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Finite Element Modeling of Fatigue Crack Growth in Curved-Welded Joints Using
Interface Elements

M. S. Alam1, and M.A. Wahab1,2

Abstract: Fatigue life of curved structural joints in
ship structures under constant amplitude cyclic loading
has been studied in this research. A new approach for
the simulation of fatigue crack growth in welded joints
has been developed and the concept has been applied
to welded curved butt-joints. The phenomena of crack
propagation and interface debonding can be regarded as
the formation of new surfaces. Thus, it is possible to
model these problems by introducing the mechanism of
surface formation. In the proposed method, the forma-
tion of new surface is represented by interface element
based on the interface surface potential energy. The
properties of this interface element represent the bonding
strength of the material. As the cyclic load continues, the
bonding strength decreases between the interacting sur-
faces and the crack starts to propagate slowly. Based on
this concept, an ANSYS input file has been written for
the simulation of crack propagation in the curved welded
butt-joints. Using this code, the fatigue crack growth rate
and fatigue crack propagation life of 3-D FEM (finite el-
ement method) models of welded curve butt-joints and
2-D models for T-joints for different stress/load ratios
have been analyzed. The variations of crack-opening-
displacement (COD) and crack- tip- strain over crack-tip-
stress have also been calculated. For the validation of the
simulation, experiments have been conducted and gener-
ally good agreement has been achieved. The simulation
method is relatively simple compared to other conven-
tional FEM method and effective in many applications.
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Nomenclature

a half crack length for a central crack

a f final crack length

ao initial crack length

C material dependent constant

da/dN crack growth rate (crack length per cycle)

E modulus of elasticity

f load vector

h tangent modulus

k stiffness matrix

K stress intensity factor (MPa
√

m)

Kcrit critical stress intensity factor (MPa
√

m)

∆K range of stress intensity factor

∆Kthrange of threshold stress intensity factor

m material dependent constant

n shape parameter

N number of cycles

Ni shape function

Np fatigue crack propagation life

R stress ratio

ro scale parameter

uo nodal displacement

Us interface energy during crack propagation

W potential of external load

wi nodal displacement normal to the surface

α a constant

Π total energy

δ crack opening displacement

ε strain

φ surface potential

γ surface energy per unit area

η natural coordinate
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σ nominal stress, bonding strength

σcr critical bonding strength

σy yield stress

ξ natural coordinate

1 Introduction

In many structures (ship, railway, aircraft, ship, oil and
gas pipelines, off-shore structures etc.) a large number of
welded curve-plates and T-fillet joint are used. Fatigue
cracks evolved on these joint as a result of repeated cyclic
stress. Thus, it is evident that there is a great need for
better understanding of the fatigue phenomenon, so that
safer structures could be built.

To determine the fatigue life by the Finite Element
Method (FEM) the fatigue crack propagation rate with
applied load must be calculated. Unfortunately, in tradi-
tional FEM the modeling of crack tip propagation with
fatigue load is complicated and requires a numerically
extensive program. The cracks do not generally propa-
gate with each application of cyclic load. Because mate-
rials do not remember load history during cyclic load, the
properties of materials are not changed after cyclic load.
Therefore, in the traditional methods, the crack tip mesh
is redefined or the crack tip node is released in each cy-
cle and the crack-tip extends one element length per cy-
cle when the applied stress reached the maximum level.
But in reality, crack advance takes place in very small
increments over many cycles. To reduce this limitation,
a new approach, the interface element approach is used
in this analysis. Basically in crack formation and exten-
sion, failure is the consequence of new surface formation
accompanied by crack extension. Based on this idea, in-
terface elements (nonlinear element) are used between
the crack faces, which explicitly model the formation of
new crack surfaces (details are given in the subsequent
sections and briefly in [Alam and Wahab (2005)]).

Using this method, the fatigue crack propagation life of
welded and weld-repaired joints can be analyzed appro-
priately. Thus, this research will help to assess the fatigue
life and structural integrity of large welded and repair-
welded structures (i.e. ship structures, railway, aircraft,
oil and gas pipelines and off-shore structures etc.).

