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Reliable Fracture Analysis of OF 2-D Crack Problems Using NI-MVCCI
Technique
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Abstract: A posteriori error estimation and adaptive
refinement technique for 2-D/3-D crack problems is the
state-of-the-art. In this paper a new a posteriori error
estimator based on strain energy release rate (SERR) or
stress intensity factor (SIF) at the crack tip region has
been proposed and used along with the stress based er-
ror estimator for reliable fracture analysis of 2-D crack
problems. The proposed a posteriori error estimator is
called the K-S error estimator. Further, h-adaptive mesh
refinement strategy which can be used with K-S error
estimator has been proposed for fracture analysis of 2-
D crack problems. The performance of the proposed a
posteriori error estimator and the h-adaptive refinement
strategy have been demonstrated by employing 4-noded,
8-noded and 9-noded plane stress finite elements. The
proposed error estimator together with the h-adaptive re-
finement strategy will facilitate automation of fracture
analysis process to provide reliable solutions.

keyword: Finite element method; Fracture analysis;
Error estimation; Adaptive refinements.

1 Introduction

The finite element method (FEM) offers solution to al-
most all structural analysis problems once a suitable for-
mulation and computational model are adopted. FEM
has been used ever since 1950 as an analytical tool for
solving many of the problems related to solid and struc-
tural mechanics. The power and versatility of FEM
are generally exploited by developing suitable software
packages or by using commercially available software.
In FEM, the primary goal is to determine how a structure
and its components will respond to a given set of envi-
ronmental conditions such as loads, boundaries, discon-
tinuities, etc. The results of finite element analysis (FEA)
can be used to understand the behavior of structure and
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can also be used to improve and optimize the structural
design. This is based on the assumption that the structure
is correctly modelled, the environmental conditions are
properly defined and FEM software itself performs cor-
rectly. The quality of finite element (FE) formulations
and FE mesh/idealization employed in FEA will have
a direct effect on the solution time, cost, accuracy and
reliability of the results. Further, FEA of any practical
structure involves large amount of data to be prepared
to represent the physical structure. This gives scope for
errors in input and inefficient modelling. Therefore, ef-
ficient/appropriate use of any software based on FEM,
commercial or otherwise, requires basic knowledge of
the method and also about the software. As a result, the
use of software has been mainly restricted to profession-
als, trained analysts and those who are knowledgeable in
this field.

One of the major sources of error in FEA is from the dis-
cretization of the structure into relatively simple elements
to represent the complex structure and its behaviour. Re-
liability of solutions obtained by using FEA depends on
modelling of the structure, element formulations and the
errors associated with the solution process. Despite the
significant advances made on discretization methods, the
selection of FE model for a particular problem is largely
based on the intuition and experience gained from solv-
ing similar problems. The discretization error is the
result of modelling a continuum with a computational
model that has a finite number of degrees of freedom
(DOF). The governing equation that is the equilibrium
conditions can be satisfied only in the weak sense and
at global level. Likewise, the imposed natural bound-
ary conditions are not fulfilled in an exact manner. The
stress solution is discontinuous across element bound-
aries. The obtained stresses at nodes are of lower quality
than within the domain. To remove the element of uncer-
tainty involved in modelling, research has been directed
towards evolving methodologies for a posteriori error es-
timation and adaptive mesh refinements that can be used
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with FEM. These attempts are intended to provide auto-
matic means to improve mesh design and consequently
to offer reliable solution with least computational cost.

Attention has been focused since mid 1970s on develop-
ing procedures for error estimation and adaptive mesh
refinements. An extensive literature survey on tech-
niques for error estimation and adaptive refinements in
FEA was presented by Iyer (1993), Palani et al. (1998)
and Zienkiewicz and Taylor (2000). The supercon-
vergent patch recovery (SPR) technique, proposed by
Zienkiewicz and Zhu (1992), is effective and recovers su-
perconvergent derivatives. It is also shown that if the re-
covery technique is superconvergent, that is, if the recov-
ered derivatives are superconvergent, Zienkiewicz and
Zhu error estimator will always be asymptotically exact
in energy norm. The procedure is a least square fit of
finite element solutions over a local patch of elements
at pre-selected points, where the rate of convergence is
higher than the global rate or at least more accurate. An
enhancement of SPR technique, called superconvergent
patch recovery with equilibrium (SPRE) [Wiberg and
Abdulwahab (1993)] is achieved by adding residual of
the equilibrium equation for the improved solution to the
smoothing procedure. A similar post-processing tech-
nique that accounts for violations of the governing equa-
tions was developed by Blacker and Belytschko (1994).
Numerical experiments revealed [Wiberg, Abdulwahab
and Ziukas (1994)] that while recovering high quality
derivatives at inner nodes in both SPR and SPRE tech-
niques the quality of recovered solution relatively dete-
riorate at boundaries. This deterioration was remedied
by switching to a new method that was devised to ac-
count for the imposed boundary conditions. This en-
hanced method proposed by Wiberg, Abdulwahab and
Ziukas (1994) is called the superconvergent patch recov-
ery technique incorporating equilibrium and boundary
conditions (SPREB). SPREB is designed in such a way
that the prescribed boundary conditions are satisfied in
the sense of least squares. The technique is tested for lin-
ear problems and the quality of the recovered solutions
has been increased considerably. Wiberg, Li and Abdul-
wahab (1996) and Wiberg and Li (1999) used the same
idea for adaptive FEA of linear, plasticity and non-linear
dynamic problems. Schlenpen and Ramm (2000) pre-
sented a local and global error estimation procedure for
linear dynamic problems.

