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Numerical Analysis of Damage Evolution in Ductile Solids

M. Mashayekhi1, S. Ziaei-Rad2, J. Parvizian3, K. Nikbin1 and H. Hadavinia1

Abstract: The continuum mechanical simulation of
microstructural damage process is important in the study
of ductile fracture mechanics. An essential feature in
these analyses, is the strong influence of stress triaxial-
ity ratio, i.e. the ratio of mean stress to equivalent stress,
on the rate of damage growth. In this paper, finite ele-
ment simulation of damage evolution and fracture initi-
ation in ductile solids will be investigated. A fully cou-
pled constitutive elastic-plastic-damage model has been
implemented. The stress update algorithm for the con-
stitutive model is presented together with the consistent
tangent operator, which is needed for implicit FEA. Sim-
ulations are performed and the results are compared with
the numerical and experimental ones in the literature and
good agreements were found between them.

keyword: Ductile fracture, Continuum damage, Triax-
iality

Nomenclature

A total cross sectional area

AD damaged area

D damage variable

Ḋ damage rate

E Young’s modulus

e strain deviator tensor

G shear moduli

K bulk moduli

p hydrostatic pressure

R radial growth of the yield surface
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r damage parameters

s damage parameter and entropy

s deviatoric stress tensor

s̃ deviatoric stress tensor based on effective stress

T temperature

v volumetric strain

Y damage energy release rate

εεε strain tensor

ε̇εεp plastic strain tensor rate

ε̇p
eq equivalent plastic strain rate

Φ yield function

γ̇ plastic consistency parameter

ν Poisson’s ratio

σσσ Cauchy stress tensor

σ̃σσ effective stress tensor

σeq equivalent stress

σ0
Y initial yield stress

Ψ potential of dissipation

1 Introduction

Damage of materials means the progressive or sudden
deterioration of their mechanical strength due to load-
ing, thermal or chemical effects. It could cover all re-
lated phenomena that occur from the virgin or reference
state up to a mesocrack initiation. Form a physical point
of view, damage can originate from multiple causes:
debonding of atoms, nucleation, or growth and coales-
cence of microcracks and microcavitities. Despite the
discontinuous nature of such processes at the microscale,
it is possible to model the process at the microscale as
continuous. Thus homogeneous modelling in which mi-
crocracks and/or microvoids are represented by a contin-
uous variable in the sense of the mechanics of continuous
media can be performed [Lemaitre (2001)].

Over the last two decades, the study of large deforma-
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tions in metals has revealed the phenomenon of initi-
ation and growth of microvoids, cavities and microc-
racks in the process of “ductile plastic damage”. Con-
siderable efforts have been concentrated on the mod-
elling of the gradual internal deterioration (or damage),
which is frequently accompanied by the occurrence of
macroscopic failure in common engineering materials
[de Souza Neto, et al. (1994)]. Within the framework of
continuum thermodynamics, this phenomenon have been
described by several phenomenological or micromechan-
ical based continuum damage models (CDM). Initially,
the development and application of damage models was
focused on ductile fracture. However, in recent years,
several different formulations for a variety of materials
and processes have been presented, such as brittle [Kra-
jcinovic, et al. (1981); Krajcinovic (1983); Simo and
Ju (1987a, b)], elastic–brittle [Murakami (1988); Mu-
rakami, Kamiya (1997)], creep[Chaboche (1988a, b);
Lemaitre (1984); Krajcinovic, et al. (1984); Saanouni,
et al. (1986); Murakami (1990)], fatigue and creep-
fatigue [Chaboche (1988b); Lemaitre (1984)] among
others. Hence, the application range of the continuum
damage theory has been widened.

As experimentally verified for many materials [Lemaitre
(1984)], especially close to material failure, the energy
dissipation associated with the nucleation and growth of
voids and microcracks, which accompany large plastic
flow, has a dominant effect. This fact suggests that the
prediction of rupture as well as final material properties
demands consideration of coupling between plastic flow
and damage at the constitutive level.

