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The MLPG Method for Crack Analysis in Anisotropic Functionally Graded
Materials

J. Sladek1, V. Sladek, Ch.Zhang2

Abstract: A meshless method based on the local
Petrov-Galerkin approach is proposed for crack analy-
sis in two-dimensional (2-d), anisotropic and linear elas-
tic solids with continuously varying material proper-
ties. Both quasi-static and transient elastodynamic prob-
lems are considered. For time-dependent problems, the
Laplace-transform technique is utilized. A unit step func-
tion is used as the test function in the local weak-form.
It is leading to local boundary integral equations (LBIEs)
involving only a domain-integral in the case of transient
dynamic problems. The analyzed domain is divided into
small subdomains with a circular shape. The moving
least-squares (MLS) method is adopted for approximat-
ing the physical quantities in the LBIEs. The accuracy of
the present method for computing the mode-I stress in-
tensity factors is discussed by comparison with available
analytical or numerical solutions.

keyword: Anisotropic elasticity, meshless local
Petrov-Galerkin method (MLPG), moving least-squares
interpolation, Laplace-transform, functionally graded
materials (FGMs), Stehfest’s inversion, stress intensity
factors

1 Introduction

Functionally graded materials (FGMs) possess continu-
ously nonhomogeneous material properties. These mate-
rials have been introduced in recent years to benefit from
the ideal performance of its constituents, e.g. high heat
and corrosion resistance of ceramics on one side, and
large mechanical strength and toughness of metals on the
other side. In FGMs, the composition and the volume
fraction of their constituents vary continuously with spa-
tial coordinates. A review on various aspects of FGMs
can be found in the monograph of Suresh and Mortensen
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(1998) and the review chapter by Paulino et al. (2003).
FGMs may exhibit isotropic or anisotropic material prop-
erties depending on the processing technique and the
practical engineering requirements. In the present pa-
per, anisotropic material properties of FGMs are consid-
ered as in many previous papers isotropic FGMs have
been investigated, see e.g., [Erdogan (1995); Sladek et
al. (2000); Rao and Rahman (2003); Kim and Paulino
(2002, 2003)].

The solution of the boundary or initial boundary value
problems for continuously nonhomogeneous solids re-
quires advanced numerical methods due to the high
mathematical complexity. Beside the well established
finite element method (FEM), the boundary element
method (BEM) provides an efficient and popular alterna-
tive to the FEM for solving certain class of boundary or
initial boundary value problems. The conventional BEM
is accurate and efficient for many engineering problems.
However, it requires to know the fundamental solutions
or the Green’s functions. The material anisotropy in-
creases the number of elastic constants in Hooke’s law,
and hence makes the construction of fundamental solu-
tions cumbersome. For 2-d elastostatic problems in ho-
mogeneous, anisotropic and linear elastic solids the fun-
damental solution is available in closed forms [Eshelby
et al. (1953); Schclar (1994)] and it is given in a com-
plex variable space. Closed form elastostatic fundamen-
tal solutions for 3-d anisotropic elasticity exist only for
special cases like transversally isotropic or cubic materi-
als [Ding et al. (1997)]. In contrast to the static case, very
few applications of the BEM to elastodynamic problems
in homogeneous, anisotropic and linear elastic solids can
be found in literature [Wang and Achenbach (1996); Al-
buquerque et al. (2002a,b); Kögl and Gaul (2000)], al-
though the BEM has been successfully applied to elasto-
dynamic problems in homogeneous, isotropic and linear
elastic solids for many years. The main reason lies in
the elastodynamic fundamental solutions for anisotropic
and linear elastic solids, which cannot be given in simple
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and closed forms and thus make their numerical imple-
mentation somewhat cumbersome. Time-domain elasto-
dynamic fundamental solutions for 2-d anisotropic and
linear elastic solids have been applied by Wang et al.
(1996) to transient wave scattering analysis by a cavity.
The dual reciprocity BEM has been used by Albuquerque
et al. (2002a,b) and Kögl and Gaul (2000), where the cor-
responding elastostatic fundamental solutions have been
utilized.

