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ABSTRACT

Salt stress inhibits plant growth and affects the biosynthesis of its secondary metabolites. Flavonoids are natural
compounds that possess many important biological activities, playing a significant role in the medicinal activity of
Eucommia ulmoides (E. ulmoides). To investigate the mechanism by which salt stress affects the biosynthesis of
flavonoids in E. ulmoides, a comprehensive analysis of metabolomics and transcriptomics was conducted. The
results indicated that salt stress led to the wilting and darkening of E. ulmoides leaves, accompanied by a decrease
in chlorophyll levels, and significantly induced malondialdehyde (MDA) and relative electrical conductivity. Dur-
ing salt stress, most metabolites in the flavonoid biosynthesis pathway of E. ulmoides were upregulated, indicating
that flavonoid biosynthesis is likely the main induced pathway under salt stress. Among them, secondary meta-
bolites such as 6-Hydroxyluteolin and Quercetin are likely key metabolites induced by salt stress. The correlation
analysis of transcriptomics and metabolomics revealed that EuSHT is a hub gene induced by salt stress, promoting
the production of flavonoids such as 6-Hydroxyluteolin. The co-expression network showed a strong positive cor-
relation between EuSHT and the biosynthesis of 6-Hydroxyluteolin and Quercetin, while it exhibited a negative
correlation with Catechin biosynthesis. The branches leading to Luteolin and Dihydroquercetin are likely the
main pathways for flavonoid compound biosynthesis in the plant stress response during salt stress. The results
of this study provided a preliminary mechanism of secondary metabolites such as flavonoids in the medicinal
plant E. ulmoides induced by salt stress and provided new theoretical support for discussing the mechanism of
plant stress response. It also provided useful information for subsequent exploration of resistance genes in E.
ulmoides.
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1 Introduction

During the growth and development of plants, they are easily influenced by abiotic stress, with salt stress
being one of the most common in agriculture. It restricts normal plant growth, reducing crop yields [1].
Increasing soil salinity can decrease the ability of plants to absorb water. Once plants absorb a large
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amount of sodium and chloride ions through their roots, it can negatively impact their growth and
development by damaging metabolic processes and reducing photosynthetic efficiency [2].

Current research indicates that flavonoids are a type of polyphenolic compound produced as secondary
metabolites in plants, widely present in vegetables, fruits, and various plant species. Currently, the flavonoid
biosynthetic pathway, as a crucial route for plant secondary metabolites, has received widespread research
attention [3]. Genes encoding key enzymes in this pathway have been identified and studied in various
species such as Arabidopsis, maize, petunia, snapdragon, apple, and grape [4]. They play crucial roles in
plant resistance against various abiotic stresses and their antioxidant activity has been extensively studied
[5]. The researchers observed that under salt stress, SS (salt stress) induced flavonoid accumulation in
Sword lily [6]. Similar results have been observed in Brassica napus [7], pea [8], and peanut [9].
Spermidine hydroxycinnamoyl transferase (SHT) is a member of the acyl-CoA-dependent BAHD
superfamily, which plays a role in the biosynthesis or alteration of a variety of metabolites, including
phenols, terpenes, and more [10]. An Arabidopsis thaliana SHT (AtSHT) was shown to catalyze the
formation of monoacylated, diacylated, and triacylated Spd [11]. Researchers found that in Cichorium
intybus, CiSHT2 alone expression promoted partial substitution of putrescine accumulation, while co-
expression of CiSHT2 and CiSHT1 promoted complete substitution of putrescine synthesis and
accumulation [12].

Eucommia ulmoides (E. ulmiodes) belongs to the family Eucommiaceae [13]. It is distributed in
provinces such as Shanxi, Gansu, and Henan, and is now widely planted across various regions in China.
E. ulmiodes is a traditional Chinese medicinal herb containing a variety of bioactive chemical
compounds, including flavonoids, lignans, sesquiterpenes, phenols, and terpenes [14]. Among them,
flavonoids have increasingly received attention with research reports. They possess various
pharmacological properties such as antioxidant, anti-inflammatory, anti-allergic, antimicrobial, anticancer,
anti-aging, cardioprotective, and neuroprotective effects [15]. However, current research on the molecular
regulation of flavonoid biosynthesis during E. ulmiodes growth under salt stress is limited. Genes
involved in flavonoid biosynthesis have not yet been identified, and the regulatory mechanisms of
flavonoid biosynthesis under salt stress still need to be elucidated.