2 Review of Early Research

Earlier other researchers used numerical approaches for
fatigue crack propagation. In this regard, the works of
[Newman et al. (1975, 1977, 1988)] and [McClung and
Sehitoglu (1989)] are remarkable. A general trend of the
numerical approach in this field for the past 25 years can
be inferred from [Newman et al. (1975, 1977, 1988),
McClung and Sehitoglu (1989)]. Originally, a crack tip
node-release scheme was suggested in [Newman (1977)],
in which, a change in the boundary condition was char-
acterized for a crack growth. This was achieved by
changing the stiffness of the spring elements connected
to boundary nodes of a finite element mesh. Before New-
man’s work, investigators required to change boundary
conditions of the crack tip node directly to obtain a free
or fixed node. When the crack tip is free, the crack ad-
vances by an element length. The approach Newman
used to change boundary conditions was to connect two
springs to each boundary node [Newman (1977)]. To get
a free node, the spring stiffness in terms of modulus of
elasticity was set equal to zero, and for the fixed ones it
was assigned an extremely large value (about 108 GPa)
which represents a rigid boundary condition. McClung,
Sehitoglu and their collaborators have also investigated
fatigue crack closure by the finite element method. Their
model for the elastic-plastic finite element simulation of
fatigue crack growth used a crack closure concept [Mc-
Clung and Sehitoglu (1989)]. They followed the node-
release scheme at the maximum load and the crack tip
was extended one element length per cycle. Wu and El-
lyin (1996) studied fatigue crack closure using an elastic-
plastic finite element model. They followed an exten-
sion of Newman’s node- release scheme. They used a
truss element instead of a spring element and released
one node after each cycle of fatigue load. Murakawa et
al. (1999,2000) and Masakazu et al. (2000) were the
first to use the concept of the interface element for the
strength analysis of a joint between dissimilar materials.
They also used it for the calculation of the strength of
peeling of a bonded elastic strip and the fracture strength
of a centre cracked plate under static load [Murakawa
et al. (2000)]. They further used it for simulation of
hot cracking, push-out test of fibers in matrix, ductile
tearing and dynamic crack propagation under pulse load
and pre-stress condition [Murakawa et al. (1999)]. They
have not applied repeated cyclic load for fatigue crack
propagation. This is the first study, according to the au-
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thors’ knowledge, that cyclic loads have been applied to
study crack propagation using interface concepts, espe-
cially for welded joints.

It should be pointed out that the past use of finite ele-
ment analyses had certain shortcomings and tremendous
improvements have been made in recent versions and
have removed many of these limitations. For example,
to avoid numerical instability, schemes such as releas-
ing the crack-tip node at the bottom of a loading cycle
were adopted in certain studies, for example study con-
ducted by McClung and Sehitoglu [McClung and Sehi-
toglu (1989)]. They have not considered element bond-
ing stress and surface energy, which are associated with
crack formation and crack extension. They also did not
consider the changes in material properties during cyclic
loads. They applied symmetric boundary conditions at
the crack plane and also assumed that the crack can only
propagate in symmetric planes. In this study, it is shown
that a crack can propagate in both symmetric and anti-
symmetric planes about the applied load.

3 Mathematical Relation

The crack is formed when the applied stress exceeds the
critical bonding strength of the material. The bonding
strength decreases with cyclic load and progressively be-
comes weak. Finally the bond loses its strength and
breaks; and cracks form and extend slowly. The total
stiffness of the material decreases with the decrease of
bonding strength. As the cyclic load continues, the stiff-
ness decreases and the crack propagate slowly. There-
fore, there is a close relationship between the bond-
ing strength and crack propagation. To analyze crack
propagation under cyclic load, a method using the inter-
face element, which characterizes the element bonding-
strength, has been proposed. In this method, the forma-
tion and the propagation of the crack are modeled by us-
ing the interface element. The mechanical behavior of
the interface element is governed by the interface poten-
tial, φ per unit area of the crack surface. There are wide
choices for such a potential [Murakawa et al. (1999),
Masakazu et al. (2000)]. In this analysis, the Lennard-
Jones type potential φ [Masakazu et al. (2000)] is em-
ployed because it explicitly involves the surface energy
γ, which is necessary to form a new surface. The sur-
face potential per unit of crack surface area φ defined by
Lennard-Jones is:

φ(δ) = 2γ

{(
ro

ro +δ

)2n

−2

(
ro

ro +δ

)n
}

(1)

where γ, ro n and δ are surface energy per unit area, scale
parameter, shape parameter and crack opening displace-
ment respectively. The surface energy γsghich is required
to form the new surface is a material constant. The val-
ues of the surface energy and the other parameters n and
roare found experimentally. Thus the surface potential φ
is a continuous function of opening displacement δ.

The derivative of interface potential φ with respect to
crack opening displacement δ gives the bonding stress
σ on the crack surface.

