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Constitutive Equations in Finite Element Codes: The INTERATOM Model in
ABAQUS

D.K. Anding1

Abstract: The paper deals with the implementation
of constitutive equations for isotropic viscoplastic ma-
terial behaviour into modern Finite Element codes like
ABAQUS. ABAQUS provides an user interface called
UMAT (USER MATERIAL) for the definition of quite
general material behaviour. The user can take advantage
of the complete Finite Element code from ABAQUS and
has to focus only on the solution of the constitutive equa-
tions. Key problems are accuracy and stability of this
local solution procedure, which comes from the numeri-
cal stiffness of the governing equations (mostly first order
ordinary differential equations). The numerical stiffness
does not allow to use explicit integration methods for
the governing equations (not even higher order methods);
implicit integration methods have to be used instead. In
this paper it is shown that in case of isotropic material
behaviour the local solution procedure for the governing
equations is reduced to the solution of a single (generally
nonlinear) scalar equation which can be solved efficiently
by means of Newtons method.

keyword: Constitutive Equations, Viscoplasticity, Fi-
nite Elements, ABAQUS.

Nomenclature
c hardening function
C elasticity matrix
E Young’s modulus
Et tangent modulus
F yield condition
g hardening function
I unity matrix
J Jacobian matrix
n direction of plastic flow
t time
T temperature
∆ increment
∆ε strain increment

1 MTU Aero Engines GmbH, Dachauer Straße 665, 80995 Munich,
Germany.

∆εi inelastic strain increment
∆σ stress increment
∆σe elastic stress increment
∆t time increment
ε strain tensor
ε̇ strain rate
ε̇e elastic strain rate
ε̇i inelastic strain rate
Φ plastic multiplier
κ isotropic hardening
κ̇ isotropic hardening rate
Λ overstress
ν Poisson’s ratio
σ stress
σ stress tensor
σ′ deviatoric stress tensor
σ̇ stress rate
ξ kinematic hardening
ξ kinematic hardening tensor
ξ̇ kinematic hardening rate

1 Introduction

In commercial Finite Element codes like ABAQUS sev-
eral well established models are available to describe
the behaviour of a broad spectrum of materials, see
ABAQUS (2003). Nevertheless, to describe the be-
haviour of special materials like those used in Aero En-
gines (AEs) or Industrial Gas Turbines (IGTs) more com-
plex models are needed. For example Turbine blades and
vanes made of Nickel base alloys are either convention-
ally casted (CC), directionally solidified (DS) or casted
as single crystals (SX). CC materials show isotropic ma-
terial behaviour in both the elastic and the inelastic range,
whereas DS and SX materials are anisotropic in both
ranges. Turbine blades and vanes made of these materials
are exposed to severe thermomechanical loading, creep
loads during holdtimes, vibrations and an oxidizing en-
vironment. This leads to High Cycle Fatigue (HCF) and
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Low Cycle Fatigue (LCF) as well as Thermo-Mechanical
Fatigue (TMF) coupled with creep and material degrada-
tion from oxidation. Predicting the material behaviour
of Nickel base alloys under these loads requires models
which at least can describe cyclic plasticity coupled with
creep, i. e. viscoplastic material models. For this pur-
pose a number of models have been developed in the past,
see Chaboche and Lemaitre (1990) and Meric and Cail-
letaud (1991), others are object of current research (espe-
cially for SX materials). For isotropic metallic materials
(i. e. CC materials) in the high temperature range there
are several models available to describe the viscoplas-
tic material response, see e.g. Bruhns (1984). One of
those models is the so called INTERATOM model. It is
capable of describing isotropic and kinematic hardening
coupled with time dependent effects like creep and relax-
ation.