In this paper, a model based on the work of de Souza
Neto [de Souza Neto (2002)] and later by Andrade Pires
et al [Andrade Pires, et al. (2003)] is formulated. Based
on the fact that whenever load reversal is absent or negli-
gible, kinematic hardening plays no practical role and the
original Lemaitre model can be safely simplified with a
version that ignores the kinematic contribution to over-
all hardening, in the model the kinematics hardening in
the original Lemaitre damage model is disregarded and
a constitutive integration algorithm is deduced in which
the return mapping procedure under any stress state is re-
duced to the solution of a single non-linear equation. Us-
ing the model, two examples are presented in this paper
and the results are verified by experiments.

2 Elements of continuous damage mechanics

At the microscale level, damage may be interpreted as
the creation of microsurfaces of discontinuities: breaking
of atomic bonds and plastic enlargement of microcavi-
ties. At the mesoscale, the number of broken bonds or
the pattern of microcavities may be approximated in any
plane by the area of the intersections of the flaws with
that plane. The original model by Kachanov [Kachanov
(1958)] postulated that the loss of stiffness and integrity
attributed to microcracks can be measured by a macro-
scopic damage parameter, D. This dimensionless dam-
age parameter defined by scaling the net area by the to-
tal cross sectional area of the representative volume el-
ement (RVE). More specifically, the history of inelastic
deformation and its change may be defined by the evolu-
tion of this internal variable that depends on the expected
value of micro-defect density. This important parameter
is continuous in the sense of continuum mechanics and it
is representative of the failure of microdefects over the
mesoscale volume element. Such microscopic defects
are assumed isotropically distributed, and in the present
model, they will be phenomenologically reflected by the
degradation of the elastic modulus. In essence, it is simi-
lar to the plastic strain, εp, in plasticity which represents
the average of many slips bands.

In a simple one dimensional case of a homogeneous dam-
age, the definition of damage parameter as the effective
surface density of micro-defects can be written as

D =
AD

A
(1)

where AD is the damaged area and A is the total cross sec-
tional area. It follows from this definition that the value
of the scalar variable D is bounded by 0 ≤ D ≤ 1 where
D = 0 is representative of undamaged state; and D = 1
is representative of rupture. In fact, the failure occurs for
D < 1 through a process of instability.

In order to model elasticity, thermal effects and plasticity
with damage within the hypothesis of isotropy, the vari-
ables referred in Table 1 have to be introduced [Lemaitre
(1985a, b)] where R is the scalar variable associated with
isotropic hardening.

3 Standard Lemaitre damage model

As explained in Section 2, in the Lemaitre damage model
[Lemaitre (1985a, b; 1996)], the damage variable is de-
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Table 1 : Thermodynamic variables

Observable variables Internal variables Associated variables
Elastic strain tensor εεεe Stress tensor σσσ
Temperature T Entropy s

Accumulated plastic strain εp
eq Radius of the yield surface R

Damage D Damage strain energy release rate Y

fined as the net area of a unit surface cut by a given plane
corrected for the presence of existing cracks and cavities.
By assuming homogeneous distribution of microvoids
and the hypothesis of strain equivalence, which states
that the strain behaviour of a damaged material is rep-
resented by constitutive equations of the virgin material
(without damage) in the potential of which the stress is
simply replaced by the effective stress [Lemaitre (1985a,
b; 1996)], the effective stress tensor, σ̃σσ, can be repre-
sented as

σ̃σσ =
σσσ

1−D
(2)

where σσσ is the stress tensor for the undamaged material.
The corresponding effective stress deviator, s̃, is related
to the stress deviator, s, by an analogous expression:

s̃ =
s

1−D
(3)

The thermodynamic theory of irreversible process with
internal variables provides a consistent framework for the
development of evolution and constitutive equations for
elastic-plastic-damage materials. The thermodynamic
of irreversible process defines thermodynamical force
(R,Y) such that the specific intrinsic dissipated power is

