
Copyright c© 2005 Tech Science Press SID, vol.1, no.3, pp.225-231, 2005

Structural Integrity Analysis Using the Numerical Green’s Function and the Local
Boundary Integral Equation Method

L.S. Miers1 and J.C.F. Telles2

Abstract: The present paper aims at introducing the
concept of Green’s function type fundamental solutions
(i.e., unit source fundamental solutions satisfying partic-
ular boundary conditions) into the context of meshless
approaches, particularly dealing with the local boundary
integral equation method (LBIE) derived from the classic
boundary integral equation procedure. The Green’s func-
tions discussed here are mainly the so-called half-plane
solution, corresponding to a unit source within a semi-
plane bounded by a flux-free straight line and an infinite
plane containing internal lines of potential discontinu-
ity. The latter is here introduced in numerical fashion, as
an extension of the authors’ previous numerical Green’s
function approach (NGF) already developed for standard
fracture mechanics boundary element applications. Here,
the use of such modified fundamental solutions impairs
the implementation of the usual companion solutions, re-
sponsible for vanishing the fundamental potential values
over the circular boundary of the LBIE internal support
sub-domains. Some examples are discussed to validate
the implementations.

keyword: Local boundary integral equation, numerical
Green’s function, meshless methods.

1 Introduction

Since the beginning of the utilization of numerical meth-
ods for solving differential equations, a common prob-
lem faced by researchers is mesh generation. How-
ever, instead of only developing more efficient mesh
generation techniques, recently a number of researchers
started working on meshless counterparts of previously
established formulations [Atluri and Shen (2002); Atluri
and Zhu (2000)]. One of these procedures is the so-
called local boundary integral equation method – LBIE
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[Zhu, Zhang and Atluri (1998)], based on boundary inte-
gral equation formulations, from which also derives the
boundary element method – BEM [Brebbia, Telles and
Wrobel (1984)].

This paper aims at bringing the concept of the use of
modified fundamental solutions (or Green’s function –
GF) to the LBIE context. These solutions can be used
to simulate localized damages within the structure with-
out need of element discretization of crack, or any other
flaw, boundary. Two different kinds of GFs for potential
problems are proposed, one is an exact solution for a unit
source in a semi-infinite plane (or half-plane) [Telles and
Brebbia (1981)] and the other is an approximated (nu-
merical – NGF) solution for a unit source within an in-
finite plane with lines of potential discontinuity [Telles,
Vera-Tudela and Guimarães (2002)]. These implementa-
tions represent a first step to a more general elastostatic
fracture mechanics application. Some examples are in-
cluded to illustrate the procedure.

2 Local boundary integral equation method

To demonstrate the formulation, only the linear Poisson
equation is used, even though the approach is suitable for
solving nonlinear problems as well. Poisson’s equation
can be written as

∇2u(x) = p(x), x ∈Ω (1)

and the boundary conditions

u = u on Γu

∂u
∂n

= q = q on Γq (2)

Here, p is a domain distributed function, Ω the domain
bounded by Γ and Γu and Γq the portions of the boundary
with potential and flux prescribed respectively.

A weak formulation of the problem can be written as
Z

Ω
uG (

∇2u− p
)

dΩ = 0 (3)
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where uG is the Green’s function used as the test function
for the weighted residual statement and u is the trial func-
tion. The test function satisfies the following equation

∇2uG(ξ,x)+δ(ξ,x) = 0 (4)

in which δ(ξ,x) is the Dirac delta function.

By integrating eq.(3) by parts twice, the global boundary
integral equation is obtained as follows

u(ξ) =
Z

Γ
uG(ξ,x)

∂u(x)
∂n

dΓ−
Z

Γ
u(x)

∂uG(ξ,x)
∂n

dΓ−
Z

Ω
uG(ξ,x)p(x)dΩ (5)

where n is the outward normal vector to Γ, x = [x, y, z]T

is the set of co-ordinates and ξ = [xξ, yξ, zξ]T is defined
as the source point.