However viscoplastic models like the INTERATOM
model or the model of Chaboche are currently not avail-
able in ABAQUS. Therefore in this paper it is shown
how viscoplastic isotropic material models can be im-
plemented into ABAQUS. ABAQUS provides the user
with a quite general interface called UMAT (USER MA-
TERIAL), see ABAQUS (2003). The user has to pro-
vide in each increment the inelastic strain increment
and the (consistent) tangential stiffness matrix to allow
ABAQUS to build up the global stiffness matrix of the
structure. To solve the first task, the Radial Return
method, see Simo and Hughes (1998), is quite generally
accepted to be most successful. To use the method a sta-
ble and accurate time integration scheme for the consti-
tutive equations is needed, see e.g. Bruhns and Anding
(1999). The procedure is described in detail in section 3.

In section 4 three examples are shown. The first one is
a simple LCF test with one element, the second one is a
clamped bar under pure thermal load and the third one
is a complex model of a turbine vane cluster under TMF
loads. These examples prove the quality of the method.
Special attention is payed to the CPU time needed for
viscoplastic calculations with large models.

2 The INTERATOM model

The INTERATOM model is based on the assumption that
the material behaviour up to a certain limit is purely elas-
tic, and only beyond this limit shows rate-dependent ef-
fects like creep and relaxation. For the description of this
inelastic behaviour the concept of overstresses, first pro-

posed by Perzyna, has been introduced in Bruhns (1984)
together with an underlying rate-independent theory of
elastic-plastic processes.

The basic idea of the model is to split the rate of de-
formation tensor into a reversible (elastic) and an irre-
versible part, which contains both rate-dependent and
rate-independent effects

ε̇ = ε̇e + ε̇i (1)

In the present paper all material functions were deter-
mined from uniaxial static tests. Therefore the governing
equations will be specialized to this case. For elastic-
plastic material behaviour the INTERATOM model has
the simple form

σ̇ = Et(κ) ε̇ ,

ξ̇ = c(κ)
(

1− Et(κ)
E

)
ε̇ ,

κ̇ =

√
3
2

g(κ)
(

1− Et(κ)
E

)
|ε̇| (2)

with the tangent modulus Et(κ) and the two hardening
functions c(κ) and g(κ), see Bruhns and Anding (1999).

For a description of rate-dependent effects like creep and
relaxation the concept of overstresses is used. Introduc-
ing again the uniaxial form of the model with the so-
called generalized overstress Λ, see Bruhns (1984), leads
to the following constitutive equations
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2
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)
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ξ
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−
√

g(κ,T) (3)

The INTERATOM model in the form given above con-
tains 3 additional temperature dependent material param-
eters γ(T), c4(T ) and c5(T). These parameters can be in-
dentified from uniaxial creep tests or monotonic tensile
tests with different strain rates, see Bruhns and Anding
(1999).
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3 Application of the radial return method to
isotropic constitutive equations

Simo has shown in Simo and Hughes (1998) how the
Radial Return method can be applied to quite general
isotropic constitutive equations. The basic idea of the
method is to perform first an elastic predictor step which
determines definitely the current state of the material.
Furthermore, with the elastic predictor the direction of
plastic flow is given in case the current state of the mate-
rial is beyond the yield surface.

If one uses the UMAT interface in ABAQUS, see
ABAQUS (2003), to define isotropic viscoplastic mate-
rial behaviour the following steps have to be performed:

From the global Newton-Raphson iteration both the time
increment ∆t and the strain increment ∆ε are given. The
stress increment ∆σ is calculated from the strain incre-
ment and the inelastic strain increment

∆σ = C : (∆ε−∆εi)
t+∆tσ = tσ+∆σ (4)

In Eq. 4 C defines the elasticity matrix of the material.
For isotropic material behaviour it is given in Appendix
A. The users task is now to calculate the inelastic strain
increment ∆εi in each step. This calculation will be per-
formed in every Gauss point of the Finite Element struc-
ture, therefore it has to take a reasonable time.