In this study, we investigated the effects of salt stress on the morphological and physicochemical
characteristics of E. ulmoides leaves. We conducted Gene Ontology (GO) enrichment analysis, Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Gene Set Enrichment Analysis
(GSEA) analysis, identifying the flavonoid biosynthesis pathway. By constructing a network diagram of
flavonoid-related genes and metabolites, cytoscape further demonstrated the hub genes associated with
stress-regulated flavonoid mechanisms. Lastly, we employed various algorithms for VIP value analysis,
displaying the expression patterns of metabolites across samples in each differential group, along with the
VIP values from multivariate statistical analysis and the corresponding p-values from univariate statistics.
We conducted pathway analysis to identify crucial metabolic pathways and their significant differential
metabolites, analyzing their functions. Integrating transcriptomic analysis to identify hub regulatory
genes, we extensively elucidated the types and composition of flavonoids induced under salt stress
conditions through targeted metabolomics analysis.

2 Materials and Methods

2.1 Treatment Methods of Salt Stress in E. ulmoides
The three-month-old E. ulmoides seedlings were collected from a plantation in Ruyang County,

Luoyang City, China. The seedlings were planted in pots with soil mixture (leaf-rotted soil:soil:
vermiculite = 2:2:1), and temperature of 25°C (16 h light/8 h dark), with light density of 150 μmol
photons m−2·s−1 (T5 LED) and 70% humidity. Plants were dipped in tap water and 150 mM NaCl once
every three days. The experiment was divided into two groups: the control group (CK) and the salt stress
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group (ST), with 10 plants in each group. All samples were immediately frozen in liquid nitrogen and stored
at −80°C for further use.

2.2 Transcriptome Analysis
Transcriptome analysis included screening and analysis of differentially expressed genes (DEGs), GO

and KEGG enrichment analysis, all performed as reported [16].

2.3 Widely Targeted Metabolomics Analysis
The methods of sample collection, sequencing, omics analysis, compound identification, and selection of

differential compounds were all conducted according to our previous descriptions [17]. Based on VIP > 1 and
p < 0.05, the top 20 metabolites can be identified.

2.4 Quantitative Real-Time PCR Analysis
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to validate the

findings of the RNA-sequencing (RNA-seq) analysis, following the protocol outlined by Yang et al. [18]. The
gene EuTUA, encoding microtubule protein, was used as an internal reference to standardize gene expression
in E. ulmoides [19] (primer sequences provided in Table 1). Calculate the relative copy number of genes
using the 2−ΔΔCT method [18].

2.5 Physical and Chemical Indexes Determination
Malondialdehyde (MDA) and relative conductivity metrics were performed as per our report [20]. The

determination of chlorophyll was carried out as previously reported [21]. The generation of superoxide
anions is determined by our research method [20]. The determination of soluble protein was carried out
as reported [22].

The experiment randomly chose the upper and middle section of the leaves to analyze physiological and
biochemical indicators of leaf veins. This procedure was carried out in five separate biological replicates.

Table 1: Primer sequences used in RT-qPCR

Gene name Gene ID Primer sequence (5′→3′)

EuTUA EUC10802-RA.gene F: GCCCGTGGAATCACCATCAACA

R: AGAACACATCCTGCTGGCGAAG

EuSHT EUC00644-RA.gene F: AATTCAGGTGCGGTGGCTTCAG

R: TCCTCCACCACTCTTGATCGGC

EuSAT EUC25804-RA.gene F: CCGCTCTCTTCCCTCCGATGAA

R: CATCTGGAGCCGTTACGTTGCA

EuHST EUC18449-RA.gene F: CGCCGCTTCTACTAACCGATTG

R: CCGAATCTCGGGAATGTGGT

EuCHS EUC14570-RA.gene F: GATGGACCGGCAACCGTTTT

R: ATGTGCGCGTATATGGCACC

EuCYP98A2 EUC01841-RA.gene F: TGCCATGGTCGAGTCCATCTTC

R: GATCGGAGCTAAGCTATCGGC

EuCHI3 EUC24815-RA.gene F: GGAGGAAGCTGCCCTTGAACAA

R: TACTTGGGAGGAACAAGGGGAG
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2.6 Virus–Induced Gene Silencing (VIGS)
The 173 bp fragment of EuSHT was inserted into the pTRV2 vector; A. tumefaciens strain GV3101 was

transformed with pTRV1, pTRV2, and pTRV2-EuSHT. The primers used for VIGS were 5′
CTCTAGAACGAAACGAAATTTTAGTGGTTC-3′ (sense) and 5′CCCCCGGGTTACAATCTACTATTGCA
ATACATATC′(antisense), which were synthesized by Genscript Biotech Corporation. The infection protocol
was carried out according to Zuo et al. [17].