To obtain the local formulation of eq.(5), a local sub-
domain Ωs and its boundary ∂Ωs are considered instead
of Ω and Γ respectively, leading to the following form

u(ξ) =
Z

∂Ωs

uG(ξ,x)
∂u(x)

∂n
dΓ−

Z
∂Ωs

u(x)
∂uG(ξ,x)

∂n
dΓ−

Z
Ωs

uG(ξ,x)p(x)dΩ (6)

Eq.(6) indicates that the value of the unknown function
at ξ can be obtained by carrying out the integrals over a
sub-domain within the closed boundary Γ.

It should be noted that eq.(6) holds regardless of the
shape and size of ∂Ωs, which can be deliberately cho-
sen according to the characteristics of the functions used
in the method. The most regular shape of a sub-domain
is an n-dimensional sphere, centered at ξ, for a problem
defined on an n-dimensional space.

For 2-D potential problems, Ωs is a circle of radius r0,
and the Green’s function and its normal derivative are

uG = − 1
2π

ln(r)+uC

∂uG

∂n
=− 1

2πr
∂r
∂n

+qC (7)

where uc an qc are the complementary solutions for po-
tential and flux respectively, which are added to the clas-
sic fundamental solutions in order to obtain the Green’s
function corresponding to the desired problem. The use

of the Green’s function instead of the conventional funda-
mental solution precludes the use of the so-called “com-
panion” solution [Atluri and Zhu (2000); Zhu, Zhang and
Atluri (1998)], which is commonly added to the funda-
mental solution in order to make it vanish over the circu-
lar part of the sub-domain boundary ∂Ωs.

When ξ lies on the global boundary Γ, the sub-domain
can still be taken as a part of a circle centered at ξ, but
now its boundary includes the part of the circumference
(Ls) and the part of Γ limiting Ωs(Γs). The local integral
equation for a nodal point ξ at Γ becomes

α(ξ)u(ξ) =
Z

Γs+Ls

uG(ξ,x)
∂u(x)

∂n
dΓ−

Z
Γs+Ls

u(x)
∂uG(ξ,x)

∂n
dΓ−

Z
Ωs

uG(ξ,x)p(x)dΩ (8)

where α(ξ) is a free coefficient depending on the shape
of Γ at ξ.

3 Moving least squares approximation scheme

The method used to approximate the trial function is the
so-called moving least squares (MLS) scheme [Atluri
and Shen (2002); Atluri and Zhu (2000); Zhu, Zhang and
Atluri (1998)]. A brief summary is given in what follows.

Consider a sub-domain Ωx, in the neighborhood of a
point ξ (called domain of definition of ξ), which is lo-
cated entirely within Ω. The approximation of u(x),
namely uh(x), is taken over the nodes xi, i = 1,2, . . . ,
n, located within Ωxin the following form

uh(x) = pT (x) ·a(x) ∀x ∈Ωx; xi = [xi,yi, zi]
T (9)

where pt (x) is a complete monomial basis of order m
and a(x) is a vector of coefficients a j(x), j = 1, 2, . . . ,
m, which are function of the space coordinates. For 2-D
problems,

pT (x) =
{

[1,x,y] ; linear basis; m = 3[
1,x,y,xy,x2,y2

]
; quadratic basis; m = 6

(10)

The coefficient vector a(x) is determined by minimizing
a weighted discrete L2 norm, as follows

J(x) =
n
∑

i=1
wi(x)

[
pT (xi) ·a(x)− ûi

]2

= [P ·a(x)− û]T ·W · [P ·a(x)− û]
(11)
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where wi(x) is the weight function associated with node
xi. Here, for simplicity, only the Gaussian distribution
function is used as wi(x), it is defined as follows

wi(x) =
e
−

(
di
ci

)2k

−e
−

(
ri
ci

)2k

1−e
−

(
ri
ci

)2k for 0≤ di ≤ ri or

wi(x) = 0 for di ≥ ri (12)

where di = ||x – xi||, ci is a constant that controls the
shape of wi, ri is the size of the support of wi associated
with xi and k is a parameter here chosen as 1. There are
many other functions suitable for use in MLS approxi-
mation, like cubic and quadric spline functions [Atluri
and Shen (2002); Atluri and Zhu (2000); Zhu, Zhang and
Atluri (1998)], but for many applications found in the lit-
erature, the best results were obtained with the Gaussian
function. Matrices W and P have the following structure

P =

⎡
⎢⎢⎢⎣

pT (x1)
pT (x2)
...
pT (xn)

⎤
⎥⎥⎥⎦ ;

W =

⎡
⎢⎢⎢⎢⎣

w1(x) 0 · · · 0

0 w2(x)
...