σσσ : ε̇εεp −R ε̇p
eq −Y Ḋ ≥ 0 (4)

where ε̇εεp is the plastic strain tensor and ε̇p
eq is the equiv-

alent plastic strain rate, ε̇p
eq =

√
2/3 ‖ε̇εεp ‖. The damage

energy release rate, −Y , corresponds to the variation of
internal energy density due to damage growth at constant
stress which is the continuum damage analogue of the J-
integral used in fracture mechanics [Lemaitre (1985a)].
The term −Y Ḋ is the power dissipated by the process
of internal deterioration (mainly as decohesion of inter-
atomic bonds). Therefore, the evolution equation for in-
ternal variables can be derived by assuming the existence

of a potential of dissipation, Ψ, as a scalar convex func-
tion of the state variables, which is decomposed into plas-
tic, Ψp, and damage, Ψd , components as

Ψ = Ψp +Ψd = Φ+
r

(1−D)(s+1)

(−Y
r

)s+1

(5)

for a process accounting for isotropic hardening and
isotropic damage, in which r and s are material and
temperature-dependent properties and Φ and Y are, re-
spectively, the yield function and the damage strain en-
ergy release rate, given by

Φ(σσσ, εp
eq,D) =

σeq

(1−D)
− [σ0

Y +R(εp
eq)] (6)

and

−Y =
σ2

eq

2E(1−D)2

[
2
3
(1+ν)+3(1−2ν)

(
p

σeq

)2
]

(7)

where σ0
Y is the initial yield stress, R represents the ra-

dial growth (or shrinking) of the yield surface, σeq is the
equivalent stress, σeq =

√
3/2 ‖ s‖, p = (1/3) tr(σσσ ), E

is the Young’s modulus and ν is Poisson’s ratio.

By the hypothesis of generalized normality, the plastic
flow equation is

ε̇εεp = γ̇
√

3
2

s
‖s‖ = γ̇

3
2

s
σeq

(8)

and the evolution law of the internal variables are

ε̇p
eq = −γ̇

∂Ψ
∂R

= γ̇

Ḋ = −γ̇
∂Ψ
∂Y

= γ̇
1

1−D

(−Y
r

)s

(9)

where γ̇ is the plastic consistency parameter, which is
subject to the so-called Kuhn-Tucker conditions for load-
ing and unloading as

γ̇ ≥ 0, Φ ≤ 0, γ̇Φ = 0 (10)
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The evolution problem is highly non-linear thereby re-
quiring an efficient integration algorithm, as discussed in
Section 4.

4 Numerical integration for damage materials

An algorithm for the numerical integration of the above
elastic-plastic-damage constitutive equations will be pre-
sented in this section. Algorithms based on the opera-
tor split concept, resulting in the standard elastic predic-
tor/plastic corrector format, are widely used in computa-
tional plasticity [Simo and Hughes (1998)]. Let us con-
sider what happens to a typical Gauss point of the finite
element mesh within a (pseudo-) time interval [tn, tn+1 ].
Given the incremental strain:

∆εεε = εεεn+1 −εεεn (11)

and the values σσσn, εεεp
n , εp

eq,n and Dn at tn, the numerical
integration algorithm should obtain the updated values at
the end of the interval, σσσn+1, εεεp

n+1, εp
eq,n+1 and Dn+1 such

that they become consistent with the constitutive equa-
tions of the model.

The first step in the algorithm is the evaluation of the
elastic trial state in which the increment is assumed to
be purely elastic with no evolution of internal variables
(internal variables frozen at tn). The elastic trial strain
and trial accumulated plastic strain are given by

εεεe,trial
n+1 = εεεe

n +∆εεε , εp, trial
eq, n+1 = εp

eq, n (12)

The corresponding elastic trial stress tensor is computed
from

σσσtrial = σσσn +E : ∆εεε (13)

Where E is the standard isotropic elasticity tensor. Equa-
tion (13) can be splitted to deviator/hydrostatic part of σσσ
as

strial = sn +2G∆e ptrial = pn +K∆v (14)

where G and K are, respectively, the shear and bulk mod-
uli, e and v denote, respectively, the strain deviator and
the volumetric strain and p stands for the hydrostatic
stress.