It is observed from the literature that work on develop-

ment of error estimation and adaptive refinement proce-
dures have been largely concerned with linear static and
dynamic analysis. While considerable successes have
been achieved on error estimation and adaptivity for lin-
ear static and dynamic problems, development concern-
ing adaptive FEM for nonlinear, plasticity, coupled and
fracture problems is far from complete and is very de-
sirable. It is observed from the literature that the ap-
plication of a posteriori error estimation and adaptive
refinement techniques for fracture analysis of 2-D/3-D
crack problems is the state-of-the-art [Meshii and Watan-
abe (2003) and Giner, Fhenmayor and Tarancon (2004)].
For the adaptive FEA of fracture analysis problems, most
of the proposed procedures [Koenke, Harte, Kratzig, and
Rosenstein (1998) and Min, Bass and Spradley (1994)]
make use of the conventional stress based a posteriori
error estimator [Zienkiewicz and Zhu (1992)]. In the re-
cently proposed [Meshii and Watanabe (2003)] error es-
timator for fracture problems, a procedure evaluating an
error index for SIF was presented. This procedure in-
volves use of displacement extrapolation technique for
SIF computation. Therefore, this error index has the
limitation that the analytical function of the crack tip
displacement is known, which may not be available for
many of the practical problems. A critical review of the
numerical methods for fracture analysis was presented
by Aliabadi and Rooke (1991) and the recent develop-
ments in fatigue crack growth modelling was presented
by Atluri (2005). Palani, Iyer and Dattaguru (2004) pro-
posed a generalized technique, called numerically inte-
grated modified virtual crack closure integral technique,
for accurate computation of SIF. It is well known that the
solutions obtained by using FEM are approximate. De-
spite the fact that NI-MVCCI technique is used for com-
putation of SIF, the errors due to discretization and the
choice of crack tip element size have significant influ-
ence on the reliability of SIF values. In order to refine
the mesh adaptively for accurate evaluation of SIF, it is
essential to estimate the errors involved in the compu-
tation of SIF and also in stresses. In the present study
an a posteriori error estimator based on SERR/SIF at
the crack tip region has been developed and used along
with the stress based error estimator [Zienkiewicz and
Zhu (1992)]. The proposed a posteriori error estimator is
called the K-S error estimator. Further, h-adaptive mesh
refinement strategy has been proposed for fracture analy-
sis of 2-D crack problems. This will facilitate automation
of fracture analysis process to provide reliable solutions.
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2 Formulation of K-S error estimator

In the proposed a posteriori K-S error estimator for frac-
ture analysis problems, a combination of SIF and stress
based approach is adopted for computing the element and
domain errors. For the elements meeting at the crack tip,
which are the ones contributing to SERR, SIF based ap-
proach is proposed for computing K-error estimator. As
the rest of the elements in the domain are still in the linear
and static state, stress based error estimator [Zienkiewicz
and Zhu (1992)] is used for computing the domain as
well as element errors. SIF based error estimator and
stress based error estimator together forms the K-S error
estimator. It may be noted that K-error is used in con-
junction with S-error during the solution. The procedure
to compute the error estimators is presented in the fol-
lowing:

2.1 Proposed SIF based (K) error estimator

Consider a typical FE mesh at the crack tip as shown
in Figure 1. SERR can be evaluated by multiplying the
stress distribution along OA (ahead of crack tip) with the
corresponding displacement distribution along OB (be-
hind crack tip) and integrating this product over ∆a. For
evaluation of SERR for mode I crack (GI) the stress dis-
tribution on the crack extension line OA can be expressed
in terms of the nodal forces Fy, j , Fy,( j+1), etc. acting at the
nodes j, (j+1), etc. respectively. COD distribution along
OB can be expressed in terms of the nodal values at j,
(j-1), (j-1)’, etc. SERR for mode I crack is derived by
evaluating the energy required to close the crack over a
length ‘∆a’ in terms of these nodal forces and displace-
ments.