σ =
∂φ
∂δ

=
4γn
ro

{(
ro

ro +δ

)n+1

−
(

ro

ro +δ

)2n+1
}

(2)

Further, the bonding strength per unit area becomes a
maximum under the following condition.

δ
ro

=

{(
2n+1
n+1

) 1
n

}
−1 (3)

The maximum bonding strength σcr is given by,

σcr =
4γn
ro

{(
n+1

2n+1

) n+1
n

−
(

n+1
2n+1

) 2n+1
n

}
(4)

To find the stress intensity factor, K from the crack open-
ing displacement δ, the following expressions can be
used:

δ = (
8σya
πE

) lnsec
πσ
2σy

(5)

When σ/σy << 1

δ =
K2

σyE
(6)

where a is crack length, σ is remotely applied stress and
σy is the yield stress. To find crack- tip opening displace-
ment any commercial FEM software can be used.
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Further the stress intensity factor for a particular load-
ing and crack conditions can be calculated by using the
ANSYS code and in this study this approach has been
adopted. As a condition of crack-tip extension (i.e. cri-
terion of crack tip extension), the equation (4) is used in
authors’ written ANSYS code.

After evaluating the stress intensity factor K, the fatigue
crack growth rate can be calculated using the Griffith–
Irwin empirical equation [www.utm.edu] that fits the en-
tire crack growth region.

da
dN

=
C(∆K −∆Kth)m

(1−R)Kcrit −∆K
(7)

where R is the stress ratio, equal to σmin/ σmax, Kcrit is
critical stress intensity factor, m and C are material de-
pendent constants, ∆Kth is threshold stress intensity fac-
tor. The essential part of this equation (7) is to calcu-
late the stress intensity factor range, ∆K. Since there is
no closed form solution of ∆K, an empirical equation of
the form ∆K = α∆σ

√
πais usually assumed to relate the

range of stress intensity factor, with the nominal stress
range, ∆σ and with the crack length, a; and α is a factor
related to the specific geometry in question.

In order to appropriately assess fatigue crack propaga-
tion in welded joints it is necessary to obtain accurate re-
sults for stress intensity factor solution in the crack prop-
agation phase. Generally the stress intensity factor for a
crack in a welded joint depends on the global geometry of
the joint, which include the weld profile, crack geometry,
residual stress condition, the properties of HAZ (heat-
affected-zone) material and the type of loading. There-
fore, the calculation of the stress intensity factor, even for
simple types of weldments, requires detailed analysis of
several geometric parameters and loading systems. The
two approaches that have mostly been used till now for
assessing stress intensity factors for crack in weldments
are weight function method [Bueckner (1970)] and the
finite element method.

The FEM enables the analysis of complicated weld ge-
ometry due to its great versatility. It is able to use elastic-
plastic elements to include crack tip plasticity. In FEM
the stress intensity factor can be calculated directly from
the stress field or from the displacement field around the
crack tip. In this study FEM has been used for calculation
of stress intensity factor.

After integrating the above expression, the fatigue crack

propagation life Np is obtained by the following expres-
sion,

Np =
Z a f

ao

(1−R)Kcrit −∆K
C (∆K −∆Kth)

m da (8)

The debonding model and the fracture mechanics crack
growth model are essentially the same. The debonding
model is used for the calculation of range of stress in-
tensity factor ∆K in equation (7) using the concept of
debonding (equation (4)) and using equations (7) and (8)
fatigue crack growth rate and propagation life is calcu-
lated. All other values in Equation (7) are known or
assumed. This equation (7) is applicable for the entire
three regions of the crack growth curve. Crack initiation
growth rate or initiation life has not been modeled in this
analysis. This model is being used for the calculation of
crack propagation life, taken just after the range of the
threshold stress intensity factor, ∆Kth.

4 Properties of Interface Elements

The interface elements employed in this study (Fig. 1)
are the distributed nonlinear truss elements existing be-
tween two surfaces forming the crack surfaces. They are
assumed to have zero mass and zero volume.
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Figure 1 : Interface element between crack faces
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Figure 2 represents a model of two linearly connected
elements. The top element represents an elastic-plastic
continuum, which represents the plastic zone near the
crack tip. The non-linear truss element represents a po-
tential failure surface.

The relation between the bonding stress (σ) and crack
opening displacement (δ) is shown in Fig. 3. When the
opening displacement is small, the bonding between the
two surfaces is maintained. As the opening displacement
increases, the bonding stress increases until it reaches
a maximum value σcr. With further increase in δ, the
bonding strength is rapidly lost and the surfaces are com-
pletely separated.