2.7 Statistical Analysis
Statistical analysis was conducted using the SPSS statistical software package (version 26.0). The

Wilcoxon test was employed as a non-parametric test to detect differences between groups of samples.
Additionally, paired sample t-test was utilized to determine the significance of differences between
samples at specific time points. p < 0.05 indicates significant difference, while p < 0.01 indicates highly
significant difference.

3 Results

3.1 Effect of Salt Stress on E. ulmoides
Salt stress significantly affects the phenotypic status of E. ulmoides leaves. After 144 h of salt stress, the

leaves of E. ulmoides turned black, and curling was observed (Fig. 1A). The results of MDA
(malondialdehyde) assay (Fig. 1B) showed that with the prolongation of salt stress time, the degree of
lipid peroxidation in E. ulmoides leaves intensified, indicating increased cell damage. The MDA content
in salt-stressed leaves was significantly higher than that in the control group. Salt stress treatment showed
a significant increase in MDA content early on, indicating substantial damage to the cell membrane at
this stage. From 96 to 120 h, the MDA content in E. ulmoides leaves significantly increased, suggesting
significant stress-induced damage to the cells. From 120 to 144 h, the MDA content in E. ulmoides
leaves tended to stabilize, it is speculated that this stabilization may be indicative of the inherent stress
resistance of the cells themselves. The chlorophyll content showed a significant decrease in the early
stages of salt stress (Fig. 1C). However, as the duration of salt stress increased, the rate of decline
gradually slowed down. At 144 h, the chlorophyll content was the lowest, indicating a significant
reduction in the photosynthetic capacity of E. ulmoides, suggesting that salt stress caused substantial
damage to it. The measurement results of relative conductivity indicate that a significant increase starting
at 72 h, indicating an increase in cell membrane damage, which suggests significant salt stress damage to
E. ulmoides (Fig. 1D). The experimental findings suggest that the production efficiency of superoxide
anions in E. ulmoides leaves escalates with the duration of exposure to salt treatment (Fig. 1E), showing
analogous patterns to the electrolyte leakage and MDA levels in the cell membrane. Elevated levels of
ROS, such as superoxide anions, can lead to lipid peroxidation, the primary factor in membrane injury.
The findings regarding superoxide anions align with those of MDA, indicating cellular damage caused by
stress. The soluble protein results indicate that during the initial stages of salt stress treatment, insoluble
proteins in the plant transform into soluble proteins to enhance osmotic regulation capabilities. However,
in the later stages of the stress treatment, salt stress exceeding the threshold tolerable by the plant inhibits
synthetic metabolism inside the plant, leading to protein degradation (Fig. 1F). To elucidate the response
of E. ulmoides cells to stress, we conducted integrated analysis of transcriptomics and metabolomics.

3.2 Overview of Transcriptomics
A total of 26,722 genes were aligned to six public databases after comparison with the E. ulmoides

genome (PRJCA000677) (Fig. 2A). A violin plot was employed to illustrate the measures of central
tendency and variability in the distribution of gene expression within the salt stress-treated group
(Fig. 2B). A heatmap of sample correlations (Fig. 2C) was used to cluster the ST samples at the 144-h
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time point. The heatmap indicated a low correlation between the control group and the ST group (Fig. 2C).
The Principal Component Analysis (PCA) plot (Fig. 2D) clearly showed significant differences in the
transcriptomes of E. ulmoides between the control group and the ST group.