...
. . . 0

0 · · · 0 wn(x)

⎤
⎥⎥⎥⎥⎦ (13)

and û is a vector containing fictitious nodal values of
uh(x)

û = [û1, û2, · · · , ûn] (14)

The stationarity of J(x) in eq.(11) with respect to a(x)
leads to

A(x) ·a(x) = B(x) · û (15)

where matrices A(x) and B(x) are defined as

A(x) = PT ·W(x) ·P ; B(x) = PT ·W(x) (16)

Rearranging eq.(15) and substituting in eq.(9),

uh(x) = pT (x) ·A−1(x) ·B(x) · û

= ΦΦΦT (x) · û =
n

∑
j=1

φ j(x)û j (17)

where ΦΦΦT (x) = pT (x) ·A−1(x) · B(x) is usually called
shape function of the MLS scheme corresponding to the
nodal source point.

4 Numerical implementation

Consider the parts of the global boundary Γ where the
prescribed values are potential as Γu and flux as Γq.
The intersections of these parts of Γ with the local sub-
domains Ωs, for each source point (redefined as xi), are
designated as Γsu and Γsq respectively. Eq.(8) can then be
rearranged, leading to the following system of equations

α(xi)u(xi) =
Z

Γsu

uG(xi,x)q(x)dΓ

−
Z

Γsq

u(x)
∂uG(xi,x)

∂n
dΓ+

Z
Γsu

uG(xi,x)
∂u(x)

∂n
dΓ

−
Z

Γsq

u(x)
∂uG(xi,x)

∂n
dΓ+

Z
Ls

uG(xi,x)
∂u(x)

∂n
dΓ

−
Z

Ls

u(x)
∂uG(xi,x)

∂n
dΓ−

Z
Ωs

uG(xi,x)p(x)dΩ

(18)

where u(x)and q(x)are the values of prescribed poten-
tial and flux. Substituting the trial function and its nor-
mal derivative by their MLS approximations, isolating
the unknown terms on the left hand side, simplifying the
notation and rearranging lead to the following system of
equations

Kû = f←→
N

∑
j=1

Ki jû j = fi (i = 1,2, . . .,N) (19)

where

fi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z
Γsu

uG
i qdΓ−

Z
Γsq

u
∂uG

i

∂n
dΓ−

Z
Ωs

uG
i pdΩ−αiui where ui is known

Z
Γsu

uG
i qdΓ−

Z
Γsq

u
∂uG

i

∂n
dΓ−

Z
Ωs

uG
i pdΩ where ui is unknown

(20)
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and

Ki j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z
Γsq

φ j
∂uG

i

∂n
dΓ−

Z
Γsu

uG
i

∂φ j

∂n
dΓ−

Z
Ls

uG
i

∂φ j

∂n
dΓ+

Z
Ls

φ j
∂uG

i

∂n
dΓ where ui is known

Z
Γsq

φ j
∂uG

i

∂n
dΓ−

Z
Γsu

uG
i

∂φ j

∂n
dΓ−

Z
Ls

uG
i

∂φ j

∂n
dΓ+

Z
Ls

φ j
∂uG

i

∂n
dΓ+

αiφ j(xi) where ui is unknown

(21)

The system presented in eq.(19) can be solved by any
conventional method, like Gauss elimination. Notice that
the solution of the equations system is a vector û contain-
ing the fictitious values ûi which must be post-processed
using eq.(17) and its normal derivative in order to obtain
the real values of potential and flux at all points.

5 Complementary solution

The complementary solution – ( )C – is a function added
to the fundamental solution– ( )∗ – to generate the
Green’s function – ( )G – suited to certain types of prob-
lems.

uG(ξ,x) = u∗(ξ,x)+uC(ξ,x)
∂uG(ξ,x)

∂n
= qG(ξ,x) = q∗(ξ,x)+qC(ξ,x) (22)

Here, two GFs for potential problems are proposed: an
exact solution for a unit source in a semi-infinite plane
and a numerical solution for an infinite plane containing
unloaded lines of potential discontinuity.