The fracture and the fatigue properties of ceramic/metal
FGMs are important to their mechanical integrity, relia-
bility and durability [Paulino et al. (2003a)] in practical
engineering applications. The microstructure of FGMs
is generally heterogeneous, and the dominant type of
failure in ceramic/metal FGMs is crack initiation and
growth from inclusions. The influence of material prop-
erties especially the composition and the microstructure
on crack-driving forces in FGMs is still not well un-
derstood. Such issues have motivated much of the cur-
rent research works on numerical simulations to gain a
better understanding of the fracture processes in FGMs.
The asymptotic crack-tip stress and displacement fields
have the same form as those in homogeneous materi-
als. The effect of the material property variation mani-
fests itself in the near tip stress intensity factors as well
as the higher order terms in the asymptotic expansion
[Kim and Paulino (2002, 2003a,b), Dolbow and Gosz
(2002)]. Due to the high mathematical complexity of
the boundary or initial-boundary value problem, most in-
vestigations on cracked FGMs known in literature were
restricted to isotropic materials. Gu and Asaro (1997)
studied orthotropic FGMs considering a four-point bend-
ing specimen with varying Young’s modulus and vary-
ing Poisson‘s ratio. Ozturk and Erdogan (1997, 1999)
used the singular integral equation method to investi-
gate mode-I and mixed-mode crack problems in an in-
finite nonhomogeneous orthotropic medium with a crack
aligned to one of the principal material axes and a con-
stant Poisson‘s ratio. Kim and Paulino (2003b, 2004)
computed stress intensity factors and T-stresses in or-
thotropic FGMs using the FEM and interaction integral
method.

In this paper a new computational method is developed
to analyze boundary value problems in anisotropic FGMs
with cracks. The governing equations for nonhomoge-
neous, anisotropic and linear elastic solids are more com-
plex than that for the homogeneous counterpart. The ma-

terial nonhomogeneity gives rise to an additional com-
plication in the derivation of elastostatic and elastody-
namic fundamental solutions. For general nonhomoge-
neous, anisotropic and linear elastic solids, elastostatic
and elastodynamic fundamental solutions are yet, to the
best of the authors knowledge, still not available. One
possibility to obtain a BEM formulation is based on the
use of fundamental solutions for a fictitious homoge-
neous medium [Sladek et al. (1993)]. This approach,
however, leads to a boundary-domain integral formula-
tion with a domain-integral containing the gradients of
the primary fields. The boundary-domain formulation,
however, brings some computational difficulties in the
numerical implementation. To overcome this difficulty a
local integral formulation can be used for general non-
homogeneous solids [Sladek et al. (2000); Mikhailov
(2002)]. The application of local integral equations
(LIEs) requires the use of a domain approximation of the
physical fields in the numerical implementation. In re-
cent years, meshless formulations are becoming popular
due to their higher adaptivity and lower cost for preparing
input data in the numerical analysis. Several meshless
methods haven been proposed so far in literature [Be-
lytschko et al. (1994); Atluri and Shen (2002); Atluri
(2004)]. Many of them are derived from a weak-form
formulation on global domain or a set of local subdo-
mains. The global formulation requires background cells
for the integration of the weak-form. In contrast, the
local weak-form formulation needs no cells and there-
fore the corresponding methods are often called truly
meshless methods. If a simple form for the geome-
try of the subdomains is chosen, numerical integrations
over them can be easily carried out. The meshless lo-
cal Petrov-Galerkin (MLPG) method is a fundamental
base for the derivation of many meshless formulations,
since trial and test functions can be chosen from differ-
ent functional spaces. If a unit step function is used as
the test function in the local weak-form to derive LIEs,
the form of LIEs is much simpler than that provided by
utilizing the singular fundamental solutions. Such an ap-
proach has been recently applied to problems in homo-
geneous, anisotropic and linear elastic solids by Sladek
et al. (2004). In this paper that approach is extended
to continuously nonhomogeneous, anisotropic and linear
elastic solids. It yields a pure contour or boundary inte-
gral formulation on local boundaries for static problems
in anisotropic linear elasticity. In anisotropic elastody-
namics an additional domain-integral containing the in-
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ertial terms is involved. The Laplace-transform is applied
to eliminate the time variable in the governing equations
and the boundary conditions of elastodynamic problems.
Then, the local boundary integral equations are derived
in the Laplace-transformed domain. Several quasi-static
boundary value problems have to be solved for various
values of the Laplace-transform parameter. The integral
equations have a very simple nonsingular form. More-
over, both the contour and domain integrations can be
easily carried out on circular subdomains. The Stehfest’s
inversion method [Stehfest (1970)] is applied to obtain
the time-dependent solutions. The spatial variation of
the displacements is approximated by the moving least-
squares (MLS) scheme. Several numerical examples for
crack problems in nonhomogeneous anisotropic and lin-
ear elastic solids are presented and discussed.