The assumption of the elastic predictor is ∆εi = 0. From
Eq. 4 follows

∆σe = C : ∆ε
t+∆tσe = tσ+∆σe (5)

Here the elastic trial state t+∆t σtrial is denoted with
t+∆t σe. The assumption ∆εi = 0 has to be checked. To
do so it is necessary to calculate the deviatoric part of the
elastic trial state

t+∆t σ′
e = t+∆t σe −

1
3
· tr (t+∆t σe

) · I (6)

where tr (σ) denotes the first invariant of the stress tensor
of three times the hydrostatic stress. With the deviatoric
stress Eq. 6 the yield condition is checked

F = (t+∆tσ′
e − tξ) : (t+∆tσ′

e − tξ)−g(tκ) (7)

In case that F ≤ 0, the assumption ∆εi = 0 holds. Then
the current stress state t+∆t σ is equal to t+∆t σe. Therefore

the current state of the internal variables is

t+∆tξ = tξ ,

t+∆t κ = tκ, (8)

and one can finish the time step. If F > 0, the assumption
∆εi = 0 cannot be true, i.e. the step cannot be elastic.
This implies ∆εi �= 0 and the elastic trial stress state has
to be corrected.

The advantage of the Radial Return method is twofold;
on the one hand one can use the previously calculated
trial stress state Eq. 5 to find the final stress state, on the
other hand the direction of plastic flow is definitly deter-
mined with the trial stress state:

The inelastic strain rate contains the so called plas-
tic multiplier Φ(Λ,T ) and the direction of plastic flow,
namely the normal t+∆t n to the yield surface. This nor-
mal follows from the deviator of the trial stress state Eq. 6

t+∆tn =
t+∆t σ′

e − t ξ√
(t+∆tσ′

e − tξ) : (t+∆tσ′
e − tξ)

. (9)

With Eq. 9 the only unknown to calculate the inelastic
strain rate is the plastic multiplier Φ(Λ,T ), which re-
duces the three dimensional problem to the determina-
tion of a scalar value. If ∆εi �= 0 holds, then from Eq. 4
and Eq. 5 follows

t+∆tσ = t+∆t σe −C : ∆εi (10)

and the final stress state t+∆tσ is solely determined by the
elastic trial stress state and the unknown plastic multi-
plier. This reduces the whole problem to the determina-
tion of the plastic multiplier Φ(Λ,T), as stated above.

Bathe, see Bathe (2002), and Simo, see Simo and Hughes
(1998), have shown how a scalar equation (the so called
effective stress function) for the plastic multiplier can be
derived in case of an elasto-plastic material model. The
root of this equation gives a value for the plastic multi-
plier. But also in case of a viscoplastic material model
a single scalar equation for Φ(Λ,T) can be derived, as
shown below.

First one has to choose a stable and accurate time integra-
tion scheme (for the definition of stability and accuracy
see e.g. Bruhns and Anding (1999)). In the context of
viscoplastic material models the midpoint rule is gener-
ally accepted to give reasonable results. The application
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of the midpoint rule to the constitutive equations of the
INTERATOM model leads to the following time discrete
form of the model

∆εi =
∆t
2
· (t+∆t Φ · t+∆tn+ tΦ · tn

)
,

∆ξ =
∆t
2
· (t+∆t c · t+∆t Φ · t+∆t n+ t c · tΦ · tn

)
,

∆κ =
∆t
2
·
(√

t+∆t g · t+∆tΦ+
√

tg · tΦ
)

. (11)

The updating of the internal variables of the model is
done by

t+∆t ξ = tξ+∆ξ ,

t+∆tκ = tκ+∆κ , (12)

respectively. To find the governing equation for the plas-
tic multiplier the following steps have to be performed:

First the updated stress t+∆t σ is expressed through Eq. 11.
This leads to

t+∆t σ = t+∆t σe −C :
(t+∆tΦ · t+∆t n+ tΦ · tn

) · ∆t
2

. (13)

Taking the deviatoric part of Eq. 13 leads to

t+∆tσ′ = t+∆t σe −
1
3
· tr (t+∆t σ

) · I
−C :