F

Elastic-plastic
element

Non-linear
truss element

Figure 2 : Interface element as a combination of non-
linear truss and elastic-plastic elements

The mechanical properties of these two non-linear ele-
ments are characterized by the following sets of parame-
ters, (γ, ro) and (E, σy, h), respectively. The parameter γ
and ro are the surface energy and the scale parameter of
the interface.

The parameters E, σy, and h are Young’s modulus, the
yield stress and the tangent modulus (slope of plastic por-
tion of stress-strain curve) for a multilinear or bilinear
material respectively. The mechanical behavior of the
idealized elastic-plastic continuum can be represented by
Fig.4.

5 Equilibrium Equation of the System

For simplicity, the outline of the mathematical formula-
tion is presented for crack propagation in an elastic solid.

Crack Opening Displacement ( )

(2 , 2ro)

( , ro)

Bonding

Stress (σ)

Figure 3 : Mechanical properties of interface elements

Strain (ε)

y h: tangent 

modulus

Stress (σ)

E: modulus of 

elasticity 

Figure 4 : Mechanical properties of elastic-plastic con-
tinuum

When the material is elastic, the equilibrium equation can
be derived based on the principle of minimum potential
energy.

The total energy Π of the elastic body with a propagat-
ing crack can be described [Masakazu, Hisashi and Mu-
rakawa (2000)] as the sum of the strain energy U, the
potential of external load W and the interface energy of
the newly formed surface during crack propagation Us,
i.e.

Π = U +Us +W (9)

In the finite element method, the elastic body to be ana-
lyzed is subdivided into small elements and the displace-
ments in each element are interpolated by nodal displace-
ment uo. The total energy is described as

Π = Π(uo) = U(uo)+Us(uo)+W (uo) (10)
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Further, U(uo),Us(uo),W(uo) can be represented as
the sum of the contributions from each element
Ue(ue

o),Ue
s (ue

o),W(ue
o), i.e.

Π(Uo) = Σ{Ue(ue
o),U

e
s (ue

o),W(ue
o)} (11)

where ue
o is the nodal displacement vector for each ele-

ment extracted from the nodal displacement vector of the
whole system uo.

Once the total energy Π is given as in Eq. (11), the equi-
librium equation in incremental form can be derived in
the following manner. Denoting the nodal displacement
at the present step and its increment to the next step as uo

and ∆uo, the total energy Π can be described as a func-
tion of uo +∆uo and can be expanded in a Taylor’s series,
i.e.

Π(uo +∆uo) = Π(uo)+∆1Π(∆uo)+∆2Π(∆uo)

= Π(uo)−{∆uo}T{ f}+
1
2
{∆uo}T [K]{∆uo} (12)

where∆1Π and ∆2Π are the first and second terms in ∆uo,
i.e.

∆1Π(∆uo) = −{∆uo}T{ f} (13)

∆2Π(∆uo) =
1
2
{∆uo}T [K]{∆uo} (14)

Further, the equilibrium equation can be derived as the
stationary condition of Π(uo +∆uo) with respect to ∆uo,

∂∏(uo +∆uo)/∂∆uo = −{ f}+[k]{∆uo}

or

[k]{∆uo} = { f} (15)

where [k] and {f} are the tangent stiffness matrix and the
load vector, respectively.

6 Stiffness Matrix and Force Vector of Interface El-
ement

The stiffness matrix and the load vector of the interface
element can be derived in basically the same manner as
that for the whole system. The two surfaces separate
when the load is applied. The opening displacement is
denoted by δs the surface area of the interface element
is Se and the interface energy for an element Ue

s(u
e
o) is

given by the following equation [Murakawa and Zhengqi
(1999)].

Us
e(ue

o) =
Z

φ(δ)dSe (16)

where δ is the crack opening displacement at an arbitrary
point on the surface that can be interpolated using an in-
terpolation function Ni(ξsη), i.e.