The next step of the algorithm is to check for plastic con-
sistency. With variables εp

eq, n and D frozen at time tn we

compute

Φtrial =

√
3
2

∥∥strial
∥∥

(1−Dn)
− [σ0

Y +R(εp
eq,n)] (15)

If Φtrial ≤ 0, then there is no plastic flow or damage evo-
lution within the interval and

σσσn+1 = σσσtrial, εp
eq, n+1 = εp

eq,n , Dn+1 = Dn (16)

Otherwise, the plastic corrector (or return mapping algo-
rithm) should be applied, i.e., the evolution equations for
εεεp, εp

eq,n and D must be integrated numerically having the
trial state as the initial condition. Using a standard back-
ward Euler approximation, the discrete counterparts of
equations (8) and (9) becomes

εεεp
n+1 = εεεp

n +∆γ
√

3
2

strial

‖strial‖ (17)

and

εp
eq, n+1 = εp

eq,n +∆γ

Dn+1 = Dn +
∆γ

1−Dn+1

(−Yn+1

r

)s

(18)

The above equations must be complemented by the con-
sistency condition that guarantees the stress state at the
end of a plastic step lies on the updated yield surface; i.e.

Φn+1 =

√
3
2

‖sn+1‖
(1−Dn+1)

− [σ0
Y +R(εp

eq,n+1)] = 0 (19)

From standard arguments used in the derivation of return
mapping algorithms [Simo and Hughes (1998)], the sys-
tem of discretised equations (17) and (18) can be reduced
to the following scalar non-linear equation for the incre-
mental plastic multiplier ∆γ√

3
2

∥∥strial
∥∥−3G∆γ

− (1−Dn+1)[σ0
Y +R(εp

eq,n +∆γ)] = 0 (20)

or, equivalently,

Dn+1 = D(∆γ)≡ 1−
√

3
2

∥∥strial
∥∥−3G∆γ

[σ0
Y +R(εp

eq,n +∆γ)]
(21)

which expresses Dn+1 as an explicit function of ∆γ.
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In summary, the return mapping has been reduced to the
set of two scalar equations comprising (18) and (21).
The unknowns of this system of equations are ∆γ and
Dn+1. After solution, ∆γ and Dn+1 are updated. This two-
equation return mapping has been proposed by Vaz Jr
(2001) in the context of fracture prediction in metal cut-
ting processes. de Souza Neto (2002) has shown how the
above system can be further reduced leading to a compu-
tationally more efficient single-equation return mapping
algorithm for the unknown ∆γ

D(∆γ)−Dn− ∆γ
1−D(∆γ)

(−Y (∆γ)
r

)s

= 0 (22)

In (22), the dependency of Y on ∆γ originates from its
dependency on the updated values of D and σσσ (clearly
shown in definition (7)). The updated stress tensor, σσσn+1,
is obtained as

σσσn+1 = sn+1 + pn+1I (23)

where I is the second order identity tensor and sn+1 is ob-
tained from the standard implicit Mises return mapping
as a function of ∆γ according to update formula:

sn+1 =

(
1−
√

3
2

2G∆γ
‖strial‖

)
strial , pn+1 = ptrial (24)

The solution of (22) is undertaken by the standard
Newton–Raphson iterative scheme.

5 Summary of the algorithm

Elastic predictor/return mapping algorithm for the
elastic-plastic-damage model can be summarised as fol-
lowing:

Step1. Elastic predictor: Given the incremental strain,
∆εεε, and the state variables at tn, compute elastic trial
stresses:

εεεe trial
n+1 = εεεe

n +∆εεε

εp trial
eq, n+1 = εp

eq,n

strial = sn +2G∆e

ptrial = pn +K∆v Dn+1 = Dn.

Step 2. Plastic consistency check: First compute

Φtrial =

√
3
2

∥∥strial
∥∥

(1−Dn)
− [σ0

Y +R(εp
eq,n)] ,

and then check:

IF Φtrial ≤ εtol THEN (Elastic state)

Update (·)n+1 = (·)trial RETURN

ELSE (Plastic state)

Step 3. Return mapping: Find ∆γ such that

D(∆γ)−Dn− ∆γ
1−D(∆γ)

(−Y (∆γ)
r

)s

= 0

where D(∆γ) and Y (∆γ) are defined, respectively by (21)
and (7).