Figure 1: Effects of salt stress on physical and chemical indexes of E. ulmoides leaves. (A) Comparison of
leaf phenotypes with or without salt stress; (B) MDA content; (C) Chlorophyll content; (D) The relative
electrical conductivity; (E) Superoxide anion production; (F) Soluble protein content
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In order to further elucidate the function of differentially expressed flavonoid genes under salt stress
regulation, we conducted GO enrichment analysis and KEGG enrichment analysis on 411 flavonoid
biosynthesis-related genes in the two groups of samples. The GO enrichment bubble plot showed that the
411 flavonoid biosynthesis-related genes were distributed across 218 pathways, with 12 genes enriched in
the flavonoid biosynthesis pathway (Fig. 3A). The results of KEGG enrichment analysis indicated that
the 411 flavonoid biosynthesis-related genes were mainly enriched in the phenylpropanoid biosynthesis
and flavonoid biosynthesis pathways (Fig. 3B). The GO enrichment analysis visually displayed the
enriched GO terms and their hierarchical relationships in the form of a directed acyclic graph (Fig. 3C).
The GO terms of flavonoid-related genes were summarized in a directed acyclic graph, illustrating the
schematic relationships between GO terms (Fig. 3C). GO classifications include biological processes (BP)
and molecular functions (MF). Each box represents a GO term, with the red boxes indicating significantly
enriched GO terms within the gene set. The lines between GO terms represent the relationships between
two GO terms, with different colored arrows indicating the main relationships, such as “is a” and “part
of ”. For example, the biological process GO term “L-phenylalanine catabolic process (GO:0006559)” is a

Figure 2: A review of transcriptome analysis in E. ulmoides under salt stress. (A) A comparison diagram
illustrating the annotation of genes across six public databases; (B) Violin plot showing the distribution of
gene expression in each sample; (C) Correlation between samples, with rows and columns representing
samples (red represents high correlation; blue represents low correlation); (D) PCA was performed on the
E. ulmoides genes for both the CK group and the ST group
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child term of “erythrose 4-phosphate/phosphoenolpyruvate family amino acid catabolic process
(GO:1902222)”, which is a child term of “erythrose 4-phosphate/phosphoenolpyruvate family amino acid
metabolic process (GO:1902221)”. These terms have parent terms and can be traced back to the ultimate
ancestor, which is the root of BP (GO:0008150). The molecular function GO term “4-coumarate-CoA
ligase activity (GO:0016207)” is a child term of “acid-thiol ligase activity (GO:0016878)”, which is a
child term of “MF (GO:0003674)”. These terms also have parent terms and can be traced back to the
ultimate ancestor, which is the root of MF (GO:0003674). Through GSEA analysis of the 411 flavonoid
biosynthesis-related genes, they were found to be distributed across 5 metabolic pathways, with
16 leading-edge subsets in the flavonoid biosynthesis pathway (Fig. 3D). VENN analysis was conducted
on the upregulated genes among the 411 flavonoid biosynthesis-related genes, the 68 genes enriched in
flavonoid biosynthesis, and the 16 leading-edge subsets. It was found that a total of 16 genes overlapped
among these three gene sets (Fig. 3E).

Figure 3: (Continued)
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3.3 Widely Targeted Metabolomics Analysis
835 metabolites were identified in the metabolomic analysis. From the volcano plot (Fig. 4A), blue

represents upregulation, indicating 118 upregulated metabolites; grey represents downregulation,
indicating 64 downregulated metabolites, and yellow represents metabolites with no significant
difference. To analyze the differences between groups, multidimensional data collected were subjected
to multidimensional reduction and classification. PCA analysis results showed differences between the
two groups of samples (Fig. 4B), where PC1 contributed 51.0% (ST group) and PC2 contributed 21.3%
(control group). It can be observed that there is a significant separation in the expression levels of
metabolites between the two groups, indicating a significant classification effect. Among the
upregulated flavonoid metabolites, according to VIP > 1, the top 5 metabolites can be identified
(Fig. 4C). Three of these five metabolites-Naringenin chalcone 2′,4,4′,6′-Tetrahydroxychalcon,
Naringenin (5,7,4′-Trihydroxyflavanone) and 3,9-Dihydroxypterocarpan were differentially expressed
metabolites (p < 0.05). 182 different metabolites (p < 0.05, VIP > 1) were screened in the ST and CK
groups (blue circles, Fig. 4D). Out of 835 differentially expressed metabolites, a total of 39 flavonoids
were obtained (yellow circles), and 21 were upregulated (gray circles). Nine of the 39 flavonoids were
significantly different in expression (all up-regulated) (Fig. 4D). When the current abundance of
20 flavonoids is employed for hierarchical clustering (Fig. 4E), two subclusters could be identified.
Subcluster I (red) contains the following listed metabolites: 3,9-Dihydroxypterocarpan, Naringenin
chalcone 2′, 4,4′,6′-Tetrahydroxychalcone, Naringenin (5,7,4′-Trihydroxyflavanone), Isorhamnetin 3′-
Methoxy-3,4′,5,7-Tetrahydroxyflavone and Quercetin, among others. The ST group exhibited a higher
abundance of these metabolites compared to the control group. Conversely, metabolites in subcluster II
(blue) were more prevalent in the control group. They include Acacetin, 3-O-MethylQuercetin,