(t+∆t Φ · t+∆tn+ t Φ · tn
) · ∆t

2
. (14)

Taking into account that the trace of the deviator is Zero,
the following equation for the effective stress is achieved

t+∆tσ′ − t+∆t ξ = t+∆t σ′
e − t ξ

+
∆t
2
· 1

3
tr
[
C :
(t+∆t Φ · t+∆tn + tΦ · tn

)] · I
−C :

(t+∆t Φ · t+∆tn+ t Φ · tn
) · ∆t

2

− ∆t
2
· (t+∆t c · t+∆t Φ · t+∆t n + t c · tΦ · tn

)
. (15)

Taking the dot product of the effective stress with the nor-
mal t+∆tn to the yield surface leads to(

t+∆tσ′ − t+∆t ξ
)

: t+∆tn =√
(t+∆tσ′ − t+∆t ξ) : (t+∆tσ′ − t+∆t ξ) . (16)

From the definition Eq. 3 of the overstress follows that(
t+∆t σ′ − t+∆t ξ

)
: t+∆t n = t+∆tΛ+

√
t+∆t g . (17)

This leads to a nonlinear scalar equation for the over-
stress t+∆t Λ and for the plastic multiplier t+∆t Φ, respec-
tively. From Eq. 15, Eq. 16 and Eq. 17 follows

t+∆t Λ =
√

(t+∆tσ′
e − tξ) : (t+∆tσ′

e − tξ)−
√

t+∆t g

− ∆t
2
· t+∆tΦ ·

[(
C : t+∆tn

)
: t+∆tn + t+∆t c

]
− ∆t

2
· tΦ ·

[(
C : tn

)
: t+∆t n+ t c · tn : t+∆t n

]
. (18)

The steps shown above can be applied to almost ev-
ery viscoplastic material model and will always reduce
the system of ODEs (Ordinary Differential Equations)
to a (generally nonlinear) scalar equation. Therefore the
method is quite general.

3.1 Plastic material behaviour

The next task is the solution of Eq. 18 to find the over-
stress t+∆tΛ. In the static case, the overstress t+∆tΛ ≡
0, therefore the problem is reduced to determine the
isotropic hardening t+∆t κ by solving

f
(t+∆t κ

)
=
√

(t+∆tσ′
e − t ξ) : (t+∆t σ′

e − t ξ)−
√

t+∆t g

− ∆t
2
· t+∆tΦ ·

[(
C : t+∆tn

)
: t+∆tn + t+∆t c

]
− ∆t

2
· tΦ ·

[(
C : tn

)
: t+∆t n + tc · tn : t+∆t n

]
= 0, (19)

with t+∆tΦ from Eq. 11

t+∆tΦ =
t+∆t κ− tκ
∆t
2 ·
√

t+∆t g
− tΦ ·

√
tg

t+∆t g
. (20)

For the solution of Eq. 19 Newton’s method is applied

t+∆tκi+1 = t+∆t κi −
f
(

t+∆tκi
)

f ′ (t+∆t κi)
; i = 0,1,2, . . . (21)

with

t+∆tκ0 = tκ . (22)

The derivative f ′
(

t+∆t κ
)

is given in Appendix B.
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3.2 Viscoplastic material behaviour

In the viscoplastic case both overstress t+∆t Λ and
isotropic hardening t+∆tκ are coupled, therefore the fol-
lowing two equations have to be solved simultaneously

f1
(t+∆tκ, t+∆tΛ

)
= t+∆tκ− t κ

− ∆t
2
·
(√

t+∆tg · t+∆t Φ +
√

tg · tΦ
)

= 0 (23)

and

f2
(t+∆tκ, t+∆tΛ

)
=
√

(t+∆tσ′
e − tξ) : (t+∆tσ′

e − tξ)