δ(ξ,η) = ΣNi(ξ,η)(wi+4−wi) (17)

where

N1(ξ,η) = 0.25(1+ξ)(1−η),

N2(ξ,η) = 0.25(1+ξ)(1+η),

N3(ξ,η) = 0.25(1−ξ)(1+η),

N4(ξ,η) = 0.25(1−ξ)(1−η)

and wi is the nodal displacement normal to the surface.
These interpolations are for a 3-D model where the inter-
face elements are 2-D. But for a 2D model the interface
element is 1-D and the shape functions are given by:

N1(ξ) = 0.5ξ(ξ−1), N2(ξ) = −(ξ+1)(ξ−1),

N3(ξ) = 0.5ξ(ξ+1)

Finally, the tangent stiffness matrix [ke] and the load vec-
tor {fe} of the interface element can be derived by ex-
panding Ue

s(ue
o + ∆ue

o) with respect to ∆ue
o in the follow-

ing manner.
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Ue
s (ue

o +∆ue
o) =

Z
φ(δ+∆δ)dse

=
Z

φ(δ)dse +
Z

dφ(δ)
dδ

∂δ
∂ue

o
∆ue

odse

+
1
2

Z
d2φ(δ)

dδ2 (
∂δ
∂ue

o
∆ue

o)
2dse

+higherorderterms (18)

where

Z
dφ(δ)

dδ
∂δ
∂ue

o
∆ue

odse = −{ f e}T{∆ue
o} (19)

and

1
2

Z
d2φ(δ)

dδ2 (
∂δ
∂ue

o
∆ue

o)
2ds2 =

1
2
{∆ue

o}T [ke]{∆ue
o} (20)

Since the interface element has no volume or mass, the
same formulation can be applied to both static and dy-
namic problems. By arranging the interface elements
along the crack extension path in the simple model, crack
propagation problems can be analyzed.

7 FEM Simulation of Fatigue Crack Growth

A new approach for crack propagation by killing or
“death” elements (deactivate the element properties) is
introduced in this analysis (birth and death option in An-
sys 7.1). A bundle of non-linear truss elements as shown
in Fig. 5, each having different material properties (mod-
ulus of elasticity, yield stress and tangent modulus) is
used to connect to each boundary node ahead of the ini-
tial crack tip.

These values are lower to higher order from the crack tip
to the other end. These elements have the same cross-
sectional area and have capabilities to take both tension
and compression loads. The stiffness of each truss ele-
ment in terms of modulus of elasticity has different val-
ues from an extremely large value (210 GPa) (other end
from the crack tip) to a value near the yield stress (280
MPa) (near crack tip). During each cycle of loading and
unloading, the stiffness of each truss element is decreased
by a certain amount (depends on total number of inter-
face elements) using the MPCHG (ANSYS command to

Crack Tip 

FEM 

Mesh

Non-

linear 

truss

element

Figure 5 : A schematic views of the truss elements con-
nected between two surfaces of separate mild steel plates
having same material properties.

change properties) command. After each cycle of load-
ing and unloading, the elemental axial stress is calcu-
lated. When any element’s stress exceeds the critical
bonding stress that element is killed (deactivated mate-
rial property) by using EKILL command. At the same
time the element material properties from the crack tip to
the other end is moved (changed) successively. Similarly,
after ten cycles, the stress intensity factor at the crack tip
(next to the killed element) is calculated by defining the
crack path and using the KCALC command. From the
stress intensity factor, the crack growth rate is calculated
using equation (7) and the crack propagation life using
equation (8).

This method has several advantages compared to other
available numerical methods. The node release by killing
elements can be performed at any time during a cyclic
loading process irrespective of the magnitude of the de-
formation caused by the release of the nodes. Further-
more, several elements can be killed simultaneously, e.g.
during a single overload cycle (which is higher than the
yield strength of the material). This method overcomes
the limitation of crack propagation of one element length
during each cycle of loading. In this method, the crack
propagates automatically when the element’s stress ex-
ceeds the bonding stress of the element. Here a crack
can propagate in more than one direction but a limitation
is that the possible directions have to be determined ear-
lier depending on the physical crack configuration, load-
ing and material homogeneity. For bi-axial (multi load)
loading where the crack directions are not obvious, this
method may be suitable.

7.1 Overall Methodology for Fatigue Life Calculation

The critical stress intensity factor for short-term fracture
Kcrit , material constants C and m, and the threshold stress
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intensity factor range ∆Kth(R) as a function of R for the
material to be analyzed is determined or collected from
literature (∆Kth(R) as a function of R could be found
[Anderson (1994)]).

The values of the surface energy per area γ, the scale pa-
rameter ro,andtheshape parameter, n for the material are
determined experimentally or collected from literature.