Figure 3: Molecular summary of flavonoid-related genes. (A) GO-enriched bubble plots: abscissa for Rich
factor and ordinate for GO term. The column color gradient indicated the significance of the enrichment, where
p adjust < 0.001 was labeled ***. (B) Histogram of KEGG enrichment: abscissa indicates KEGG pathway and
ordinate indicates significance level of enrichment. (C) GO directed acyclic graphs. Red to white represents a
decreasing level of significance (red is the most significant, white is the least significant). (D) GSEA analysis
of genes associated with flavonoid biosynthesis pathways (The upper curve shows the change trend of the
cumulative ES value, and the highest point is the ES value of the gene set; The central vertical bar
indicates the position of the priori gene set in the sorted gene list, and the black line marks the position
where each gene in the priori gene set appears in the sorted gene list. Lower heatmap and gray area plots
indicate the distribution of genes in the ordered gene list). (E) Inter-sample VENN plots
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6,7,8-Tetrahydroxy-5-methodyflavone, 5-O-Caffeoylshikimic acid, 5,4′-Dihydroxy-3,7-dimethodyflavone
(Kumatakenin) and Ayanin (3′,5-Dihydroxy-3,4′,7-Trimethodyflavone) (Fig. 4E).

Figure 4: 39 Metabonomic analysis of flavonoids. (A) Volcano map of differential metabolites in dragon
fruit before/after salt stress treatment; (B) PCA analysis map between the two groups of samples
before/after salt stress treatment; (C) VIP values and expression of the top 5 flavonoids (VIP ≥ 1) (The
*** represented p < 0.001); (D) A Venn diagram illustrating all flavonoids and upregulated flavonoids
among representative differentially expressed metabolites; (E) Relevant heat map of the top
20 flavonoids. In the heatmap, blue indicates negative correlation and yellow indicates positive
correlation. Hierarchical clustering is presented in the form of a dendrogram
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3.4 Co-Expression Network Analysis of Key Differential Genes and Metabolites
After metabolomic analysis, 39 significantly different flavonoid metabolites were selected to establish a

metabolic set. Subsequently, expression correlation analysis was conducted between the 16 genes selected
from transcriptomic data and the metabolites, and a co-expression network analysis graph (Fig. 5A) and a
top10 analysis (Fig. 5B) were constructed. The co-expression network graph constructed using cytoscape
consisted of 55 nodes and 327 edges. From the top10 ranking results, it can be observed that the most
significantly related substances to EuSHT are 6-Hydroxyluteolin, Quercetin, and Catechin.

Figure 5: Expression correlation network analysis. (A) The total co-expression network map, where orange
represents genes, yellow represents metabolites, the target gene EuSHT is highlighted in red, and the red lines
are EuSHT-related metabolites; (B) Top10 protein network interaction mapping
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3.5 Accuracy of the RNA-Seq Data Verification by RT-qPCR
The accuracy of transcriptomic data for 6 genes that were either up or downregulated was validated

using RT-qPCR (Fig. 6A). A strong correlation (R2 = 0.9834) was observed between transcriptomic and
RT-qPCR profiles (Fig. 6B). Detailed information on the RT-qPCR experiments, including primers,
Log2FC (E/C), and more, for the 6 genes can be found in Table 1 and Fig. 6.