−
√

t+∆tg− ∆t
2
· t+∆tΦ ·

[(
C : t+∆tn

)
: t+∆tn

+ t+∆t c
]− ∆t

2
· tΦ ·

[(
C : tn

)
: t+∆t n + t c · tn : t+∆tn

]
− t+∆t Λ
= 0, (24)

with t+∆t Φ from Eq. 3

t+∆t Φ = 2γ(T)
t+∆t Λ
E(T )

(
1+

t+∆tΛ
c4(T )

)c5(T)
. (25)

For the solution of Eq. 23 and Eq. 24 Newton’s method
is applied. In the following the abbreviations

�x =

(
x1

x2

)
=

(
t+∆t κ
t+∆t Λ

)
(26)

are used. First the search direction has to be determined
by solving the linear equation system

J ·�s = −�f
(
�xk
)

; k = 0,1,2, . . . (27)

with the Jacobian

Ji j =
∂ fi
(
�xk
)

∂x j
. (28)

The solution of Eq. 27 is

s1 =
J12 · f2 −J22 · f1

J11 · J22 −J12 · J21

s2 =
J21 · f1 −J11 · f2

J11 · J22 −J12 · J21
(29)

Next one has to perform the Newton step

�xk+1 =�xk +�s (30)

with the starting values

�x0 =

(
tκ
tΛ

)
. (31)

The derivatives in the Jacobian Eq. 28 are given in Ap-
pendix C.

3.3 Tangential Stiffness Matrix

The last task in the implementation of inelastic material
models into Finite Element codes is the calculation of
the tangential stiffness matrix. The convergence of the
global Newton-Raphson iteration, see Bathe (2002), is
determined by the consistency of this matrix. Consis-
tency in this context means that the formula for the tan-
gential stiffness matrix is consistent with the underlying
time integration scheme (here the midpoint rule). Only if
this consistency holds the full convergence of the global
iteration can be achieved. Otherwise the stepsize can be-
come very small (or the solution does not converge at
all).

For the midpoint rule given above the consistent tangen-
tial stiffness matrix is

∂t+∆t σ
∂∆ε

=
∆t
2
·
(

∂t σ̇
∂∆ε

+
∂t+∆t σ̇

∂∆ε

)
. (32)

From Eq. 4 follows

∂t+∆t σ
∂∆ε

=
∂∆σ
∂∆ε

=
∂
[
C : (∆ε−∆εi)

]
∂∆ε

. (33)

In case of elastic material behaviour, i.e. ∆εi = 0, the
tangential stiffness matrix is equal to the elasticity matrix
Eq. 35 of the material

∂t+∆t σ
∂∆ε

= C . (34)

In case of inelastic material behaviour the tangential stiff-
ness matrix Eq. 33 differs from the elasticity matrix; its
main components are shown in Appendix D.

4 Examples

In this section three examples are presented to show how
the implementation of the INTERATOM model based on
the solution of the effective stress function in section 3
works in ABAQUS. These examples are summarized in
Tab. 1.
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Table 1 : Model size for the different examples

Example No. of Nodes No. of Elements
LCF – 1 element 8 1
bar under thermal load 1016 475
TMF – Turbine Vane Cluster 90981 66359

Table 2 : Comparison of CPU time between different material models for the first example

LCF – 1 element ABAQUS isotropic hardening plastic IA model viscoplastic IA model
CPU time (sec) 1.93 2.39 4.95
Increments 52 52 99
Iterations 59 79 256
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Figure 1 : Prediction of a strain controlled LCF test with
three different models

The first example is a strain controlled LCF test. This
example is performed with one 8-noded hexahedral el-
ement for both the plastic and viscoplastic INTER-
ATOM model. For comparison purposes (mainly for
CPU time) the same calculation was done with the
ABAQUS isotropic hardening model. As shown in Fig. 1
the ABAQUS isotropic hardening model cannot predict
cyclic hardening behaviour, which is obvious, because
it does not contain any parameters for cyclic behaviour
(e. g. kinematic hardening), whereas both the plastic
and viscoplastic INTERATOM model can predict cyclic
hardening. Better results would be achieved with the
ABAQUS kinematic hardening model or even better with
the ABAQUS combined hardening model, but both mod-
els do not take into account creep and relaxation effects
and their interaction with the cyclic behaviour (see ex-
ample 3). Only the viscoplastic INTERATOM model is
capable of doing so, because it also takes into account the
strain rate influence, whereas the plastic INTERATOM
model and the plastic ABAQUS models are independent
of the strain rate.