2 Basic equations of crack analysis in anisotropic
FGMs

Let us consider a linear elastodynamic problem in an
anisotropic continuously nonhomogeneous and linear
elastic domain Ω bounded by the boundary Γ. The equi-
librium equations can be expressed as

σi j, j(xxx, t)−ρ(xxx)üi(xxx, t) = −Xi(xxx, t), (1)

where σi j(xxx, t) is the stress tensor, Xi(xxx, t) is the body
force vector, ρ(x) is the mass density, ui(xxx, t) is the dis-
placement vector, and the dots indicate the second time
derivative. A comma denotes partial differentiation with
respect to the spatial coordinates. An elastostatic prob-
lem can be considered formally as a special case of the
elastodynamic one by omitting the acceleration üi(xxx, t) in
the equilibrium equations (1). Therefore, both cases are
analyzed simultaneously.

In the case of linear elastic materials, the relation be-
tween the stresses and strains are given by Hooke’s law

σi j(xxx, t) = Ci jkl(xxx)εkl(xxx, t) = Ci jkl(xxx)uk,l(xxx, t), (2)

where Ci jklis the elasticity tensor which exhibits the sym-
metries

Ci jkl = Cjikl = Ckli j.

The traction vector ti(xxx, t) is related to the displacement
vector through Cauchy’s formula ti = σi jn j, which leads
to

ti(xxx, t) = Ci jkl(xxx)uk,l(xxx, t)n j(xxx), (3)

where n j denotes an outward unit normal vector.

For a plane stress state of a 2-d anisotropic and linear
elastic solid, the generalized Hooke’s law is frequently
represented by the second order tensor of the elastic con-
stants [Lekhnitskii (1963)]⎡
⎣ ε11

ε22

γ12

⎤
⎦ =

⎡
⎣ β11 β12 β16

β12 β22 β26

β16 β26 β66

⎤
⎦

⎡
⎣ σ11

σ22

σ12

⎤
⎦ , (4)

where βi j are the elastic compliance coefficients of the
material. In the case of a plane strain condition, the co-
efficients βi jshould be replaced by β̃i j , where

β̃i j = βi j − βi3β j3

β33
.

The compliance coefficients can be expressed in terms of
engineering constants as

β11 = 1/E1,

β22 = 1/E2,

β12 = −ν12/E1 = −ν21/E2,

β16 = η12,1/E1 = η1,12/G12,

β26 = η12,2/E2 = η2,12/G12,

β66 = 1/G12

(5)

where Ek are the Young’s moduli refering to the axes xk,
G12 is the shear modulus for the in-plane, νi j are Pois-
son’s ratios, and η jk,l and ηl, jk are the mutual coefficients
of first and second kind, respectively. For orthotropic
materials β16 = β26 = 0. For plane stress problem in or-
thotropic materials the stress-strain relation can be writ-
ten as⎡
⎣ σ11

σ22

σ12

⎤
⎦ = D(xxx)

⎡
⎣ ε11

ε22

2ε12

⎤
⎦ , (6)

where

D(xxx) =

⎡
⎣ E1/e E2ν12/e 0

E2ν12/e E2/e 0
0 0 G12

⎤
⎦

with e = 1− E2
E1

(ν12)
2. The following boundary and ini-

tial conditions are assumed

ui(xxx, t) = ũi(xxx, t), on Γu,
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ti(xxx, t) = t̃i(xxx, t), on Γt ,

ui(xxx, t)|t=0 = ui(x,0) and u̇i(xxx, t)|t=0 = u̇i(x,0) in Ω,

where Γu is the part of the global boundary with pre-
scribed displacements and on Γt the traction vector is
given.

The structure of the stress and the displacement fields in a
small vicinity of the crack-tip in continuously nonhomo-
geneous medium is the same as in a homogeneous one.
For a mode-I crack the crack-tip stress and displacement
fields are given by [Sih et al. (1965)]

σ11 =
KI√
2πr

Re

[
µtip

1 µtip
2

µtip
1 −µtip

2⎛
⎝ µtip

2√
cosθ+µtip

2 sinθ
− µtip

1√
cosθ+µtip

1 sinθ

⎞
⎠

⎤
⎦ ,

σ22 =
KI√
2πr

Re

[
1

µtip
1 −µtip

2⎛
⎝ µtip

1√
cosθ+µtip

2 sinθ
− µtip

2√
cosθ+µtip

1 sinθ

⎞
⎠

⎤
⎦ ,

σ12 =
KI√
2πr

Re

[
µtip

1 µtip
2

µtip
1 −µtip

2⎛
⎝ 1√

cosθ+µtip
1 sinθ

− 1√
cosθ+µtip

2 sinθ

⎞
⎠

⎤
⎦ ,

u1 = KI

√
2r
π

Re

[
1

µtip
1 −µtip

2(
µtip

1 P12

√
cosθ+µtip

2 sinθ−µtip
2 P11

√
cosθ+µtip

1 sinθ
)]

u2 = KI

√
2r
π

Re

[
1

µtip
1 −µtip

2(
µtip

1 P22

√
cosθ+µtip

2 sinθ−µtip
2 P21

√
cosθ+µtip

1 sinθ
)]