3.6 Analysis of Virus-Induced EuSHT Silencing
To validate the function of EuSHT, we constructed a EuSHT-silenced strain using virus-induced gene

silencing (Fig. 7A). Agrobacterium samples inoculated with PTRV2-EuSHT were subjected to PCR cross-
verification using primers EuSHT-F and pTRV2-R, resulting in the amplification of a 173 bp target band
(Fig. 7B). These results indicate that PTRV2-EuSHT has been successfully inserted and expressed in the
GV3101 Agrobacterium genome. The areas of damage on leaves treated with EuSHT were more
responsive to salt treatment compared to the CK groups. Additionally, the injection section in the leaves
interfered with by EuSHT were more susceptible to damage compared to the CK group. (Fig. 7C). Under
salt stress conditions, gene silencing results in similar trends for MDA (malondialdehyde) (Fig. 7D),
relative electrical conductivity (Fig. 7F), and superoxide anion levels (Fig. 7G), showing a gradual
increase trend. Chlorophyll levels exhibit a decreasing trend (Fig. 7E), while soluble protein content
initially increases and then decreases (Fig. 7H). The RT-qPCR results confirmed a significant decrease in
the relative expression of the EuSHT gene in the RNA silenced plants exposed to salt stress (Fig. 7I).

3.7 Flavonoid Biosynthesis Pathway Regulated by Salt Stress
Our study indicates that salt stress promotes the production of metabolites associated with flavonoid

metabolism in E. ulmoides. Fig. 8 illustrates the biosynthesis and metabolism of flavonoids,
demonstrating that salt stress enhances both the biosynthesis and metabolism of flavonoids. Metabolites
significantly increased in association with flavonoid metabolism include 6-Hydroxyluteolin and
Quercetin, with 6-Hydroxyluteolin showing the most pronounced upregulation. Among the biosynthesis
process of flavonoids, the upregulation of 6-Hydroxyluteolin exhibits the most significant change
(FC = 1.123).

Figure 6: Expression of six gens treated with salt stress in RT-qPCR and transcriptome data. (A) Expression
profiles of the 6 chosen genes, as identified through RT-qPCR and transcriptomic analysis; (B) The
correlation between the expression levels of the selected genes measured using transcriptomic analysis
and RT-qPCR
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Figure 7: Virus-induced silencing of EuSHT. (A) Construction of recombinant vector pTRV2- EuSHT; (B)
Results of cross-PCR of target gene fragment in bacterial liquid; (C) Phenotypic characteristics of E.
ulmoides leaves under salt stress; (D) MDA content; (E) Chlorophyll content; (F) The relative electrical
conductivity; (G) Superoxide anion production; (H) Soluble protein content; (I) Relative expression of
EuSHT in CK and EuSHT-interfered line under salt stress
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Figure 8: Schematic diagram of flavonoid biosynthesis pathways affected by salt stress in E. ulmoides. The
heat map next to the metabolite shows the regulation of the expression of this metabolite by salt stress.
Yellow represents an upward adjustment and blue represents a downward adjustment. Each column of the
color legend in the figure represents a sample, and from left to right are the control and salt-stress-treated
groups, respectively
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4 Discussion

4.1 The Effect of Salt Stress on E. ulmoides
During plant growth, various abiotic stresses can affect their development, with salt stress being one of

the most common factors [1]. Soil salinization is becoming an increasingly serious issue in agriculture
worldwide [23]. There are studies indicating that salt stress can induce the synthesis of flavonoid
compounds [5]. Researchers have investigated the antioxidant properties of flavonoid compounds in
Citrus [24], Artemisia argyi [25], Hordeum [26], and Helianthus tuberosus L. [27]. Salt stress can elevate
the Luteolin content in cajabal by up-regulating the expression levels of CcPCL1 and CcF3H-5, leading
to significantly improved salt tolerance in the plant [28]. Treatment with NaCl markedly enhances the
levels of flavonoid glycosides in soybeans by elevating GMFNS-1 and GMFNS-2, suggesting a beneficial
impact of flavonoid glycosides in mitigating salt stress [29]. Researchers have also found that flavonoids
play a positive role in enhancing the resistance of Lycium barbarum to salt stress [30]. In our study, by
measuring some physicochemical indicators during the growth process, we observed differences between
the CK group and the ST group. The phenotypic status of E. ulmoides leaves was significantly affected
after 144 h of salt stress. The leaves in the salt stress group exhibited obvious curling and wilting after
144 h. MDA levels and relative conductivity, as well as superoxide anion trends, increased gradually,
indicating a rise in cellular damage. Chlorophyll content decreased progressively, while soluble protein
content initially increased and then decreased. These indicators represent the extent of cellular damage.
Furthermore, there was no significant difference between the gene silencing group and the salt stress
group, suggesting that cells severely damaged by salt stress lose their regulatory capacity.