In Tab. 2 the computational effort for the three differ-
ent models is compared. What can be seen is that the
ABAQUS isotropic hardening model is faster than the
two others, but the CPU time does not differ much. Be-
tween the plastic INTERATOM model and ABAQUS
isotropic hardening it is only a factor 1.24, which is
very close to 1. Between the viscoplastic INTERATOM
model and ABAQUS isotropic hardening it is a fac-
tor 2.57, which is reasonable if one takes into account
the higher capability of the viscoplastic INTERATOM
model.
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Figure 2 : Thermal expansion of a bar under thermal
load (the figure shows the resultant displacement)

The second example is a bar under pure thermal load,
which is clamped on both sides in such a way that ther-
mal expansion perpendicular to the main axis (here the
x-axis) is free. Therefore only compressive stresses in
the direction of the main axis can occur. The dimension
of the bar is 10×10×100 mm.

Fig. 2 shows the thermal expansion of the bar.

The resultant compressive stress as a function of temper-
ature can be seen in Fig. 3. The higher the temperature,
the more yielding of the material occurs. As before the
calculation was performed with all three different mod-
els, i. e. the ABAQUS isotropic hardening and the plas-
tic and viscoplastic INTERATOM model. What can be
seen is that all three models give similar results, which
is obvious, because for this monotonic type of loading
cyclic behaviour does not play a role. But this example
is an important test for the third example, namely a Tur-
bine Vane Cluster under TMF loading. Only if the ther-
mal stresses in this simple test can be predicted correctly,
TMF stresses in a complex structure can be predicted.

The comparison of the computational effort in Tab. 3
shows the same picture as before; again the ABAQUS
isotropic hardening model is the fastest one. Both the
plastic and viscoplastic INTERATOM model are slower,
but again not much (factors 1.13 and 1.64, respectively).

The third example is a Turbine Vane Cluster under TMF
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Figure 3 : Compressive stress as a function of tempera-
ture in a bar under thermal load

loading. This type of loading is the main purpose of vis-
coplastic models; to predict TMF life of a structure like
this Turbine Vane or an Exhaust Manifold in car engines,
these models are needed. With pure elastic models one
cannot predict cyclic hardening effects, with pure plas-
tic models one cannot predict creep effects during hold-
times, especially at high temperatures. Fig. 4 shows a
typical temperature distribution in a Turbine Vane Clus-
ter during a TMF cycle.

The resultant stresses during a TMF cycle are very com-
plex; they vary at each location with time and tempera-
ture, because the loading from thermal gradients and gas
loads in a Turbine vary for each time step. The bound-
ary conditions for this analysis are also quite complex;
first the transient 3D temperature field for the entire TMF
cycle is needed, second the transient 3D gas loads are
needed for each time step, third thermal expansion has
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Table 3 : Comparison of CPU time between different material models for the second example

bar under thermal load ABAQUS isotropic hardening plastic IA model viscoplastic IA model
CPU time (sec) 5.81 6.58 9.51
Increments 11 11 13
Iterations 12 18 29

Table 4 : Comparison of CPU time between different material models for the third example

TMF – Turbine Vane Cluster ABAQUS isotropic hardening viscoplastic IA model
CPU time (sec) 4962.7 72864.0
Increments 29 230
Iterations 53 965

Figure 4 : Temperature distribution in a Turbine Vane
Cluster for one time step of a TMF cycle

to be taken into account for the prediction of thermal
stresses and displacement boundary conditions have to
be defined in such a way that contact conditions between
Vane Cluster and Turbine Case are realistic and that no
additional stresses are introduced into the structure (one
has to take into account that thermal stresses occur from
both displacement boundary conditions and from ther-
mal gradients). Fig. 5 shows the stress distribution in the
Vane Cluster for one time step of the TMF cycle.

