved OAA medians of 91.0% and
90.0%, and Kappa medians of 86.0% and 84.0%, respectively. In conclusion, the results from the four
sensors displayed high consistency across all folds of cross-validation, with interquartile ranges (IQR) of
OAA and Kappa below 10.0%. Notably, the model based on Planet data demonstrated the highest
consistency across all folds of cross-validation, with OAA IQR of 2.8% and Kappa IQR of 3.5%.

For SVM models using data from the four sensors, OAA medians ranged from 85.0% to 91.0%, while
Kappa medians ranged from 76.0% to 86.0%. The accuracy ranking of the sensor models showed slight
variations compared to the FLDA models. Models based on the three sensors, excluding Sentinel-2,
achieved OAA medians of 91.0% and Kappa medians of 86.0%, while the Sentinel-2-based model
yielded an OAA median of 85.0% and a Kappa median of 76.0%. Despite the lower OAA based on
SVM, it still demonstrated high consistency, with interquartile ranges (IQR) lower than 10.0% for all sensors.

These results highlight that the RBLB monitoring models based on the cross-sensor feature set produce
stable and consistent OAA and Kappa results under different channel settings.

4 Discussion

The results of the spectral response analysis of RBLB indicate that the spectral characteristics are related
to changes in canopy chlorophyll content, cell, and canopy structure. Infections caused by RBLB lead to
reduced chloroplast synthesis, resulting in a decrease in chlorophyll content. This manifests as initial water-
soaked spots and subsequent brown or white lesions on leaves. Additionally, it causes damage to
photosynthesis and triggers secondary systemic symptoms [30,31]. The notable variation in chlorophyll
content accounts for the rise in reflectance in the red spectral region. Furthermore, as the pathogen
multiplies within the xylem, its secretion obstructs xylem vessels, impeding water transport and causing the
collapse of cell structure, which, in turn, results in a decrease in reflectance in the NIR region [32].
Meanwhile, as outlined by Onohata et al. [33], the physiological response of rice to the bacterium
influences the synthesis of lignin, potentially contributing to spectral changes in the NIR region.
Additionally, within rice canopies affected by RBLB, the dehydration of plants and heightened
vulnerability of stem tissues to breakage result in an increased heterogeneity in canopy structure. This

Figure 7: OAA and Kappa of simulated broadband sensor RBLB monitoring models based on FLDA and
Kappa
Note: In each boxplot, the top edge, center line, and bottom edge of the box represent the upper (Q3), median (Q2), and lower (Q1)
quartiles, respectively. The whiskers represent the maximum (Q3 + 1.5 * IQR) and minimum (Q1–1.5 * IQR) valid values defined by
the interquartile ranges (IQR = Q3 − Q1), respectively.
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effect may potentially impact the near-infrared segment of canopy spectra at a larger scale. Moreover, a notable
advantage is that symptoms of RBLB are predominantly visible in the upper leaves of the rice canopy, resulting
in a higher proportion of exposed surfaces. Consequently, the reflectance in the visible-NIR region of the
canopy spectrum could potentially increase by up to 56%. The field propagation of the disease can give
rise to substantial, contiguous infection areas, making it feasible for the large-scale remote sensing
monitoring of the disease. Another notable characteristic of the spectral response is the substantial and
consistent variation in the red-edge position (Fig. 4a). This may reflect the comprehensive impact of the
disease on pigments, plant structure, and other factors in the spectrum. As a result, the red-edge channel,
renowned for its robust detection capabilities in plant stress, may play a pivotal role in disease monitoring.

In the process of establishing a cross-sensor sensitive index for RBLB, a sensitivity analysis was initially
conducted on various broad-band sensors’ original channels. The results in Table 4 indicate that the spectral
response induced by the disease not only exhibits significant changes in the spectral curves but also
demonstrates highly significant responses in broad bands such as blue, red, and NIR. Importantly, the
sensitivity of these channels is highly consistent across different sensors, making them suitable for
developing cross-sensor sensitive features for RBLB. While channels spanning from the visible to NIR
regions demonstrate significant sensitivity to the disease, a noteworthy observation from the sensitivity
analysis of VIs comprising these simulated channels is that the most sensitive features, derived from
thorough combinations, consistently involve NIR and red-edge channels. It can be observed from the
sensitivity ranking result of VIs (Fig. 5) that VIs based on the two channels are highly sensitive to
RBLB, and their sensitivity is consistent across various sensors. The spectral response of RBLB indicates
significant differences among varied infection levels in the NIR region, whereas the red-edge spectra
serve as an indicator of crop stress influenced by both pigment and cell structure. Due to its positioning
between the red and near-infrared channels, the variations in the red-edge channel are related to changes
in both of these channels. Within a defined range, the increase of red spectral reflectance and decrease of
NIR spectral reflectance observed in infected rice can lead to the dampening of variations in the red-edge
channel [34]. This, to some extent, functions as a reference channel, thereby enhancing the stability of
index features in response to RBLB when combined with the near-infrared channel. On the other hand,
variations such as the shifting of the red-edge position and changes in slope observed under different
plant stress conditions offer more comprehensive information for disease monitoring. This supplementary
information, coupled with data from the NIR band, elucidates why both the NIR and red-edge bands are
consistently chosen as optimal band combinations during the construction of indices in different forms.