The Finite Element model is created and the interface el-
ements are introduced in the possible crack propagation
directions (maximum stress concentration, weld defect,
etc). The critical bonding stress, σcr of the interface el-
ements is determined using the equation (4). The plastic
zone radius is calculated using the standard equation and
the elastic-plastic material properties are applied to the
elements within the plastic zone.

The cyclic load for a particular stress ratio is applied to
the model and after each cycle of loading the interface
element-stress is calculated. When any element stress
exceeds the critical bonding strength, (which was calcu-
lated using equation (4)), that element is killed. Thus af-
ter some cycles (10 to 20 cycles or more) the crack prop-
agation is viewed (only the active elements are viewed
and killed elements are kept hidden) and the final crack
length is determined. For the same crack length and
stress conditions, the stress intensity factor is calculated
using Authors’ ANSYS input files. All the works in steps
3 and 4 of this section are computed using authors’ writ-
ten ANSYS input files. In written code, equation (4) is
used as a condition of crack extension which affect the
crack-tip region and eventual calculations of stress inten-
sity factor. The crack tip front region is simulated us-
ing interface element and its properties. The crack will
only propagate when the interface “element-stress” near
the crack tip exceeds the critical bonding stress calcu-
lated using equation (4). Furthermore, the displacement
field around the crack tip is influenced by the properties
of the interface elements (since the crack tip front region
is simulated using interface element and its properties),
and consequently, the stress intensity factor will also be
influenced by interface elements’ properties. The mate-
rial properties of the interface elements are changed after
each cycle.

The fatigue crack growth rate and the fatigue life are cal-
culated using equation (7) and (8).

8 Case Studies

Two cases are considered here: Case (a) A 2-D finite el-
ement model of a curve T-joint (600 x 15 x 10 mm (web)
400 x 75 x 10 mm flange) (Fig 6a) and Case (b) A 3-D
finite element model of a curve plate (381 x 15x 4mm,
radius of curvature 1041.4 mm) (Fig 6b) are created and
interface elements as described above are applied in the
crack faces. In curve plate, the applied stress produces
moment, which can not be represented in 2-D model.
Therefore a 3-D model is created and shells 181 elements
which have bending capacity is used in the model.

The curve T- joint represents the connection of shell plate
with transverse girder of ship/aircraft structures. This
joint experiences fluctuating wave load in the case of
ship. The top and bottom side of both models are fixed in
all degrees of freedom and a cyclic load is applied at the
right side. The amplitudes of cyclic loads (minimum 10
MPa, maximum 200 MPa) shown in Fig. 7 are applied to
the model. The model is created and analyzed by writing
ANSYS input files as mentioned in Section 7.

The mechanical properties of base, weld and heat-
affected-zone (HAZ) materials as shown in Table 1 are
applied to the model. The Paris’ crack growth rate con-
stants for steel are assumed as: C = 3 x10−11, m = 4. The
∆Kth values were taken as 4, 5, 6 MN/m3/2 for stress ra-
tios of 0.3, 0.2 and 0.1 respectively, from Fig.10.9 in [An-
derson (1994)] for this particular weld. The critical stress
intensity factor Kcrit is taken as 150 MN/m3/2 which is
an average value of the critical stress intensity factor for
mild steel. The value of the critical stress intensity factor
for mild steel are reported to be in the range from 100
to 200 MN/m3/2. Therefore, it is reasonable to take an
average value of 150 MN/m3/2. In addition, the residual
stresses of different magnitudes at different weld regions
are applied. The residual stress values varied from 120
MPa (tension) to –120 MPa (compression) from the cen-
ter to the edge of weld as found in [Glinka(1994)]. It
is assumed that for this welded joint the crack initiation
phase is very short and insignificant due to the presence
of initial welding defects. Initial crack length has been
assumed to be 4 mm. An axial cyclic load near the yield
strength of the material is applied for various cycles, and
the corresponding stress intensity factor and crack open-
ing displacement are calculated from the FEM analysis.
Then using equation (7) and (8), the fatigue crack growth
rate and fatigue crack propagation life are calculated.
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Table 1 : Mechanical properties of base, weld and heat-affected-zone materials [Burk (1978)]
Material Modulus of elasticity, E

(GPa)
0.2% offset Yield
strength (MPa)

Ultimate tensile
strength (MPa)

ASTM A36 190 224 414
Weld material E60S-3 189 580 710
A36 HAZ 189 534 667

(a)

(b)

Figure 6 : (a)A 3-D FEM model of welded curve T-joint
(600 x 15 x 10 mm (web) 400 x 75 x 10 mm flange);
(b) A 2-D FEM model of welded curve plate (381 x 15x
4mm, radius of curvature 1041.4 mm).