Step 4. Update the variable:

sn+1 =

(
1−
√

3
2

2G∆γ
‖strial‖

)
strial , pn+1 = ptrial,

σσσn+1 = sn+1 + pn+1I, εp
eq, n+1 = εp

eq,n +∆γ

εεεe
n+1 =

1
2G

sn+1 +
1

3K
pn+1I, Dn+1 = D(∆γ)

ENDIF

RETURN

Summary of the above algorithm is presented in Figure
1.

6 Numerical examples

The present model has been verified by solving two
numerical examples using the finite element code
ABAQUS/standard (2003) in two- and three-dimensional
solid elements. The first example is the simulation of
a two- and three-dimensional tensile test on a specimen
subjected to a monotonic axial stretching. In the second
example, the simulation of a three point bending test was
investigated.

6.1 Tensile Test

The classical tensile test of a rectangular bar specimen is
used to apply the presented damage model. Tensile tests
have been extensively used in both experimental and nu-
merical analyses of ductile fracture. In this problem, a
specimen under tensile loading experiences a character-
istic stress–strain behaviour, which causes the fracture to
initiate at its centre and propagate towards the outer edge
[Hancock and Mackenzie (1976)]. On a microscopic
scale, nucleation, growth and coalescence of microvoids
were found to be the mechanism, which causes fracture.
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Figure 1 : Flow chart of elastic predictor/return mapping algorithm for the elastic-plastic-damage model.

Numerical analysis for the classical tensile test of an ax-
isymmetric notched bar specimen have been carried out
by de Souza Neto (2002) and Vaz Jr. and Owen (2001).
In the present study two- and three-dimensional rectan-
gular section tensile specimen were analysed. The ge-
ometry of the problem, boundary conditions and the fi-
nite element mesh for both two- and three-dimensional
cases are shown in Figure 2 and are based on ASTM
standard. The mesh discretises one symmetric quarter
of the sample with appropriate symmetric boundary con-
ditions imposed to the relevant edges. The loading con-
sists of a prescribed monotonically increasing axial dis-
placement of the nodes on the end face of the mesh, as

shown in Figure 2. The material properties were adopted
from [Benallal, et al. (1987)] and presented in Table 2.
In the present analysis, displacement control was incre-
mentally applied to the end of the specimen. When the
damage at any Gauss point in the structure for the first
time reached 0.9, the simulation was terminated. This
state was reached with a prescribed end displacement of
4.3 mm in two-dimensional case and 5.59 mm in three-
dimensional one.

During the early stages of the loading, the maximum
damage was detected near the outer edge of the central
cross section. As the specimen is progressively stretched,
the maximum damage area moves gradually towards the
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(a) Two-dimensional model
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(b) Three-dimensional model

Figure 2 : A quarter of two- and three-dimensional tensile test models using symmetry condition.

Table 2 : Material data and Lemaitre damage model parameters for tensile test [Benallal, et al. (1987)]

E 210 GPa
ν 0.3
σ0

Y 620
Hardening curve σY (εp

eq) = 620+3300[1−exp(−0.4εp
eq)] MPa

r 3.5 MPa
s 1.0
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core of the specimen (at a0) and localises there. At
the final stage with a displacement of 4.3 mm in two-
dimensional model and 5.59 mm in three-dimensional
model, damage was highly localised around the centre
a0. Therefore, it is expected that the fracture initiation
should occur in this area. This prediction is in agree-
ment with experimental observations by Hancock and
Mackenzie (1976) which show that for certain tensile
notched specimen configurations fracturing initiates at
the centre of the specimen and propagates towards the
outer edge.