The corresponding SERR for mode I and II (GI and GII)
can be expressed as

GI = Lt
∆a→0

1
2∆a

Z

∆a

σyy(ξ)Uy(ξ′)dx (1)

GII = Lt
∆a→0

1
2∆a

Z

∆a

σxy(ξ)Ux(ξ′)dx (2)

The integrals associated with the constants required for
representing the stress distribution and the integrals in
eqns (1) and (2) can be evaluated by Gauss numerical
integration technique with the appropriate rule [Palani,
Iyer and Dattaguru (2004)].
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Figure 1 : Typical FE Mesh of Crack Tip Region

If the exact value of SERR for mode I crack (GI) is
known, the error in GI computed using the results of FEA
can be expressed as

GI,error = GI,exact −−GI (3)

The value of GI can be updated with these errors GI,error

to compute the improved value of GI as

GI,impr = GI +GI,error (4)

By assuming plane stress or strain conditions, SIF values
for mode I (KI) for the current analysis and the true value
of SIF for mode I (KI,impr) can be computed using the
values of GI and GI,impr respectively. The error in SIF
for mode I can then be expressed as

KI,error = KI,impr −−KI (5)

It may be noted SERR and SIF values in eqns (3) to (5)
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are scalar quantities. The predicted error indicator or rel-
ative percentage error in SIF can be expressed as

ηKI (%) =
KI,error

KI,impr
×100 (6)

If the exact (analytical) values are available, the actual er-
ror indicator with respect to these values can be evaluated
using

ηaKI (%) =
KI,exact −KI

KI,exact
×100 (7)

The reliability of the error estimator is measured by ef-
fectivity index [Zienkiewicz and Taylor (2000)], which is
defined by the ratio of the predicted error indicator and
the actual error indicator. The effectivity index for K-
error estimator can be expressed as

θKI =
ηKI

ηaKI

(8)

Similar expressions for mode II crack can be obtained by
replacing GI and KI by GII and KII, respectively in eqns
(3) to (8). Since the exact values of GI are not known,
the exact values (GI,exact) are replaced by ”improved” or
“smoothed” values, which are supposed to be better than
the computed values. The procedure for computing the
“improved” values of GI and GII is explained below.

It is proposed to evaluate the improved values of SERR
by assuming a polynomial of one order higher than
that required for the finite elements employed at the
crack tip for representing the stress distribution along
OA as well as the corresponding displacement distribu-
tion along OB. In order to achieve this, referring to Fig.
2(a), one additional element (#2*) ahead of the crack tip
(OAA*) and an additional element (#1*) behind crack
tip (OBB*) is used for representing the stress and the
displacement distribution respectively. The displacement
variation along OBB* for computing improved SERR
can be expressed as function of ξ’ as

Uy(ξ′)∗ = a0 +a1ξ′ + .....+a(n−1)ξ′(n−1)n = 3,4, ... (9)

where Uy(ξ’)* is a polynomial of order (n-1). It may
be noted that the value of n is assumed to be one order
higher, for example n=3 for 4-noded elements and n=5
for 8-noded and 9-noded elements. Referring to Fig. 2(b)
and (c), the constants a0, a1,. . . .,a(n−1) can be evaluated
by matching the displacement conditions at node B* and

at the intermediate points k, (k-1), etc. in element num-
bers 1 and 1*. The values at intermediate points k, (k-1),
etc. can be evaluated by interpolation using the respec-
tive element shape functions as

Uy,k = ∑NiUy,i (10)
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Figure 2 : Details of FE Mesh at Crack Tip Region for
Improved SERR Evaluation

The stress distributionalong OA for computing improved
SERR can be expressed as a function of ξ

σyy(ξ)∗ = b0 +b1ξ+ . . . ..b(n−1)ξ(n−1)n = 3,4, . . . (11)

where σyy(ξ)* is a polynomial of order (n-1). The value
of n is assumed to be one order higher than the element
shape functions similar to the case of displacements. Re-
ferring to Fig. 2, the constants b0, b1,. . . .,b(n−1)can be
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computed by matching the nodal forces at node O and the
forces evaluated at the intermediate points l, (l+1), etc.
with the derived consistent load vector from FE analy-
sis. The values at intermediate points l, (l+1), etc. can be
evaluated by interpolation using the respective element
shape functions as

Fy,k = ∑NiFy,i (12)