9 Results and Discussions

For case (a), the fatigue crack growth rates for different
stress ratios, R are calculated and shown in Fig. 8. As

Figure 7 : A typical constant amplitude axial cyclic load

the stress ratio decreases, the crack growth rate increases.
When the stress ratio increases, the range of stress in-
creases and hence the crack growth rate increases. Again,
generally the range of threshold stress intensity factor de-
creases with increase of stress ratio. The threshold stress
intensity factor is a function of stress ratio (∆Kth= Kop(1-
R), where Kth is threshold stress intensity factor, Kop is
crack opening stress intensity factor and R is the stress
ratio). According to equation (7), the crack growth rate
decreases with increases of ∆Kth .The results of Fig. 8
shows this trend and gives a good indication of the effec-
tiveness of this method. Further, the difference in crack
growth rate for different stress ratios at high range of
stress intensity factor is smaller than that at low range
of stress intensity factor. This may be due to the effect
of threshold stress intensity factor. At low stress level i.e.
low range of stress intensity factor; the effect of threshold
stress intensity factor over crack growth rate is more than
at high stress level. Furthermore, after the range of stress
intensity value about 8, the crack growth rate becomes
constant for all stress ratios. This may also be for thresh-
old stress intensity factor. For this type of mild steel, the
threshold stress intensity factor is less than 8 MN/m3/2.
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Figure 8 : Fatigue crack growth rate with the range of
stress intensity factor (for case a).

Therefore, there is less effect of threshold stress intensity
factor on fatigue crack growth rate after 8 MN/m3/2.
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Figure 9 : Variation of fatigue life with range of stress
intensity factor (for case a)

The variation of fatigue life with range of stress intensity
factor for three stress ratios is shown in Fig.9. The fa-
tigue life increases at low stress intensity factor and the
trend is to become infinity below threshold stress inten-
sity factor. Because at low stress level, the accumulation
of fatigue crack growth is very low and the fatigue life
increases toward infinity. On the other hand, the fatigue
life decreases with the increase of stress intensity factor.
For a particular range of stress intensity factor 10, the fa-
tigue life decreases about 20 % at stress ratio 0.2 and 38
% at stress ratio 0.3 comparing to that at stress ratio 0.1.

The variation of crack opening displacement with crack
tip stress is shown in Fig. 10. The crack opening dis-
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Figure 10 : Variation of crack tip opening displacement
(COD) with crack tip stress (for case a)
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Figure 11 : Variation of strain at crack tip with crack tip
stress (for case a)

placement (COD) increases with crack tip stress. For
a particular crack tip stress, the COD increase with in-
creases of stress ratios. In this case, load amplitude was
constant; increasing both minimum and maximum load
has changed the stress ratios. Therefore, the stress ratio
increases with the increases of maximum stress. The re-
sults shown here are for the maximum load only. For this
reason, the COD increases with the increase of stress ra-
tio. Further at low stress, the variation of COD is less
(0.03 mm) comparing to high stress level (0.15 mm).
The crack tip stress increases with the increases of crack
length. So the COD increases with the increases of crack
tip stress.

The variation of strain in the y-direction at the crack tip
with crack tip stress is shown in Fig. 11. The strain in-
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Figure 12 : Fatigue crack growth rate with the range of
stress intensity factor (for case b).
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Figure 13 : Variation of fatigue life with range of stress
intensity factor (case b)

creases with crack tip stress. At low crack tip stress, the
change in strain for different stress ratios is less com-
paring to that in high crack tip stress. The crack tip
stress increases with increases of crack length. As the
crack length increases, the material stiffness decreases
and crack tip stress increases, and hence the strain in-
creases.

For case (b), the fatigue crack growth rate for different
stress ratios, R is shown in fig. 12. For case (b), the
crack growth rate is higher than that in case (a). Because
in case (b), the bending effect may accelerates the crack
growth rate.

The crack growth rate increases rapidly above the starting
point of the fast fracture. At the fast fracture, the material
losses stiffness and stability and the crack growth rate
increases rapidly.