(7)

where Re denotes the real part of a complex function,
µtip

i are material parameters at the crack-tip, which are
roots of the following characteristic equation [Lekhnit-
skii (1963)]

β11µ4 −2β16µ3 +(2β12 +β66)µ2−2β26µ+β22 = 0, (8)

and

Pik =
[

β11µ2
k +β12 −β16µk

β12µk +β22/µk −β26

]
. (9)

In Eq. (7), polar coordinate system with the origin at the
crack-tip is used.

3 Local boundary integral equations in Laplace-
transformed domain

Applying the Laplace-transform to the governing equa-
tions (1), we have

σi j, j(xxx, p)−ρ(xxx)p2ui(xxx, p) = −Fi(xxx, p), (10)

where

Fi(xxx, p) = Xi(xxx, p)+ pui(xxx,0)+ u̇i(xxx,0)

is the redefined body force in the Laplace-transformed
domain with the initial boundary conditions for displace-
ments ui(xxx,0) and velocities u̇i(xxx,0).

The Laplace-transform of a function f (xxx, t) is defined as

L [ f (x, t)] = f (x, p) =
∞Z

0

f (xxx, t)e−ptdτ,

where p is the Laplace-transform parameter.

Instead of writing the global weak-form for the above
governing equations, the MLPG methods construct the
weak-form over local subdomains such as Ωs, which is a
small region taken for each node inside the global domain
[Atluri and Shen (2002)]. The local subdomains overlap
each other, and cover the whole global domain Ω. The
local subdomains could be of any geometric shape and
size. In the present paper, the local subdomains are taken
to be of a circular shape. The local weak-form of the
governing equations (10) can be written as

Z

Ωs

[
σi j, j(xxx, p)−ρ(x)p2ui(xxx, p)+Fi(xxx, p)

]
u∗i (xxx)dΩ = 0,

(11)

where u∗i (xxx) is a test function.

Using

σi j, ju
∗
i = (σi ju

∗
i ), j −σi ju

∗
i, j
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and applying the Gaussian divergence theorem one can
write
Z

∂Ωs

σi j(xxx, p)n j(xxx)u∗i (xxx)dΓ−
Z

Ωs

σi j(xxx, p)u∗i, j(xxx)dΩ

+
Z

Ωs

[−ρ(x)p2ui(xxx, p)+Fi(xxx, p)
]

u∗i (xxx)dΩ = 0,
(12)

where ∂Ωs is the boundary of the local subdomain which
consists of three parts ∂Ωs = Ls∪Γst ∪Γsu. Here, Ls is the
local boundary that is totally inside the global domain,
Γst is the part of the local boundary which coincides
with the global traction boundary, i.e., Γst = ∂Ωs ∩ Γt ,
and similarly Γsu is the part of the local boundary that
coincides with the global displacement boundary, i.e.,
Γsu = ∂Ωs ∩Γu (see Fig. 1).

If a unit step function is chosen as the test function u∗i (xxx)
in each subdomain

u∗i (xxx) =
{

1 at xxx ∈ Ωs

0 at xxx /∈ Ωs

and considering

t i(xxx, p) = σi j(xxx, p)n j(xxx)

the local weak-form (12) is leading to local boundary in-
tegral equations

Z

∂Ωs

ti(xxx, p)dΓ+
Z

Ωs

[−ρ(x)p2ui(xxx, p)+Fi(xxx, p)
]

dΩ = 0.

(13)

Rearranging unknown terms on the left-hand side we get
Z

Ls

ti(xxx, p)dΓ+
Z

Γsu

t i(xxx, p)dΓ−
Z

Ωs

ρ(x)p2ui(xxx, p)dΩ

= −
Z

Γst

t̃ i(xxx, p)dΓ−
Z

Ωs

F i(xxx, p)dΩ.
(14)

Equation (14) is recognized as the overall force equilib-
rium equation on the subdomain Ωs. In the case of static
problems the domain-integral on the left-hand side of
this local boundary integral equation disappears. Then,
a pure contour-integral formulation is obtained under the
assumption of vanishing body forces and zero initial con-
ditions.