By replacing σyy(ξ) and Uy(ξ’) in eqn (1) with σyy(ξ)*
(eqn (9)) and Uy(ξ’)* (eqn (11)), improved SERR for
mode I cracks, GI,impr can be expressed as

GI,impr = Lt
∆a→0

1
2∆a

Z

∆a

σyy(ξ)∗Uy(ξ′)∗dx (13)

Similarly for mode II cracks,

GII,impr = Lt
∆a→0

1
2∆a

Z

∆a

σxy(ξ)∗Ux(ξ′)∗dx (14)

The integrals associated with the constants required for
representing the stress distribution and the integrals in
eqns (13) and (14) can be evaluated by Gauss numerical
integration technique with the appropriate rule [Palani,
Iyer and Dattaguru (2004)].

2.2 Stress based (S) error estimator [Zienkiewicz and
Zhu (1987)]

The solution of a linear elastic problem consists of dis-
placements and stresses. Considering the equilibrium
equation for linear static problems based on principle of
virtual work, the strain-displacement and stress-strain re-
lations can be expressed as,

ε = Bδ and σ = DBδ (15)

The displacements δand the stresses σare approximate
solutions and differ from the exact values (computed at
Gauss points) as given below:

e = δ∗ −δ for displacements (16a)

and es = σ∗ −σ for stresses (16b)

The difference between the corresponding values given
in the above equations form the pointwise errors in dis-
placements and stresses respectively. However, since

pointwise errors are difficult to compute, integral mea-
sures are conveniently adopted. Among these measures,
the ”energy norm” is the most commonly used. This can
be expressed as,

‖e‖ =

⎡
⎣

Z

Ω

eT Γ e dΩ

⎤
⎦

1/2

(17)

where Γ is the self-adjoint operator in the linear equation
and Ω is the domain. The predicted error indicator or
relative percentage error can be defined as,

ηs (% ) =
‖e‖
‖u‖ x 100 (18)

where ‖u‖ is the exact energy norm.

The following steps can be used to estimate the a poste-
riori errors in linear static FE solutions:

1. compute Gauss point stresses (σ )

2. compute smoothed/improved stresses, that is, σ to
nodal points (σnd)

3. compute projected stresses at the plate Gauss points
(σ∗

pnd) using the appropriate element shape func-
tions

4. compute the error estimate in energy norm in the
domain using,

‖e‖ =

⎡
⎣ N

∑
Z

A

(σ∗
nd −σ)D−1 (σ∗

nd −σ)dA

⎤
⎦

1/2

(19)

5. compute error indicator (ηs) for the domain and el-
ements using eqn (18).

Since the exact values are not known, these are re-
placed by ”improved” or “smoothed” values, which are
better than the computed values. The “improved” val-
ues are obtained by using stress smoothing techniques
such as global smoothing technique [Zienkiewicz and
Zhu (1987)] and Zienkiewicz and Zhu (1989)], mod-
ified global smoothing technique [Iyer (1993)], nodal
averaging approach [Byrd (1988)] and SPR technique
[Zienkiewicz and Zhu (1992)]. Among these, the pre-
ferred technique used to determine the ”improved” solu-
tion is the superconvergent patch recovery technique as
described below:
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3 SPR technique

In this approach a single and continuous polynomial ex-
pansion of the function describing the derivatives is used
on an element patch surrounding the nodes at which re-
covery is required [Zienkiewicz and Zhu (1992)]. This
expansion can be made to fit locally the superconvergent
points in a least square manner or simply be an L2 pro-
jection of the consistent FE derivatives. It is assumed that
the nodal stress values σ* belong to a polynomial expan-
sion σp* of the same complete order p as that present in
the shape function N and which is valid over an element
patch surrounding the particular assembly node consid-
ered. Such a patch represents a union of elements con-
taining this vertex node. This polynomial expansion will
be used for each component of σ∗

p or the derivatives as
expressed below,

σ∗
p = Pa (20)

where P contains the appropriate polynomial terms and
is a set of unknown parameters. More details on the
polynomial terms and 2-D element patches are avail-
able in Ref. 5. The equations for each vertex node
is assembled and solved to determine the parameters
‘a’. The recovered nodal values are computed by appro-
priately inserting the coordinates into the expression of
σp*. Zienkiewicz and Zhu (1992) proved that this ap-
proach generally leads to superconvergent recovery of
nodal derivatives (or stresses).

