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Can the Conventional High-Cycle Multiaxial Fatigue Criteria Be Re-Interpreted
in Terms of the Theory of Critical Distances?

L. Susmel1,2 and D. Taylor2

Abstract: This paper reports on an attempt to system-
atically re-interpret the conventional multiaxial fatigue
criteria in terms of the Theory of Critical Distances:
in the present study the criteria proposed by Crossland,
Dang Van, Papadopoulos, Matake, McDiarmid, respec-
tively, and the so-called Modified Wöhler Curve Method
were considered. The procedure devised to re-interpret
the above methods in terms of the Theory of Critical Dis-
tances was based on the following two assumptions: (i)
the critical distance is a material constant to be deter-
mined under fully-reversed uniaxial fatigue loading; (ii)
the presence of non-zero mean stresses as well as of non-
zero out-of-phase loading has to be directly taken into
account by the fatigue damage parameters themselves.
The constants depending on the material fatigue proper-
ties of every considered criterion were re-calculated by
considering a cracked plate subjected to Mode I as well
as to Mode III loading. The systematic application of
the proposed procedure proved the fact that only the crit-
ical plane approaches can coherently be re-formulated in
accordance with the Theory of Critical Distances. Fi-
nally, to check the accuracy of such criteria in predicting
fatigue limits of notched components several experimen-
tal results, generated under both uniaxial and multiaxial
fatigue loading, were selected from the technical liter-
ature. This validation demonstrated that the most accu-
rate critical plane approach is the Modified Wöhler Curve
Method, giving predictions mainly lying within an error
interval of ±20%, independently of geometrical feature
and degree of multiaxiality of the stress field in the fa-
tigue process zone.
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Nomenclature

E [%] Fatigue strength error index
FI , FIII Geometrical factors for the stress intensity

factor due to Mode I and III loading
KI, KIII Stress intensity factors due to Mode I and III

loading
Ki Notch-stress intensity factor (i=1, 2, 3)
Kt Stress concentration factor
L Critical distance for use in the TCD
m Unit vector defining a direction on a generic

plane Δ
m* Direction of maximum resolved shear stress
M Generic direction on the Δ plane
Mσ, Tσ Papadopoulos’ integrals
n unit vector normal to the generic Δ plane
Oxyz Reference frame
Oabn Reference frame on the generic plane Δ
r, δ Polar coordinates
rn Notch root radius
t Generic instant (t∈T)
Si Components of the vector expressing

√
J2

(i=1,2, . . . , 5)√
J2 Square root of the second invariant of the

stress deviator
R Load ratio (σmin/σmax)
T Period of the cyclic load history
X, Y Parameters depending on the applied loading
ω,ω∗,η,η∗Parameters depending on the material

fatigue strength
γ Out-of-phase angle
φ,θ Angles which define the position of a

generic plane Δ
φ∗,θ∗ Angles which define the orientation of the critical plane
Δ Generic plane
[σD] Deviatoric stress tensor
σ0 Fully-reversed uniaxial plain fatigue limit
σA Uniaxial plain fatigue limit under R=0
σb Nominal bending stress referred to the net area
σH Hydrostatic stress
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σn Stress normal to the plane of maximum
shear stress amplitude

σ1,σ2,σ3, Principal stresses
σr, σδ, τrδ Stress components calculated with reference

to the polar coordinates
σx,σy, σz Normal stresses
σT Tensile strength
τ Shear stress relative to the plane of maximum

shear stress amplitude
τ0 Fully reversed torsional fatigue limit
τr Resolved shear stress
τt Nominal torsional stress referred to the

net area
τxy; τxz; τyz Shear stresses
ν Poisson’s constant
ψx,i Phase angle between σx(t) and σi(t) (i=y, z)
ψx,i Phase angle between σx(t) and

τi(t) (i=xy, xz, yz)
ΔKI,th Range of the threshold value of the Mode I

stress intensity factor
Δσ0 Range of the uniaxial plain fatigue limit

Subscripts

a = amplitude
m = mean value
max = maximum value

1 Introduction

The state of the art shows that many researchers have
attempted to propose sound criteria suitable for predict-
ing fatigue strength of smooth components subjected to
multiaxial fatigue loading (Papadopoulos, Davoli, et al.,
1997; Socie and Marquis, 2000; You and Lee, 2006). On
the contrary, only a few attempts have been made to pro-
vide engineers engaged in practical problems with reli-
able methods suitable for assessing stress concentration
phenomena under complex cyclic loading (Gough, 1949;
Lazzarin and Susmel, 2003; Tipton and Nelson, 1997).
The main limitation in using the existing methods in sit-
uations of practical interest is that their application re-
quires the definition of nominal parameters such as ref-
erence section, nominal stress, notch depth, equivalent
stress intensity, etc. This aspect makes them not suitable
for being systematically used to post-process linear elas-
tic FE results, limiting the possibility of using them in an
industrial reality.