For a constant location in the Vane Cluster the TMF cy-
cle can be plotted, e. g. as Stress over Temperature, this
material response differs for each location of the Struc-

Figure 5 : Von Mises Stress distribution in a Turbine
Vane Cluster for one time step of a TMF cycle

ture. Fig. 6 shows the TMF cycle for the outer diameter
leading edge of the Vane Cluster.

What can be seen is that the simple ABAQUS isotropic
hardening model gives a reasonable approximation of the
first TMF cycle in the tensile range, but not in the com-
pressive range, which is obvious, because it cannot pre-
dict the Bauschinger effect. Furthermore it cannot pre-
dict the cyclic hardening and the creep behaviour dur-
ing hold times at high temperature. Again better results
would be achieved with the ABAQUS kinematic harden-
ing model or even better with the ABAQUS combined
hardening model, but both models do not take into ac-
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Figure 6 : TMF cycle at one location of the Vane Cluster

count creep and relaxation effects and their interaction
with the cyclic behaviour. Only the viscoplastic INTER-
ATOM model is capable of doing so. If one takes into
account that life prediction methods based on stress or
strain ranges are very sensitive to changes in the stress
or strain range, it becomes clear that TMF life prediction
based on the ABAQUS isotropic hardening model will
be inaccurate, whereas the viscoplastic INTERATOM
model will lead to better results.

Take for example a simple Woehler curve with the num-

ber of cycles to failure Nf = 1
2 ·
( ∆σ

1000

)−5
. The ABAQUS

isotropic hardening model in Fig. 6 predicts a stress range
∆σ of 205 MPa, which would give 1381 cycles to failure,
whereas the INTERATOM model predicts a stress range
∆σ of 180 MPa, which would give 2646 cycles to failure.
This means a difference of a factor 2 in life (imagine the
consequences for the design of the Vane Cluster if the life
requirement is e. g. 2500 TMF cycles).

The computational effort for both models is compared in
Tab. 4.

From Tab. 4 it becomes clear that the computational
effort for viscoplastic calculations with more complex
models like this Vane Cluster is much higher than for
simple plastic calculations, but one has to take into ac-
count the points stated above. For accurate TMF life
predictions viscoplastic calculations are necessary. But
the calculation time for the viscoplastic calculation is still
reasonable (factor 14.7 against ABAQUS isotropic hard-
ening).

5 Conclusions

A general method is presented how to implement con-
stitutive equations for isotropic viscoplastic material be-
haviour into Finite Element codes like ABAQUS. The
method consists of a local solution procedure of a non-
linear scalar equation for the plastic multiplier. For the
solution of the nonlinear equation Newton’s method is
used.

For the description of viscoplastic material behaviour the
so-called INTERATOM model is chosen. In this model
the plastic multiplier is a function of the so-called over-
stress. Furthermore the model is capable of describing
isotropic and kinematic hardening coupled with creep
and relaxation.

Three examples show the quality of the method. CPU
time for viscoplastic calculations with the INTERATOM
model in ABAQUS is low enough to allow cyclic calcu-
lations with large models.

We believe that the approach presented here is a general
method for the implementation of various constitutive
equations for isotropic viscoplastic material behaviour
into Finite Element codes.
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Appendix A: Isotropic elasticity matrix

In Eq. 4 C defines the elasticity matrix of the material. In
the isotropic case C is given as

C =
E · (1−ν)

(1+ν) · (1−2ν)
·

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
1−ν 0 0

0 0 0 0 1−2ν
1−ν 0

0 0 0 0 0 1−2ν
1−ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)

with Young’s modulus E and Poisson’s ratio ν.