4 h-Adaptive mesh refinement strategy

Adaptive FEA aims at achieving more accurate and reli-
able solutions with least computational effort by employ-
ing efficient modelling techniques. The domain error in-
dicator is compared with the specified error indicator and
the adaptive FEA iterative cycles are continued till the
specified accuracy is achieved. Error indicators are com-
puted for all elements in a domain to decide about fur-
ther refinement of the element to improve the accuracy
of solution. Five adaptive refinement strategies gener-
ally used [Zienkiewicz and Taylor (2000)] are (i) refine-
ment of elements (h-refinements), (ii) increase in order of
polynomial (p-refinements), (iii) relocation of nodes (R-
refinements), (iv) simultaneous refinement of elements
and increase in order of polynomial (h-p refinements) and
(v) combination h-p-R refinements in sequence. Among
these strategies h-refinements is popularly used as it en-

sures the convergence of solutions and is easy to imple-
ment in existing FEA software.

The present study aims at developing efficient method-
ologies for achieving an acceptable FE mesh in single
level of adaptive mesh refinements for fracture analysis
of 2-D crack problems. The domain error indicators, ηKI

and ηs, as given by eqns (6) and (18) are compared with
the specified error indicators ηKI and ηs respectively to
check whether the specified accuracy has been achieved.
It is proposed to compute the element error indicators for
those elements meeting at the crack tip based on K-error
estimator and for the rest of the elements in the domain
based on S-error estimator. An adaptive mesh refine-
ment strategy involving graded mesh guided by a new
h-distribution has been used for obtaining the adaptive
FE mesh in single level of refinements.

For the elements meeting at the crack tip, the element re-
finement parameter can be obtained by equally distribut-
ing GI,error among these elements.

KI,error for an element, (KI,error)i =
KI,error

Nk
(21)

element refinement parameter, ξki =
(KI,error)i

ηkI
KI,impr

Nk

(22)

where Nk is the number of elements meeting at the crack
tip, KI,error is error in SIF (eqn (5)), KI,impr is computed
using GI,impr value as given in eqn (4) and ηKI is the user
specified acceptable percentage error for SIF value.

The element error indicator and refinement parameter
[Zienkiewicz and Taylor (2000)] based on stress based
error estimator can be computed based on the principle
of equal distribution of the errors among the elements in
the domain as given by,

element error indicator, ηi =
‖e‖i(

‖u‖2+‖e‖2

N

)1/2
(23)

element refinement parameter, ξi =
‖e‖i

ηs

(‖u‖2+‖e‖2

N

)1/2

(24)

where N is the number of elements in the mesh excluding
those elements considered for evaluating K-error estima-
tor, ‖e‖ is the energy norm for the error (eqn (19)) in the
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domain, ‖u‖ is the energy norm computed using FE so-
lution, ‖e‖iis the energy norm for the error in element i
and ηs is the user specified acceptable percentage error.

It is proposed to use the values of ξki for the elements
meeting at the crack tip (eqn (22)) and the values of ξi

for the rest of the elements in the domain (eqn (24)) to
decide on the refinement level required for the next level
of adaptive mesh. If each of this parameter is greater
than unity, then further refinement is carried out, if the
parameters are equal to unity no further refinement is car-
ried out and if the parameters are less than one then de-
refinement may be attempted. Based on the refinement
parameter values (ξkiand ξi), it is proposed carry out the
refinements simultaneously for the elements at the crack
tip as well as the rest of the elements in the domain. The
current level of FE mesh will be replaced with a refined
unstructured graded mesh. The error indicator for the do-
main will be used to check whether the specified level of
accuracy has been reached.

5 Numerical studies

In order to verify and validate the K-S error estimator
and the h-adaptive mesh refinement strategy proposed
above, fracture analysis of 2-D cracked plates (modes
I and II) has been conducted by employing 4-noded, 8-
noded and 9-noded plane stress finite elements. Static
analysis of the plates has been conducted by using FEM
and the stress based errors (S-errors) have been estimated
as explained above. NI-MVCCI technique has been em-
ployed for computing SERR and SIF and SIF based er-
rors (K-errors). Gauss integration technique with appro-
priate rules has been employed for evaluating the inte-
grals associated with NI-MVCCI technique. Plane strain
conditions have been assumed at the crack tip to compute
SIF by using SERR values obtained using NI-MVCCI
technique. Example problems on mode I and mode II
cracks have been chosen to validate and study the perfor-
mance of the K-S error estimator. In order to compare
and perform the convergence studies of the error estima-
tor and adaptive refinement strategies, both uniform and
adaptive mesh refinements have been carried out. In all
the example problems, four levels of uniform refinements
for 4-noded elements and two levels of uniform refine-
ments for 8-noded and 9-noded elements have been used
to demonstrate the monotonic convergence of the error
estimator. Single level of adaptive refinements have been
carried out to generate unstructured graded mesh for 4-

noded, 8-noded and 9-noded elements based on the el-
ement refinement parameters computed by assuming an
accuracy of 5% (ηs) for S-errors [Zienkiewicz and Taylor
(2000)] and 1% (ηK) for K-errors [Rooke and Cartwright
(1976)], which is generally recommended for engineer-
ing applications.