In the MLPG method the test and the trial functions are
not necessarily from the same functional spaces. For in-
ternal nodes, the test function is chosen as a unit step
function with its support on the local subdomain. The
trial function, on the other hand, is chosen to be the mov-
ing least-squares (MLS) interpolation over a number of
nodes randomly spread within the domain of influence.
While the local subdomain is defined as the support of
the test function on which the integration is carried out,
the domain of influence is defined as a region where the
weight function is not zero and all nodes lying inside are
taken for the interpolation. The approximated function
can be written as [Atluri and Shen (2002)]

uuuh(xxx, p) = ΦΦΦT (xxx) · ûuu(p) =
n

∑
a=1

φa(xxx)ûuua(p) , (15)

where the nodal values ûuua(p) are fictitious parameters
and φa(xxx) is the shape function associated with the node
a. The number of nodes n used for the approximation of
ui(xxx, p) is determined by the weight function wa(xxx). A
4th order spline-type weight function is considered in the
present work

wa(xxx) =

{
1−6

(
da

ra

)2
+8

(
da

ra

)3 −3
(

da

ra

)4
, 0 ≤ da ≤ ra

0 da ≥ ra

(16)

where da = ‖xxx−xxxa‖ and ra is the size of the support do-
main. It is seen that the C1-continuity is ensured over
the entire domain, therefore the continuity condition of
tractions is satisfied. A necessary condition for a well-
defined MLS approximation is that the number of nodes
lying inside the support domain has to be equal or higher
than the order of the polynomial basis [Atluri and Shen
(2002)]. In our analyses we have considered ra = 4h,
where h is a minimal distance of two neighbouring nodes.

The traction vector ti(xxx, p) at a boundary point xxx ∈ ∂Ωs

is approximated by the same nodal values ûuua(p) as

ttth(xxx, p) = NNN(xxx)DDD
n

∑
a=1

BBBa(xxx)ûuua(p) , (17)

where the matrix NNN(xxx) is related to the unit normal vector
nnn(xxx) on ∂Ωs by

NNN(xxx) =
[

n1 0 n2

0 n2 n1

]
,
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subdomain =Ω Ωs s'

∂Ωs

∂  Ω ∪ Γs s s=L

∂Ωs=  ∂ Ls Ωs=

Ωs
''

Ls

Γs

ri

node zi

support of node zi

local boundary '

x

Ωx

Figure 1 : Global and local boundaries

and the matrix BBBa is represented by the gradients of the
shape function as

BBBa =

⎡
⎣ φa

,1
0
φa

,2

0
φa

,2
φa

,1

⎤
⎦ .

One of the most important properties of the MLS approx-
imation is the continuity of the approximated fields. Con-
tinuity is often a desirable property. However, crack anal-
ysis requires a modeling of discontinuous displacement
fields across the crack-faces. The treatment of the crack
displacement discontinuities can be analyzed in several
ways in the meshless approximation [Organ et al. (1996);
Carpinteri et al. (2003)]. The simplest approach to con-
sider the displacement discontinuity on the crack-faces
is the visibility criterion. Accordingly, nodes lying in-
side the “invisible” domain ABC in Figure 2 are not con-
sidered for the evaluation of the shape function (i.e., the
weight function is zero) in the MLS. Another approach
for the treatment of the displacement discontinuities both
in the meshless and in the FEM is based on the introduc-
tion of discontinuous enrichment functions [Belytschko
et al. (2001)]. Carpinteri et al. (2003) proposed a method
where the crack is virtually extended in the direction of
the tangent at the crack-tip. All the weight functions
whose support domains intersect the real crack are cut
along the crack-line (both the real and the virtual), while
the weight functions are left unchanged if the support do-
mains intersect only the virtual crack. This method is
applied in this paper to analyze a slanted crack.