4.2 Transcriptomic Analysis
In our current study, we utilized GO enrichment analysis, KEGG pathway analysis, and GSEA analysis

to report significantly associated metabolic pathways and genes related to flavonoid compounds under salt
stress. The results indicated that the analysis identified the 16 most central genes associated with
flavonoids, providing insights into how gene functions under salt stress may affect flavonoid metabolism.

4.3 Combination Analyses of Transcriptomic and Metabolomic Profiles
Integrating the results of metabolomics and transcriptomics, it was observed that the upregulation of

metabolites highlighted in Fig. 8, namely Luteolin and Quercetin, the fold changes for the upregulation
were relatively low, with increases of 1.123-fold for Luteolin and 1.0788-fold for Quercetin. Unlike
previous findings from our research group, in C. sativus, key metabolites induced by preservatives, such
as Rosmarinic acid-3′-O-glucoside and Dihydrochalcone-4′-O-glucoside, exhibited higher fold changes,
reaching 2040-fold and 32.9805-fold, respectively [31]. Due to the abundant presence of phenylpropanoid
compounds like flavonoids in C. sativus, along with the high constitutive expression of multiple enzymes
responsible for their synthesis, the organism is readily responsive to preservative regulation. In this study,
although flavonoid compounds were induced upregulation under salt stress, damage to Eucommia cells
persisted. It is speculated that salt stress induced an upregulation of flavonoid metabolites, but the extent
of this induction might not have been sufficient to adequately protect the cells. Consequently, it was
difficult to suppress the damage to Eucommia cells under salt stress conditions.

According to the findings from the combined analysis of transcriptomics and metabolomics, SHT plays
a pivotal regulatory function in the process of flavonoid production in E. ulmoides when exposed to salt
stress. Previous research has indicated that SHT serves as the final divergence point of the HCAA branch
pathway within the overall phenylpropanoid pathway. SHT, along with phenylalanine ammonia-lyase
related enzymes HCBT, HHT1, and phenylalanine-related enzyme hydroxycinnamoyl-CoA, all belong to
the Vb subfamily of the BAHD acyltransferase superfamily [32]. According to reports, SHT is involved
in plant stress responses and can be used to remodel hydroxycinnamoyl amide (HCAA) metabolism in
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plants, thereby enhancing resistance to biotic or abiotic stress and improving the nutritional quality of
agricultural products [33]. SHTs are key enzymes in HCAA biosynthesis and play an indispensable role
in sunflower pollen [34]. In this study, it was found that the SHT gene can participate in the biosynthesis
of flavonoids in E. ulmoides under salt stress and plays a very significant role.

Additionally, metabolomic analysis revealed that EuSHT also influences the biosynthesis of metabolites
such as 6-Hydroxyluteolin, Catechin, and Quercetin. Luteolin belongs to the flavonoid subclass and is a
common flavonoid compound found in various plants [35]. It is rich in various biological activities such
as antioxidant, anti-inflammatory, antimicrobial, and cytotoxic effects [36]. Luteolin has been reported in
Crepis incana [37]. Researchers have detected Luteolin and its derivatives (Luteolin 7-Oglucoside, 3′-
methyl-Luteolin) in Cuminum cyminum [34], Petroselinum crispum [38] and Petroselinum sativum [39].
The results of integrated transcriptomics and metabolomics show that the metabolite that is upregulated in
Fig. 5 is 6-Hydroxyluteolin. Some researchers have pointed out that salt stress can significantly induce
genes involved in flavonoid biosynthesis and metabolites such as apigenin and luteolin. According to
reports, abiotic stress stimulated the production of protective flavonoid compounds, while moderate cold
increased the levels of luteolin glycosides in two pepper varieties [40]. Researchers have found that
increasing salinity in nutrient solutions reduces the accumulation of macronutrients and micronutrients in
leaves. However, it enhances antioxidant activity, total polyphenols, and luteolin content [41]. Studies
have shown that using moderate salinity alone or in combination with elevated carbon dioxide
concentrations can induce the production of phenolic compounds [42]. Specifically, when both salinity
and elevated CO2 concentrations are present, higher levels of phenolic compounds, especially luteolin,
have been observed [43]. This discovery suggested that 6-Hydroxyluteolin may be a key metabolite of E.
ulmoides to salt stress, implying its beneficial role in enhancing salt stress tolerance in E. ulmoides. The
results of this study highlight the crucial role of EuSHT in regulating flavonoid metabolism in E. ulmoides.