The findings of this study emphasize the importance of incorporating red-edge channels in contemporary
satellites and UAV multispectral sensors, such as Sentinel-2, GF-6, Planet, and Rededge-M. However, it is
worth noting that some multispectral remote sensing satellites, such as Sentinel-2 and GF-6, feature more
than one red-edge channel. Further analysis in this study reveals that index features formed by different
red-edge channels exhibit varying sensitivity in disease monitoring. For instance, concerning Sentinel-2,
the RBBRI and RBBDI computed based on the RE2 channel demonstrate higher sensitivity. Spectral
changes of samples with different disease levels at the red-edge channels (Fig. 8) reveal that the RE2

channel can better distinguish various disease-level samples compared to the RE1 channel. Additionally, it
exhibits more significant differences in spectral slope compared to the RE3 channel. Therefore, the
monitoring capability of RBBRI and RBBDI, which utilize the RE2 channel, are the strongest. This
underscores the importance of not only maximizing the role of red-edge channels through channel
combinations but also considering the selection of different red-edge channels in index construction when
monitoring crop disease using multispectral remote sensing satellites. The red-edge channels that are most
sensitive and stable for monitoring should be chosen in the construction of features.

Utilizing the cross-sensor RBLB sensitive feature set, the monitoring models, based on various
simulated remote sensing sensors, the FLDA model demonstrated superior performance compared to the
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SVM model, potentially attributed to the fewer variables and relatively modest sample size in this study.
Specifically, both of the models attained an overall accuracy above 90%, which affirms the effectiveness
of these features in RBLB monitoring across diverse sensors. It is noteworthy that the study does not
account for variations in spatial resolution among these satellite sensors. Consequently, remote sensing
data sources with suitable resolution should be accounted for in the next step of validation and
implementation of the RBLB monitoring. In practical applications, due to the significant randomness in
the occurrence scale and range of RBLB, it is necessary to choose different remote sensing data sources
with suitable resolutions and swath widths, such as Sentinel-2, GF-6, or Planet, depending on different
scenarios like large-scale outbreaks or scattered occurrences in small areas. Additionally, considering the
rapid progression of RBLB under favorable conditions, it is crucial to select remote sensing data sources
flexibly based on the satellite transit schedule. Moreover, heightened attention is essential for fields with a
high potential for RBLB occurrence, such as those experiencing annual outbreaks with abundant bacterial
sources or facing a heightened risk of imported infection. In such scenarios, UAV multispectral remote
sensing emerges as a suitable choice to monitor the distribution and severity of RBLB at a finer
resolution. Given the transmission of RBLB through agricultural activities, the deployment of UAV
sensors is pivotal for the detection and control of RBLB, particularly in the smallholder farms of southern
China. Apart from spatial resolution, atmospheric effects should be considered when validating the results
via satellite imageries. Atmospheric-insensitive features, such as the perpendicular vegetation index
should be taken into account.

In general, the development of cross-sensor RBLB monitoring features proves advantageous for
leveraging the capabilities of diverse satellite and UAV sensors. This enhances the comparability and
consistency of monitoring results, providing crucial information for regional disease control and
prevention. In terms of feasibility, this study relies on canopy hyperspectral data. To further refine stable
RBLB monitoring methods across multiple sensors, imagery from typical scenarios should be employed
to validate the features. Apart from features, attention should also be paid to issues such as cross-
calibration methods for data and the model’s substitutability. Regarding the prevention and control of
crop diseases and pests, pesticides are conventionally applied in fixed doses. Nevertheless, the optimal
utilization of these chemicals should be adapted to the severity and scale of crop diseases and pests. In
this vein, our research offers a nuanced approach to precisely monitor and assess the dynamics of crop
diseases and pests, presenting a valuable option that holds instructive potential for enhancing the
efficiency of pesticide usage. This insight contributes to the broader goal of optimizing pest management

Figure 8: RBLB canopy spectra and RSR functions of Sentinel-2’s red-edge channels
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strategies in agriculture, aligning chemical applications more closely with the specific conditions of crop
health. Moreover, these methods can be extended beyond RBLB to address other crop diseases and pests,
offering technical support for rapid, accurate investigation, and environment-friendly prevention and
control of crop pests and diseases on a larger scale.

5 Conclusion

In this study, the spectral response of RBLB was analyzed based on canopy hyperspectral reflectance
measured at different infection levels. Moreover, simulated broad-band sensor data for satellites such as
Sentinel-2, GF-6, Planet, and the UAV-carried Rededge-M was generated using their RSR functions and
hyperspectral data. The sensitivity of their five common channels—blue, green, red, red-edge, and NIR—
was assessed. Based on the optimized combinations of these channels, both novel and classical VIs
capable of monitoring RBLB across multiple sensors were constructed and selected, forming a cross-
sensor RBLB monitoring feature set. Furthermore, the capability of the sensors to monitor RBLB was
assessed using FLDA and SVM machine learning algorithms. The major conclusions can be summarized
as follows:

(1) The analysis of canopy hyperspectral data revealed that visible bands (368–514, 600–697 nm), NIR
bands (752–917 nm), and SWIR bands (2027–2044 nm) are sensitive to RBLB. Broad-band sensors’ blue,
red, and NIR channels exhibited consistent sensitivity to RBLB among different sensors, forming the basis
for constructing RBLB-sensitive VI.

(2) Through a comprehensive analysis of different channel combinations, two novel VIs based on NIR
and red-edge channels, namely RBBRI and RBBDI, were constructed. An optimal feature set was formed by
combining these novel VIs with a classical VI (GI), guided by correlation analysis.

(3) The results of the RBLB monitoring model indicated the high consistency of the cross-sensor feature
set’s capability among different sensors. The overall accuracy of FLDAmodels ranged from 89.0% to 94.0%,
illustrating that the optimal features are suitable for accurately and stably monitoring RBLB across various
satellite and UAV sensors.

The methods proposed by this study should be further tested and validated using airborne imagery. This
approach could serve as an exemplary model for monitoring crop diseases and pests on a large scale using
multi-source remote sensing data.
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