Example-1: Rectangular Plate with Center Crack under
Uniaxial Tension

A rectangular plate with center crack subjected to uni-
axial tensile loading (mode I) as shown in Fig. 3(a) has
been analysed to compute SERR and SIF at the crack tip.
One quarter of the plate with symmetric boundary con-
ditions has been idealized using 4-noded, 8-noded and
9-noded finite elements. The basic mesh employed for
each of these elements is shown in Fig. 4. The meshes
for the final level of uniform mesh refinement are shown
in Fig. 5 and the graded adaptive meshes are shown in
Fig. 6. The plot of the deformed shape superposed with
σxx stress contour is shown in Fig. 7 for basic mesh, level
IV of uniform mesh and adaptive mesh for 4-noded ele-
ment. The convergence of K-errors obtained by using
uniform and adaptive meshes is shown in Fig. 8. Table
1 presents SERR and SIF values and K-S domain error
estimates obtained in the present study using 4-noded, 8-
noded and 9-noded elements along with the finite plate
solution for SIF available in the literature [Rooke and
Cartwright (1976)].

(a)

2H

2W 

2a

E=10000 MPa 
 = 0.0 

t = 10 mm 
H = 250 mm 
W = 100 mm 
a = 20 mm

Figure 3 : Rectangular Plate with Center Crack
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   (a) 4-noded             (b) 8-noded               (c) 9-noded

Figure 4 : Basic Mesh Employed in the Studies

    (a) 4-noded            (b) 8-noded         (c) 9-noded

Figure 5 : Final Level of Uniform Mesh Employed in the
Studies

  (a) 4-noded              (b) 8-noded               (c) 9-noded

Figure 6 : Adaptive Mesh Employed in the Studies
(Mode I – Center Crack)

(a) Basic Mesh 

(b) Uniform Mesh (Lev. IV) 

(c) Adaptive Mesh 

Figure 7 : Stress Contour Superposed with Deformed
Shape (Mode I – Center Crack)
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KI

Log(Number of DOF) 

Figure 8 : Convergence of Uniform and Adaptive
Meshes (Mode I - Centre Crack)

Example-2: Rectangular Plate with Edge Crack under
Uniaxial Tension

A rectangular plate with an edge crack subjected to uni-
axial tensile loading (mode I) as shown in Fig. 9 has
been analysed to compute SERR and SIF at the crack tip.
One half of the plate with appropriate changes for the
boundary conditions has been idealized using 4-noded,
8-noded, and 9-noded plane stress finite elements. The
basic and the uniform refinement meshes employed for

2W

a
2H

E=10000 MPa 
 = 0.0 

t = 10 mm 
H = 250 mm 
W = 100 mm 
a = 20 mm

Figure 9 : Rectangular Plate with Edge Crack

       (a) 4-noded             (b) 8-noded               (c) 9-noded

Figure 10 : Adaptive Mesh Employed in the Studies
(Mode I - Edge Crack)

Log(Number of DOF)

KI

Figure 11 : Convergence of Uniform and Adaptive
Meshes (Mode I - Edge Crack)

each of these elements are same as those shown in Figs.
4 and 5. The graded adaptive meshes for these elements
are shown in Fig. 10. The convergence of K-errors ob-
tained by using uniform and adaptive meshes is shown in
Fig. 11. Table 2 presents the details of FE mesh topol-
ogy, SERR and SIF values and the K-S domain error es-
timates obtained in the present study using 4-noded, 8-
noded and 9-noded elements along with the finite plate
solution for SIF available in the literature [Rooke and
Cartwright (1976)]. The plot of the deformed shape su-
perposed with σxx stress contour is shown in Fig. 12 for
basic mesh, level IV of uniform mesh and adaptive mesh
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(a)  Basic Mesh 

(b) Uniform Mesh (Lev. IV) 

(c) Adaptive Mesh 

Figure 12 : Stress Contour Superposed with Deformed
Shape (Mode I - Edge Crack)

       (a) 4-noded         (b) 8-noded         (c) 9-noded 

Figure 13 : Adaptive Mesh Employed in the Studies
(Mode II – Centre Crack)

Log(Number of (DOF) 

kI

Figure 14 : Convergence of Uniform and Adaptive
Meshes (Mode II - Centre Crack)

for 4-noded element.