Catechin is a natural polyphenolic compound belonging to the flavan-3-ol class and is a member of the
flavonoid family [44]. They possess antioxidant activity and can act as scavengers of free radicals. It has been
reported that three Catechins, namely (+)-Catechin, epicatechin, and epigallocatechin gallate, play crucial
roles in tea tree defense against grey blight [45]. The researchers found that drought stress induced the
expression of phenylpropane and flavonoid biosynthesis pathways, thereby promoting Catechin
biosynthesis, which plays a significant antioxidant role in tea trees under drought stress [46]. The research
results of Kittipornkul indicate that Catechins can mitigate rice ozone stress by maintaining chlorophyll
content, magnesium content, and stomatal conductance, and Catechins present in tea can be used as
ozone protectants [47]. In this study, Catechins were found to be inhibited in E. ulmoides under salt
stress, where it is a branch of Dihydroquercetin, while another branch, Quercetin, was positively
regulated and showed an upward trend.

Quercetin is a specific subclass of flavonoid compounds known to promote various physiological
processes in plants, such as seed germination, antioxidative mechanisms, and photobiosynthesis. It acts as
a potent antioxidant, thereby effectively providing plants with tolerance to various biotic and abiotic
stresses [48]. Study on wheat seedlings reported that an increase in Quercetin concentration leads to an
increase in chlorophyll content [49]. In the current work, the upregulation of EuSHT expression in salt-
stressed seedlings is consistent with the increase in Quercetin content. This may be attributed to EuSHT
being a hub gene involved in the flavonoid biosynthesis pathway.

4.4 Analysis of Virus-Induced EuSHT Silencing
Through the utilization of VIGS, a potential key gene in E. ulmoides was confirmed. Eventually, 6-

Hydroxyluteolin could serve as a major metabolite in response to salt stress. In this research, we
extensively investigated the triggering of 6-hydroxyluteolin in E. ulmoides leaves and established that its
buildup is connected to the upregulation of EuSHT in reaction to salt treatment. However, the
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mechanisms involving activation, regulation, and interaction with other proteins of EuSHT require further
investigation.

The overall findings suggested that EuSHT functioned as central proteins in the biosynthesis of
flavonoids in E. ulmoides under salt treatment. The alterations in the expression levels of these six genes
observed in the RT-qPCR results were in line with the transcriptomic data, indicating the reliability of the
transcriptomic data.

5 Conclusion

Salt stress-induced curling and wilting of E. ulmoides leaves, accompanied by a decrease in chlorophyll
and soluble protein content, and significant induction of MDA levels, relative conductivity, and accumulation
of superoxide anions. Additionally, salt stress treatment significantly induced the accumulation of flavonoid
compounds. KEGG results reveal the enrichment of 68 genes in the flavonoid biosynthesis pathway,
indicating that flavonoid biosynthesis is induced under salt stress. Among the significantly upregulated
genes in the ST144 group, EuSHT participates in the key pathway “flavonoid biosynthesis (map00941)”.
The results of the combined transcriptomic and metabolomic analysis indicate that EuSHT is a pivotal
gene regulating flavonoid metabolism under salt stress in Eucommia, and substances such as 6-
Hydroxyluteolin, Catechin, and Quercetin are key metabolites regulated by EuSHT. The results of gene
silencing further confirm the central role of the EuSHT gene in the E. ulmoides salt stress process,
revealing that EuSHT can promote the production of flavonoids. Based on transcriptomics, physiological
indicators, functional gene confirmation through VIGS, and extensive targeted metabolomics data,
proposed and discussed the potential molecular mechanisms by which salt stress induces flavonoid
biosynthesis to enhance E. ulmoides resistance. The function of EuSHT was confirmed in the EuSHT
silencing line of E. ulmoides.

The results of this study provide preliminary insights into the mechanisms by which salt stress induces
flavonoid secondary metabolites in the medicinal plant E. ulmoides, and provide new theoretical support for
discussing the mechanism of plant stress response. It also provided useful information for subsequent
exploration of resistance genes in E. ulmoides.
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