The applied load versus load line displacement (LLD) for
elastic-plastic (undamaged) and elastic-plastic-damage
(damaged) models are shown in Figure 3. This shows the
damage influence on the global behaviour of the struc-
ture because the softening caused by damage results on
the decrease of the load carrying capacity of the struc-
ture. The progressive softening during the loading re-
flects the internal degradation on the material response.
The Mises stress distribution for these two cases are com-
pared in Figure 4. Both the undamaged and damaged
three-dimensional models stretched to the same level of
5.59 mm. In the undamaged model, a uniform Mises
stress distribution along the gauge length was observed
without any necking. But in the damaged model the

0
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0.8

1

1.2

0 1 2 3 4 5 6

Damaged

Undamaged

P
 /

 P
L

LLD, mm

Figure 3 : Comparison of non-dimensional applied load
vs. load line displacement in three-dimensional tensile
test between damaged and undamaged models. (PL =
15500N is the limit load at first yield in tensile test).

necking near the central part of the sample was formed
and the Mises stresses were minimum at the core of the
specimen (at a0). Figure 5 shows the history of the
evolution of Mises stress at three different location of
a0, a1 and a2 as marked on the sample cross section in
Figure 2. Element a0 at the core was at the highest strain
and completely failed, i.e. D > Dc, while the edge ele-
ments at a1 and a2 still have load carrying capacity.

The reason for faster damaging at the centre lies in the
fact that damage growth in ductile metals is strongly de-
pendent on the stress triaxiality ratio, p/σeq, which is
highest at the centre of the specimen as shown in Fig-
ure 6. A marked decrease in ductility occurs as the tri-
axiality ratio increases. This phenomenon is captured by
Lemaitre ductile damage model. Figure 7 shows the evo-
lution of the triaxiality ratio during the loading history
along a1 − a0 section. In the beginning of the process,
the maximum damage is located on the outer surface.
At later stage of loading, the triaxiality remains constant
across the cross section at 1/3. However, as the load
further increases, the triaxiality in 10% of the thickness
close to the edge drops below 1/3, while in the remain-
ing part of the section it increases above 1/3. Also the
triaxiality growth rate is higher toward the centre. This
causes the critical zone to move towards the centre of the
specimen. This has a direct effect on damage parameter
as illustrated in Figures 8 and 9.

The evolution of damage,D, and of effective plastic
strain, ε̇p

eq, at the specimen centre, as the prescribed dis-
placement increases with time is shown in Figure 8. It
is interesting to note that, although initially the damage
rate, Ḋ, is slightly smaller than the rate of effective plastic
strain, ε̇p

eq, as the displacement increases, the stress state
at the centre of the specimen causes the damage to in-
crease exponentially whereas the equivalent plastic strain
rate remains approximately constant. This behaviour re-
flects the fact that ε̇p

eq << Ḋ near the failure site. For
example by looking at Figure 9, the damage at the centre
element a0 is reached to 0.8 at stretching of 5.15 mm,
while the damage at the outer element a1 at the same
stretching has only reached to 0.24.

6.2 Three Point Bending Test

In this example, three point bending test which have
been extensively used in both experimental and numer-
ical analysis were used to verify the damage model and
its capability to predict the crack initiation site in the test.
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Figure 4 : Comparison of the Mises stress distribution from FEA (a) undamaged model, (b) damaged model.
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Figure 5 : Stress-strain in three-dimensional tensile test
with damaged model at positions a0, a1 and a2 shown in
Figure 1 (the initial yield stress σ0

Y = 620MPa).

The specimen was made according to the ASTM Stan-
dard E399-90 (1994), except that it contained a straight-
face notch terminated by a semicircular tip instead of a
sharp crack. The geometry and FE mesh of the specimen
are shown in Figure 10.

The dimensions and material properties for this exam-
ple were chosen in accordance to tests carried out by
Giovanola (1999). The material was high strength steel
HY130 and the corresponding material properties were
presented in Table 3. Since the experimental material co-
efficients s and r regarding to the damage evolution were
not available for this material, s = 1 was chosen accord-
ing to [Lemaitre (1996)] and values of r = 1, 5, 13 and 20
were tried for calibrating the FEA load-crack tip opening
displacement (CTOD) with the experimental one. The
final material properties which was obtained in this way
and used in the damage evolution law were summarised
in Table 3.