Example-3: Rectangular Plate with Center Crack under
Shear Load

A rectangular plate with a center crack subjected to shear
load (mode II) has been analysed to compute SERR and
SIF at the crack tip. The plate has been idealized con-
sidering quarter symmetry with using 4-noded, 8-noded,
and 9-noded plane stress finite elements with appropriate
changes for the loading and boundary conditions. The
basic and the uniform refinement meshes employed for
each of these elements are same as those shown in Figs.
4 and 5. The graded adaptive meshes for these elements
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Table 1 : K-S Error Estimates for Rectangular Plate with Centre Crack (Mode I)
Mesh #nodes #DOF G1 KI KI error ηkI (%) θkI ηs (%)

4-noded element
Basic 42 73 0.0540 23.24 2.0191 7.89 0.859 7.19
Uni. lev. I 121 223 0.0621 24.93 0.5758 2.25 0.872 5.00
Uni. lev. II 441 846 0.0643 25.36 0.2073 0.81 0.904 3.06
Uni. lev. III 1681 3292 0.0651 25.52 0.0640 0.25 0.910 2.00
Unif. lev. IV 6561 12984 0.0655 25.60 0.0102 0.04 0.911 1.36
Adaptive 1285 2498 0.0650 25.50 0.0819 0.32 0.920 1.64

8-noded element
Basic 113 206 0.0627 25.04 0.4762 1.86 0.864 5.48
Uni. lev. I 405 772 0.0644 25.38 0.1894 0.74 0.907 4.21
Uni. lev. II 1529 2984 0.0653 25.56 0.0281 0.11 0.915 3.09
Adaptive 2686 5240 0.0655 25.60 0.0102 0.04 0.917 2.58

9-noded element
Basic 143 266 0.0634 25.18 0.4760 1.86 0.867 5.65
Uni. lev. I 525 1012 0.0650 25.49 0.1919 0.75 0.911 4.59
Uni. lev. II 2009 3944 0.0654 25.57 0.0281 0.11 0.919 3.88
Adaptive 3111 6094 0.0655 25.60 0.0102 0.04 0.927 3.37
Analytical KI : 25.59 [Rooke and Cartwright (1976)]

Table 2 : K-S Error Estimates for Rectangular Plate with Edge Crack (Mode I)
Mesh #nodes #DOF G1 KI KI error ηkI (%) θkI ηs (%)

4-noded element
Basic 42 78 0.0885 29.75 3.8723 11.25 0.829 7.19
Uni. lev. I 121 233 0.1057 32.52 1.6246 4.72 0.855 5.00
Uni. lev. II 441 866 0.1125 33.53 0.7779 2.26 0.874 3.06
Uni. lev. III 1681 3332 0.1151 33.92 0.4440 1.29 0.891 2.00
Unif. lev. IV 6561 13064 0.1163 34.10 0.2891 0.84 0.901 1.36
Adaptive 1248 2461 0.1153 33.96 0.4199 1.22 0.912 1.64

8-noded element
Basic 113 217 0.1097 33.12 1.0739 3.12 0.826 5.48
Uni. lev. I 405 793 0.1137 33.72 0.6196 1.80 0.887 4.21
Uni. lev. II 1529 3025 0.1153 33.96 0.4130 1.20 0.895 3.09
Adaptive 2866 5671 0.1196 34.15 0.2444 0.71 0.907 2.58

9-noded element
Basic 143 277 0.1118 33.44 0.8123 2.36 0.829 5.65
Uni. lev. I 525 1033 0.1151 33.92 0.4440 1.29 0.891 4.59
Uni. lev. II 2009 3985 0.1158 34.03 0.3545 1.03 0.909 3.88
Adaptive 3461 6857 0.1167 34.16 0.2409 0.70 0.917 3.37
Analytical KI : 34.42 [Rooke and Cartwright (1976)]
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Table 3 : K-S Error Estimates for Rectangular Plate with Centre Crack (Mode II)
Mesh #nodes #DOF G2 KII KII error ηkII (%) θkII ηs (%)

4-noded element
Basic 42 73 0.0527 22.95 1.7223 6.87 0.812 5.99
Uni. lev. I 121 223 0.0562 23.71 1.1632 4.64 0.857 4.87
Uni. lev. II 441 846 0.0575 23.98 0.9527 3.80 0.874 3.26
Uni. lev. III 1681 3292 0.0599 24.48 0.5014 2.00 0.851 1.94
Unif. lev. IV 6561 12984 0.0612 24.74 0.3008 1.20 0.906 1.44
Adaptive 1374 2671 0.0617 24.84 0.2106 0.84 0.912 1.26