Obeying the boundary conditions at those nodal points on
the global boundary, where displacements are prescribed,

and making use of the approximation formula (15), one
obtains the discretized form of the displacement bound-
ary conditions given as

n

∑
a=1

φa(ζζζ)ûuua(p) = ũuu(ζζζ, p) for ζζζ ∈ Γu. (18)

Furthermore, in view of the MLS-approximations (15)
and (17) for the unknown fields in the local boundary
integral equations (14), we obtain the discretized LIEs

n

∑
a=1

ûuua(p)
Z

Ls

NNN(xxx)DDD(xxx)BBBa(xxx)dΓ

+
n

∑
a=1

ûuua(p)
Z

Γsu

NNN(xxx)DDD(xxx)BBBa(xxx)dΓ

−p2
n

∑
a=1

ûuua(p)
Z

Ωs

ρ(x)φa(xxx)dΩ

= −
Z

Γst

t̃(xxx, p)dΓ−
Z

Ωs

FFF(xxx, p)dΩ

(19)

which are considered on the sub-domains adjacent to in-
terior nodes as well as to the boundary nodes on Γst .

Collecting the discretized LIEs together with the dis-
cretized displacement boundary conditions, we get the
complete system of linear algebraic equations for the
computation of the nodal unknowns which are the
Laplace-transforms of the fictitious parameters ûuua(p).

The time-dependent values of the transformed variables
can be obtained by an inverse transform. There are many
inversion methods available for the Laplace-transform.
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Figure 2 : Visibility criterion for the support domain in
the crack-tip vicinity

As the Laplace transform inversion is an ill-posed prob-
lem, small truncation errors can be greatly magnified in
the inversion process and lead to poor numerical results.
In the present analysis the Stehfest’s algorithm [Stehfest
(1970)] is used. An approximate value fa of the inverse
f (t) for a specific time t is given by

fa(t) =
ln2

t

N

∑
i=1

vi f

(
ln2

t
i

)
, (20)

where

vi = (−1)N/2+i

min(i,N/2)

∑
k=[(i+1)/2]

kN/2(2k)!
(N/2−k)!k!(k−1)!(i−k)!(2k− i)!

.
(21)

Numerical experiences show that a truncation number N
= 10 with a single precision arithmetic is optimal to ob-
tain accurate numerical results. It means that for each
time t, it is needed to solve N boundary value prob-
lems for the corresponding Laplace-transform parame-
ters p = i ln2/t, with i = 1, 2, ..., N. If M denotes the
number of the time instants in which we are interested
to know f (t), the number of the Laplace-transform solu-
tions f (p j) is then M×N.

4 Numerical examples

4.1 A finite plate with a center crack

In the first numerical example a rectangular orthotropic
plate with a central crack is analyzed. The plate is

2a

2w

x1

x2

2h

ε0

ε0

Figure 3 : A finite plate with a center crack parallel to
the material gradation

considered to be under a fixed-grip loading with a pre-
scribed uniform static deformation ε0 as shown in Fig. 3.
The following geometry is considered: w = 10, a/w =
0.1, 0.2, 0.3, and h = w. Firstly, isotropic material prop-
erties with an exponential variation of the Young’s mod-
ulus parallel to the crack-line are considered

E(x) = E0 exp(αx1) , (22)

with E = 104, and a constant Poisson’s ratio ν = 0.3. Due
to symmetry of the problem only a half of the cracked
plate is numerically analyzed. A regular node distribu-
tion with 61×30 = 1830 nodes (61 nodes along each line
x2 =const) is used in numerical calculations. The stress
intensity factor is computed from the asymptotic expres-
sions for the displacements at the crack-tip, i.e., Eq. (7).
In a pure mode-I crack problem, the normal displacement
on the crack-face can be written as

u2 = 2

√
2r
π

D21KI , (23)

where r is the radial distance of the evaluation point from
the crack-tip, and

D21 = Im

{
µ2P21 −µ1P22

µ1 −µ2

}
.

The stress intensity factors are normalized as fI(±a) =
KI(±a)/E0ε0

√
πa. Numerical results are compared with

those obtained by Dolbow and Gosz (2002) by the ex-
tended finite element method (X-FEM). For an infinite
plate with a central crack, numerical solution has been
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given by Konda and Erdogan (1994). Then, for the short-
est crack, e.g., a/w = 0.1, it is possible to make a com-
parison with the numerical results of Konda and Erdogan
(1994). Numerical results for isotropic case and α = 0.25
are presented in Tab. 1, which shows a good agreement
with that of Dolbow and Gosz (2002).

Next, orthotropic material properties with a constant
Poisson’s ratio ν12 = 0.3 and a constant shear modulus
G12 = 6GPa are considered for the crack problem ana-
lyzed above. Young’s moduli are expressed as a function
of the parameter R = E1/E2 with E1 = G12(R+2ν12+1)
and E2 = E1/R. Two different ratios R = 0.5 and 4.5
are considered in our numerical analyses. Also here,
Young’s moduli Ei have an exponential variation in the
x1-direction

Ei(x) = Ei0 exp(αx1) . (24)

Numerical results for the normalized stress intensity fac-
tors fI(±a) = KI(±a)/ε0E20

√
πa are given in Tab. 2.