In developing the mesh using the plane of symmetry, only
half of the specimen was discretised and the appropriate
symmetric boundary conditions imposed to the relevant
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Figure 6 : Evolution of triaxiality, p/σeq, at
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dimensional tensile test model.
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loading history along a1 − a0shown in Figure 1 in
three-dimensional tensile test model.
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geometry using symmetry condition.
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Table 3 : Material data and Lemaitre damage model parameters for high strength steel HY 130

E 176 GPa
ν 0.3
σ0

Y 950
Hardening curve σY (εp

eq) = 950+7600[1−exp(−0.55εp
eq)] MPa

r 13 MPa
s 1.0

edges. The FEA results will be compared with the ex-
perimental results presented previously [Giovanola, et al.
(1999)].
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Figure 11 : Comparison of non-dimensional applied
load vs. crack tip opening displacement in three-point
bending test model between damaged and undamaged
models and experiment from Giovanola et al. (1999)
(PL = 0.728Bb2σY

� = 27887.04N is the limit load at first
yield in three-point bending test)

The applied load versus CTOD for undamaged and dam-
aged models together with the experimental results from
[Giovanola, et al. (1999)], are compared in Figure 11.
It is possible to observe the damage influence on the
global behaviour of the structure because the softening
caused by damage decreases the load carrying capacity
of the sample. The progressive softening during the load-
ing reflects the internal degradation on the material re-
sponse. The results of the damaged model agree quite

well with the experiment. In fact, the position of ex-
perimentally detected crack initiation coincides with the
damage growth of D = 0.8 at element a0.

The damage contours plots at the Load-Line Displace-
ment (LLD) of 0.43 mm and 8.8 mm are presented in
Figure 12. During the early stages of the loading pro-
cess, damage was grown uniformly across the notch. As
the specimen is progressively deformed, the maximum
damage area moves gradually toward the notch centre of
the specimen. This is due to higher stress triaxiality ra-
tio at the notch centre. As can be seen from Figure 13,
the triaxiality initially grows both around the edge and
at the centre of the notch. As the load on the specimen
increases, the triaxiality remains nearly constant both at
the centre and at the edge of the notch. At this stage, the
magnitude of triaxiality at the centre element a0 is more
than 1.5 times its value at the edge element a1. How-
ever, as shown in Figure 13, the damage parameter grows
exponentially. At maximum applied load, the damage
parameter at the centre element a0 is about four times
higher than the edge element a1. The result is earlier
damage localisation and deterioration of central region
compared to the outer edges. This suggests that fracture
initiation should be expected in this region. This result is
in agreement with the experimental observations of Gio-
vanola (1999), which reported fracture initiation at the
centre of notch as shown in Figure 14a. The damage pa-
rameter at the load corresponding to experiment shown in
Figure 14a is D = 0.8 at element a0 and shown in Figure
14b.

7 Concluding remarks

Material degradation has been widely modelled by con-
tinuum damage mechanics and it is accepted as a reli-
able methodology. This paper dealt with the implemen-
tation of elastic-plastic-damage model in ductile fracture.
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Figure 12 : Damage evolution in three-point bending test during the loading history, (a) At load line displacement
of 0.43 mm, (b) At load line displacement of 8.8 mm.
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Figure 13 : Evolution of damage parameter, D, and tri-
axiality, at the centre element a0 and edge element a1

marked in Figure 9 in three-point bending test.

The coupled solution of evolution of plastic deformation
and damage constitutive equation ensure a rigorous de-
scription of the interaction of the phenomena involved.
In the numerical scheme the simple one-equation return
mapping integration algorithm of de Souza Neto (2002)
for the modified Lemaitre ductile damage model that ig-
nores kinematic hardening effects has been used. Using
the method, a computer code has been developed to solve
damage growth in any two- and three-dimensional solids
problem. In the present paper, two numerical examples
were solved by this code. The results revealed different
aspects of the model in regards to the rate of growth of
equivalent plastic strain, triaxiality and damage parame-
ter.

The model has been successfully used to predict the ex-
tent and the location of crack initiation sites. In the finite
element analysis, it was assumed that cracks initiates at
certain points in the geometry where the damage reaches
the critical value, Dc. Good agreement for crack initia-
tion site between numerical damage model and experi-
ments on three point bending tests previously performed
by Giovanola (1999) has been observed.
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