Appendix B: Derivative of the nonlinear function
for plastic material behaviour

The derivative of Eq. 19 with respect to the isotropic
hardening κ is

f ′
(t+∆t κ

)
= − 1

2 ·
√

t+∆t g
· dt+∆t g

dκ

− ∆t
2
·

⎛
⎜⎝
⎡
⎢⎣
√

t+∆t g− t+∆t κ−t κ
2·
√

t+∆t g
· dt+∆t g

dκ

∆t
2 · t+∆tg

+
tΦ
2

·
√

tg

(t+∆t g)
3
2

· dt+∆t g
dκ

]

·
[(

C : t+∆t n
)

: t+∆t n+ t+∆t c
]

+

[
t+∆tκ− t κ
∆t
2 ·
√

t+∆t g
− tΦ ·

√
tg

t+∆tg

]
· dt+∆t c

dκ

)
. (36)

The derivatives of the material functions g(κ) and c(κ)
with respect to κ are given in Bruhns and Anding (1999).

Appendix C: Derivatives of the nonlinear functions
for viscoplastic material behaviour

The different components of the Jacobian Eq. 28 are

J11 =
∂ f1

∂t+∆t κ
= 1− ∆t

2
· t+∆t Φ · 1

2 ·
√

t+∆t g
· dt+∆tg

dκ

J12 =
∂ f1

∂t+∆t Λ
= −∆t

2
·
√

t+∆t g · dt+∆tΦ
dt+∆tΛ

J21 =
∂ f2

∂t+∆t κ
= − 1

2 ·
√

t+∆t g
· dt+∆tg

dκ

− ∆t
2
· t+∆t Φ · dt+∆t c

dκ

J22 =
∂ f2

∂t+∆t Λ
= −1− dt+∆tΦ

dt+∆tΛ
· ∆t

2

·
[(

C : t+∆t n
)

: t+∆tn+ t+∆t c
]

(37)

with the derivative of the plastic multiplier Eq. 25 with
respect to the overstress Λ

dt+∆tΦ
dt+∆tΛ

=
2γ
E

(
1+

t+∆t Λ
c4

)c5

·
[

1+
t+∆tΛ · c5

c4

1+
t+∆t Λ

c4

]
. (38)
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Appendix D: Tangential stiffness matrix

The main components of the tangential stiffness matrix
are shown below. The other components are analogous
(refer to Eq. 33).

∂∆σ11

∂∆ε11
=

E · (1−ν)
(1+ν) · (1−2ν)

[
1− 1−2ν

1−ν
·

(σ′
11 −ξ11) · (σ′

11 −ξ11)

(σ′ −ξ) : (σ′ −ξ) ·
(

1+ 2
3 · (1+ν) · Et (κ)

E−Et (κ)

)
⎤
⎦

∂∆σ11

∂∆ε22
=

E · (1−ν)
(1+ν) · (1−2ν)

[
ν

1−ν
− 1−2ν

1−ν
·

(σ′
11 −ξ11) · (σ′

22 −ξ22)

(σ′ −ξ) : (σ′ −ξ) ·
(

1+ 2
3 · (1+ν) · Et (κ)

E−Et (κ)

)
⎤
⎦

∂∆σ11

∂∆ε12
=

E · (1−ν)
(1+ν) · (1−2ν)

[
−1−2ν

1−ν
·

2 · (σ′
11 −ξ11) · (σ′

12 −ξ12)

(σ′ −ξ) : (σ′ −ξ) ·
(

1+ 2
3 · (1+ν) · Et (κ)

E−Et (κ)

)
⎤
⎦

∂∆σ12

∂∆ε12
=

E · (1−ν)
(1+ν) · (1−2ν)

[
1−2ν
1−ν

− 1−2ν
1−ν

·

2 · (σ′
12 −ξ12) · (σ′

12 −ξ12)

(σ′ −ξ) : (σ′ −ξ) ·
(

1+ 2
3 · (1+ν) · Et (κ)

E−Et (κ)

)
⎤
⎦ (39)