The used gradation exponent α is the same as in the pre-
vious isotropic case. One can observe that the orthotropy
parameter R has a relatively small influence on the value
of the normalized stress intensity factors, at least in the
case investigated here.

4.2 A finite plate with an edge crack

In the second numerical example a rectangular plate with
an edge crack is analyzed. The following plate and crack
geometry is considered: plate-width w = 1, crack-length
a/w = 0.5, and half-length of the plate h = 4w (see
Fig.4). The plate is subjected to a uniform stress loading
σ in the direction perpendicular to the crack-line. Due
to symmetry of the problem, only the upper half of the
rectangular plate is discretized. A regular node distribu-
tion with 31x30=930 nodes is used. Orthotropic mate-
rial properties with a constant Poisson’s ratio ν12 = 0.3
and a constant shear modulus G12 = 6GPa are taken here
again. Young’s moduli are expressed as a function of
the parameter R = E1/E2 with E1 = G12(R + 2ν12 + 1)
and E2 = E1/R. The Young’s modulus E1 has the same
exponential variation in the x1-direction like in the pre-
vious example and the gradient exponent is given by
α = ln(E10/E1w)/w, with E10 and E1w corresponding to
the E1-values at x1 = 0 and x1 = w, respectively. Nu-
merical results for the normalized mode-I stress inten-
sity factor fI = KI/σ

√
πa are given in Tab. 3. Table 3

shows a good agreement of our numerical results with

x1

x2

2h

σ

σ

a

w

Figure 4 : An edge-cracked orthotropic plate with the
material gradation in x1-direction

the FEM results of Kim and Paulino (2002) for isotropic
case R = 1.0. The percentage error is less than 1.3% and
1.1% for E1w/E10 = 0.2 and 5.0, respectively.

The same orthotropic cracked plate under a bending load
is analyzed too. The plate is subjected to a linear stress
loading σ22 = σb(1−2x1/w). Numerical results for the
normalized mode-I stress intensity factor fI = KI/σb

√
πa

are given in Tab. 4. For an isotropic FGM plate with an
edge crack, our results are in good agreement with that of
Rao and Rahman (2003) by using a mesh-free method.

In the next example, a rectangular orthotropic and linear
elastic FGM plate with an edge crack subjected to an im-
pact loading is analyzed. The plate has the length 2h =
30, the width w = 10, and the crack-length a/w = 0.4
(see Fig. 4). At the top and the bottom of the plate, a uni-
form impact tensile stress σ22(t) = σH(t − 0) with the
Heaviside step time variation is applied. Orthotropic ma-
terial properties with a constant Poisson’s ratio ν12 = 0.3,
a constant shear modulus G12 = 0.385×104N/mm2, and
a mass density ρ = 10−3kg/mm3 are considered. The
Young’s moduli Ei have the same exponential variations
as in the previous static case. Also here a regular node
distribution with 930 nodes is used for the discretization.

The dynamic stress intensity factor is normalized by the
static value Kstat

I = σ
√

πa for convenience. The time
variations of the mode-I dynamic stress intensity fac-
tor are presented in Fig. 5. The used gradient pa-
rameter α corresponds to the ratio of Young’s moduli
E1w/E10 = 5.0 in the FGM plate. The influence of
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Table 1 : Normalized mode-I stress intensity factors in an isotropic FGM plate with a center crack

α = 0.25
a/w = 0.1 a/w = 0.2 a/w = 0.3

[Dolbow & Gosz, 2002] [MLPG] [MLPG] [MLPG]
fI(a) 1.218 1.21 1.460 1.811

fI(−a) 0.838 0.834 0.691 0.572

Table 2 : Normalized stress intensity factors in an orthotropic FGM plate with a center crack

R
a/w = 0.1 a/w = 0.2 a/w = 0.3

fI(a) fI(−a) fI(a) fI(−a) fI(a) fI(−a)
0.5 1.25 0.853 1.496 0.712 1.902 0.598
4.5 1.19 0.822 1.417 0.669 1.735 0.549
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Figure 5 : Normalized mode-I dynamic stress intensity factors for an FGM plate with an edge crack

the material anisotropy, characterized by the parameter
R = E1/E2, on the dynamic stress intensity factor is pre-
sented in Fig. 5. Numerical results for the corresponding
isotropic case have been obtained by Sladek et al. (2005).
If the Young‘s modulus in the x1-direction is lower than
in the direction perpendicular to the crack line, e.g., R
= 0.5, the wave velocity in the x1-direction is lower too,
and the peak values of the normalized mode-I dynamic
stress intensity factor are reached at larger time instants
than in the isotropic case R = 1.0. For R > 1.0 the ef-
fect of the material anisotropy on the position of the peak
KI(t)-values is expected to be opposite.