5.1 Semi-infinite plane

In this work, the flux-free surface Γof the half-plane is
assumed to be represented by a horizontal line. The com-
plementary part for this problem is a function of the co-
ordinates of the image of the load point with respect toΓ
as shown in Fig.(1).

The complementary functions are shown as follows

uC =− 1
2π

ln(R)

∂uC

∂n
= qC =− 1

2πr
∂R
∂n

(23)

Figure 1 : half-plane GF

For more details, see [Telles and Brebbia (1981)].

5.2 Infinite plane with internal lines of potential dis-
continuity

Consider an infinite plane, with a line of potential dis-
continuity within, under the action of a unit point source
applied at ξ. In what follows, the Green’s function for
this problem is written in terms of a superposition of the
fundamental solution for Laplace’s equation plus a com-
plementary part which provides satisfaction of the flux-
free requirement over the internal line of potential dis-
continuity (see Fig (2)).

The Laplace’s solution u∗ and q∗ produces nonzero flux
values across the barrier line Γ f (ζ), these are then coun-
terbalanced by the complementary fluxes. Hence, an in-
finite plane with an impervious slit is simulated.

The complementary part of the GF can be written in
terms of boundary integral equations as

uC(ξ,x) =
Z

Γ−
q∗(x,ζ) · c(ξ,ζ)dΓ(ζ)

qC(ξ,x) =
Z

Γ−
Q∗(x,ζ) · c(ξ,ζ)dΓ(ζ) (24)

where q∗(x,ζ) and Q∗(x,ζ) are the free (Laplace’s) fun-
damental flux and its derivative referred to the source
point as used in the classical and hypersingular bound-
ary integral equations.

These equations produce the complementary potential
and flux at an internal point x due to a unit point source
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Figure 2 : NGF

at ξ, as a function of the potential discontinuity c(ξ,ζ) =
u(ξ,ζr) - u(ξ,ζt). Note that here the source point of the
complementary problem is x; point ξ is introduced only
to guarantee that the complementary solution is com-
puted with the same notation as eq.(22). The boundary
Γ− corresponds to the inferior surface of the line of po-
tential discontinuity, whose superior surface is Γ+. The
numerical value of c(ξ,ζ) is computed using an efficient
implementation of the hypersingular boundary integral
equation.

Complete details of the procedure can be found in
[Telles, Vera-Tudela and Guimarães (2002)].

6 Examples

To illustrate the presented techniques, three examples are
proposed using the two Green’s functions. The results are
compared with sufficiently refined ones obtained with a
BEM potential code using quadratic elements.

6.1 Plate with circular hole

This example is a symmetric perforated plate whose
quarter-part is depicted in Fig.(3).

The comparison of results is presented in Fig.(4). The
node cloud contains 57 points (30 along Γ and 27 within
Ω) and the half-plane GF-LBIE, with Γcoinciding with
the top horizontal boundary, has been used.

Figure 3 : quarter plate problem

Figure 4 : quarter plate results

6.2 Plate with internal line of potential discontinuity

The geometry, node cloud and boundary conditions of
this example are presented in Fig.(5).

The results obtained with NGF-LBIE and NGF-BEM
techniques were very close and they are presented in
Fig.(6).

6.3 Cofferdam-type problem

In this example there are two sheet piles enclosing a per-
meable soil to be excavated. The problem geometry is
presented in Fig.(7). Because of the symmetry, only
half of its geometry was analyzed. The node cloud and
boundary conditions are presented in Fig.(8).

As in the last example, the results obtained with the
NGF-LBIE and NGF-BEM were almost the same (see
Fig.(9)).

7 Conclusions

As demonstrated by the results, the LBIE is shown to
be suitable for a GF-procedure implementation. The de-
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Figure 5 : plate problem

Figure 6 : plate problem potential results

velopment of the NGF for infinite planes with unloaded
lines of discontinuity certainly has proved to be worth of
attention, especially for elastic fracture mechanics appli-
cations.
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