8-noded element
Basic 113 206 0.0602 24.54 0.4462 1.78 0.844 5.26
Uni. lev. I 405 772 0.0605 24.59 0.4287 1.71 0.897 4.14
Uni. lev. II 1529 2984 0.061 24.70 0.3359 1.34 0.905 3.03
Adaptive 2937 5742 0.0621 24.92 0.1379 0.55 0.912 2.15

9-noded element
Basic 143 266 0.0606 24.62 0.3811 1.52 0.848 5.57
Uni. lev. I 525 1012 0.0617 24.84 0.2081 0.83 0.898 4.19
Uni. lev. II 2009 3944 0.0621 24.91 0.1454 0.58 0.909 3.08
Adaptive 3041 5958 0.0626 25.01 0.0552 0.22 0.917 2.37
Analytical KII: 25.07 -infinite plate solution.

are shown in Fig. 13. The convergence of K-errors ob-
tained by using uniform and adaptive meshes is shown in
Fig. 12. Table 3 presents the details of FE mesh topology,
SERR and SIF values and the K-S domain error estimates
obtained in the present study using 4-noded, 8-noded and
9-noded elements along with the solutions for an infinite
plate.

6 Discussion of results

It can be observed from Figs. 7, 10 and 12 and Ta-
bles 1 to 4 that K-error as well as S-error computed in
the present study using the proposed K-S error estima-
tor for 4-noded, 8-noded and 9-noded quadrilateral finite
elements exhibit monotonic convergence for the all the
example problems solved. The S-error conveges to less
than 5% error for all the example problems both for the
uniform and adaptive meshes. The K-error converges to
less than about 1% for all the example problems. The
effectivity index, θk computed for K-error estimator with
respect to the corresponding analytical solution is gen-
erally found to be converging from around 0.8 to 0.9
for uniform as well as adaptive meshes obtained by em-
ploying 4-noded, 8-noded and 9-noded quadrilateral fi-
nite elements. As already pointed out the effectivity in-
dex is a measure of the reliability of the error estima-

tor [Zienkiewicz and Taylor (2000)]. The error estimator
is asymptotically correct if this index converges to unity
when the errors converge to zero. It is observed that the
K- and S-errors for the graded adaptive meshes obtained
in single level of refinements are within the specified lim-
its (5% for ηs and 1% for ηK). It is observed from Figs.
6, 8 and 11 that in general the adaptive graded meshes
are more refined in the region around crack tip and in
the other regions the mesh pattern remains almost the
same for all the example problems. The number of DOFs
for these meshes are higher than the uniform meshes es-
pecially for 8-noded and 9-noded elements. It may be
noted that the solution for the adaptive meshes has been
obtained in single level of refinements.

7 Summary and conclusions

A new a posteriori K-S error estimator and h-adaptive re-
finement strategy has been proposed for fracture analysis
of 2-D crack problems. SERR and SIF have been com-
puted by using NI-MVCCI technique.The error estimates
are computed as a post-processing approach to FEA and
are based on SIF and stresses. For the elements meeting
at the crack tip, which are the ones contributing to SERR,
SIF based approach is proposed for computing K-error
estimator. As rest of the elements in the domain are still
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in the linear and static state, stress based error estimator
is used for computing the domain as well as element er-
rors for these elements. SIF based error estimator and
stress based error estimator together forms the K-S error
estimator. It may be noted that K-error is used in con-
junction with S-error during the solution. The efficacy
of the error estimator and the adaptive refinement strat-
egy has been demonstrated for 4-noded bilinear, 8-noded
Serendipity and 9-noded Lagrangian isoparametric finite
elements. Based on the numerical studies conducted on
cracked plates the following conclusions are drawn:

1. The proposed a posteriori K-S error estimator ex-
hibit monotonic convergence when 4-noded, 8-
noded and 9-noded quadrilateral finite elements are
employed.

2. The effectivity index, θk computed for K-error es-
timator with respect to the corresponding analytical
solution is generally found to be converging from
around 0.8 to 0.9 for uniform as well as adaptive
meshes obtained by employing 4-noded, 8-noded
and 9-noded quadrilateral finite elements. This
demonstrates the reliability of the proposed K-error
estimator.

3. In general, S-error converges to less than 5% and
K-error converges to less than about 1% both for
uniform and adaptive meshes.

4. The adaptive graded meshes are more refined in the
region around crack tip and in the other regions the
mesh pattern remains almost the same.

5. The proposed K-S error estimator and the adaptive
refinement strategy can be easily implemented in
to any existing FEA software as a post-processing
module. This will facilitate automation of fracture
analysis process with reliable estimates of SERR
and SIF.
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