4.3 A finite plate with a slanted edge crack

The last problem investigated in this paper is a finite
plate with a slanted edge crack as depicted in Fig. 6
under a uniform tension with the Heaviside time step
variation. For comparison purposes, the geometry of the
specimen and the material constants are selected as the
same as used in Albuquerque et al. (2004): h = 44mm,
w = 32mm, c = 6mm, a = 22.63mm and α = 45o. Plane
stress condition is considered. The material is orthotropic
with Young’s moduli E1 = 82.4GPa, E2 = 164.8GPa,
shear modulus G12 = 29.4GPa, Poisson’s ratio ν12 = 0.4,
and mass density ρ = 2450kg/m3. To compare our nu-
merical results with that of Albuquerque et al. (2004),
homogeneous or uniform material properties are first as-
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Table 3 : Normalized stress intensity factors in an orthotropic FGM plate with an edge crack under tension

E1w/E10
R = 1.0 R = 0.5 R = 4.5

fI [Kim & Paulino, 2002] fI [MLPG] fI [MLPG] fI [MLPG]
0.2 3.292 3.25 3.55 3.00
5.0 2.366 2.34 2.56 2.15

Table 4 : Normalized stress intensity factors in an orthotropic FGM plate with an edge crack under bending

E1w/E10
R = 1.0 R = 0.5 R = 4.5

fI [Rao& Rahman, 2003] fI [MLPG] fI [MLPG] fI [MLPG]
0.2 1.9322 1.91 2.07 1.75
5.0 1.166 1.154 1.26 1.08

sumed in the analyzed domain. A regular node dis-
tribution with 55 × 50 = 2750 nodes (55 nodes along
each line x2 = const) is used in the numerical calcu-
lations. The dynamic stress intensity factor is normal-
ized by Kstat = σ

√
πa for convenience. Figures 7 and

8 show the time variations of the normalized dynamic
stress intensity factors. One can observe a very good
agreement of the present and the BEM [Albuquerque et
al. (2004)] results. Next, Young’s moduli are consid-
ered to be continuously varying with Cartesian coordi-
nates. Here, Young’s modulus E1 is assumed to have the
same exponential variation in the x1-direction as in the
previous example and the gradient exponent is given by
α = ln(E10/E1w)/w, with E10 and E1w corresponding to
the E1-values at x1 = 0 and x1 = w, respectively. Numer-
ical results for normalized mode-I and mode-II dynamic
stress intensity factors are presented in Figs. 9 and 10
for a nonhomogeneity ratio E10/E1w = 0.5. Figures 9
and 10 show that the peak values of the normalized dy-
namic stress intensity factors are reached at larger time
instants than in the corresponding homogeneous case.
Opposite phenomena is expected for a nonhomogeneity
ratio E10/E1w > 1.

5 Conclusions

A local boundary integral equation formulation based on
the MLPG in the Laplace-transform domain with a mesh-
less approximation has been successfully implemented to
solve 2-d boundary and initial-boundary value problems
for static and dynamic crack problems in continuously
nonhomogeneous anisotropic and linear elastic solids.

A unit step function is used as the test function in the
local symmetric weak-form on the local subdomains.
The derived local boundary-domain integral equations
are non-singular. The analyzed domain is divided into

x1

x2

σ

h

a

w

c

α

Figure 6 : A finite plate with a slanted edge crack under
a uniform tension

small overlapping circular sub-domains on which the lo-
cal boundary integral equations are applied. The pro-
posed method is a truly meshless method, wherein no
elements or background cells are involved in either the
interpolation or the integration.

The proposed method yields a pure contour-integral
method for static crack problems even with nonhomo-
geneous material properties.

The main difficulty in the application of the classical
boundary integral equation formulations for nonhomo-
geneous anisotroipc and linear elastic solids is the ab-
sence of well-established fundamental solutions. This
difficulty is overcome by using the present local inte-
gral equation method. The computational accuracy of the
present method is comparable with that of FEM. How-
ever, the adaptability of the present method is expected
to be higher than in the conventional FEM, since no
mesh generation and remeshing are needed in the present
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