The variation of fatigue life with range of stress intensity
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Figure 14 : Variation of crack tip opening displacement
(COD) with crack tip stress (case b)
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Figure 15 : Variation of strain at crack tip with crack tip
stress (case b)

factor for case (b) is shown in Fig.13. For the same rea-
son i.e. the bending effect, in case (a) the fatigue crack
growth rate is less comparing to that in case (b). There-
fore the fatigue life increases in case (a) comparing to
case (b). At low range of stress intensity factor the fa-
tigue life increases rapidly and its trend is toward infin-
ity. At low stress level, the accumulation of fatigue crack
growth is very low (1E-9 m/cycle) and the fatigue life
increases toward infinity.

The variation of crack opening displacement with crack
tip stress for case (b) is shown in Fig. 14. The crack

opening displacement (COD) increases with the
increases of crack tip stress. Since in case (b), the

bending stress accelerates the crack growth, the COD in
case (a) decreases comparing to that in case (b).

The variation of strain at the crack tip with crack tip stress
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for case (b) is shown in Fig. 15. The strain increases with
crack tip stress. At low crack tip stress, the change in
strain for different stress ratios is less comparing to that
in high crack tip stress. The crack tip stress increases
with increases of crack length. As the crack length in-
creases, the material stiffness decreases and hence the
strain increases. Further for similar reason, the strain in
case (a) decreases comparing to that in case (b).

9.1 Traditional FEM Model for Fatigue Crack Prop-
agation

Traditional FEM model for an edge-cracked plate is
shown Fig. 16. In the lower edge of the plate sym-
metric boundary condition is applied and in the upper
edge cyclic stress loading is applied. In traditional FEM,
the crack tip is extended one element length per cycle
when the applied stress reached the maximum level. For
each increment of the crack extension, a stress analysis
is carried out and the stress intensity factors are evalu-
ated. Similarly in this traditional model one crack tip
node (from left side) is released (degrees of freedom is
deleted or stiffness is set zero) after each cycle and stress
intensity factor is calculated.

The comparison of fatigue crack propagation life be-
tween new (Interface Model) and traditional FEM model
is shown in Fig. 17. It is found that in the traditional
method, the fatigue crack propagation life is less com-
paring to that in the new proposed method. Since for
the same stress level the displacement field around the
crack tip is influenced by the properties of the interface
element near the crack tip, the stress intensity factor has
been changed due to interface elements’ properties. Fur-
ther, the final crack lengths are also found different in this
method for the same cycle of applied load. Furthermore,
the difference in fatigue life at low stress range is more
than in the high stress range, because at higher stress cy-
cles, crack initiation occurs much faster.

9.2 Comparison with Experimental Results

For validation, the predictions have been compared with
the experimental results obtained using universal MTS
testing machine for curve plates. The experimental re-
sults are for a single-V butt welded curve plate joint of
the dimensions (381 x 15 x 4 mm) as shown in Figure 18.
The mechanical properties of the weld material are the
same as shown in Table 1. Similar model (same geomet-
ric and mechanical properties) has been analyzed using

Figure 16 : Traditional FEM model for fatigue crack
propagation

the authors’ computer program and ANSYS code. The
stress ratios for both the cases (experimental and predic-
tion) are the same (R= 0) and the maximum loads are also
the same (150, 180, 200, 220, 250 MPa respectively).
The initial crack lengths for both the cases are consid-
ered to be 4 mm. The comparison is shown in Fig 19.
At low and high stress range, the trend of both the results
is different but at medium stress range, the difference is
low. At 2x 106cycles,the percentage change in the stress
range is about 6.

This difference may be due to a different threshold stress
intensity factor. The threshold stress intensity factor used
in this analysis is collected from the literature [Anderson
(1994)] available in the field and an average value de-
pendent on stress ratio was assigned. In the experiment,
threshold stress intensity factor need not to be considered
separately and it is counted automatically. Another rea-
son for this slight deviation may be the effect of residual
stress. The residual stresses used in the prediction model
are in the range from –120 MPa to 120 MPa but in the
experiment these values may be slightly different. Fur-
ther during welding of curve plate, the radius of curvature
may be changed. Furthermore the mechanical properties
also might be slight different from values collected from
literature.

10 Conclusions

The proposed simulation of fatigue crack propagation
using an interface element is simple in formulation, ef-
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Figure 17 : Comparison of fatigue crack propagation life
from new and traditional FEM model for center crack
plate

fective in practice, and numerically less intensive. This
method can be applied in T- and curve plate butt-joints.
The method can be applied for symmetric and anti-
symmetric planes under cyclic load and also for bending
loading. This method overcomes the limitation of crack
tip extension at a rate of one element length per cycle. In
this method the crack propagates only when the applied
load reaches the critical bonding strength.
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