In the uniaxial fatigue ambit, this problem has recently
been addressed by a re-interpretation of the Theory of
Critical Distances (TCD) (Taylor, 1999). The reliabil-
ity and accuracy of such a method were confirmed by
extensive validations carried out by considering both
notched specimens (Susmel and Taylor, 2003a; Taylor
and Wang, 2000) and real components (Taylor, Bologna,
Bel Knani, 2000): the TCD was seen to be capable of fa-
tigue strength predictions lying within an error interval of
±20% when used in the presence of stress raisers having
notch root radius ranging from 0.01mm up to 8mm and
depth from about 0.05mm up to 5mm. Taking advan-
tage of the features of the TCD, the present authors have
proposed an extension of such an approach to multiaxial
fatigue situations (Susmel and Taylor, 2003b). In this ini-
tial work we investigated various strategies for applying
the TCD in these circumstances, showing that reasonable
predictions could be obtained for various types of multi-
axiality. The present paper contains a more systematic
examination of the issues related to the use of the TCD
in combination with multiaxial fatigue laws. In partic-
ular, we considered whether there were any theoretical
barriers to the use of particular multiaxial criteria, before
carrying out an extensive validation exercise of those cri-
teria for which no such barriers emerged.

2 Some Preliminary Definitions

Consider a cylindrical plain specimen subjected to a mul-
tiaxial fatigue loading resulting in a triaxial stress state at
the surface point O (Fig. 1a). Such a point is assumed
to be the critical one for the component integrity, and,
for this reason, it is taken as the centre of the frame of
reference Oxyz. In a generic instant t of the cyclic load
history (where t∈T) the stress state [σ(t)], determined in
O with respect to the introduced frame of reference, is:

[σ(t)] =

⎡
⎣ σx(t) τxy(t) τxz(t)

τxy(t) σy(t) τyz(t)
τxz(t) τyz(t) σz(t)

⎤
⎦ (1)

The above stress tensor can be decomposed into two dif-
ferent parts: the deviatoric part and hydrostatic part:

[σ(t)] = [σH(t)]+[σD(t)] (2)

where

σH(t) =
1
3
· tr ([σ(t)]) =

1
3
· [σx(t)+σy(t)+σz(t)] , (3)
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Figure 1 : Frame of reference (a), definition of the polar co-ordinates φ and θ (b) for a generic plane Δ and formali-
sation of the Minimum Circumscribed Circle concept (c).

and

[σD(t)]

=

⎡
⎣ σx(t)−σH(t) τxy(t) τxz(t)

τxy(t) σy(t)−σH(t) τyz(t)
τxz(t) τyz(t) σz(t)−σH(t)

⎤
⎦

(4)

The hydrostatic stress is a quantity widely used in for-
mulating multiaxial fatigue criteria, and, for this reason,
it is useful to define its amplitude, its mean value and its
maximum value:

σH,a =
1
2

{
max
t1∈T

tr ([σ(t1)])
3

−min
t2∈T

tr ([σ(t2)])
3

}
, (5)

σH,m =
1
2

{
max
t1∈T

tr ([σ(t1)])
3

+min
t2∈T

tr ([σ(2t)])
3

}
(6)

σH,max = σH,a +σH,m (7)

Another important quantity adopted to formulate multi-
axial fatigue criteria is the square root of the second in-
variant of the stress deviator:

√
J2(t) =

√
1
2

[σD(t)] · [σD(t)]. (8)

According to the suggestions reported in Lemaitre and
Chaboche, 1990, the above quantity can even be ex-
pressed as follows:

√
J2(t) =

√
S2

1(t)+S2
2(t)+S2

3(t)+S2
4(t)+S2

5(t) (9)

where

S1(t) =
√

3
2

[σx(t)−σH(t)]

S2(t) =
1
2

[σy(t)−σz(t)]
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S3(t) = τxy(t) (10)

S4(t) = τxz(t)

S5(t) = τyz(t)

The amplitude of such a stress quantity,
√

J2,a, is usually
calculated by using the Longest Chord Method (Lemaitre
and Chaboche, 1990; Fuchs and Stephens, 1980; Pa-
padopoulos, 1998): to be precise, the amplitude of

√
J2

is equal to half of the longest chord of the hyper-curve
plotted, in a 5-dimensional Euclidian space, by the tip
of the vector having instantaneous components equal to
Si(t) (t∈T, i=1, 2, . . . , 5).

Consider now a generic material plane Δ (Fig. 1b) having
normal unit vector n. Its orientation can unambiguously
be determined by introducing the following spherical co-
ordinates: φ is the angle between the projection of the
unit vector n on the x-y plane and the x-axis, whereas θ
is the angle between the normal n and the z-axis (Pa-
padopoulos, 1998) (Fig. 1b). For any fixed material
plane Δ the stress tensor [σ(t)] can be decomposed into
two stress components: the normal stress σn(t) and the
shear stress τ(t).

In general, critical plane approaches are based on the hy-
pothesis that fatigue damage in the high-cycle fatigue
regime reaches its maximum value on the plane expe-
riencing the maximum shear stress amplitude (the so-
called critical plane). The calculation of the amplitude
of the shear stress relative to a generic material plane is
a complex problem to be addressed, because the vector
τ(t) changes both its magnitude and its direction during
the load cycle (Fig. 1c). Even though there exist different
proposals to calculate τa, it is common opinion that the
most rigorous method is the one proposed by Papadopou-
los (Papadopoulos, 1998) and based on the use of the
minimum circumscribed circle concept. According to the
above method, the shear stress amplitude is equal to the
radius of the minimum circle that circumscribes the curve
plotted by the tip of the shear stress vector τ(t) on the Δ
plane during the cyclic load. (Fig. 1c).

The amplitude, the mean value and the maximum value
of the stress component perpendicular to the generic
plane Δ can be expressed simply as:

σn,a (φ,θ) =
1
2

{
max
t∈T

σn (φ,θ, t)−min
t∈T

σn (φ,θ, t)
}

σn,m (φ,θ) =
1
2

{
max
t∈T

σn (φ,θ, t)+min
t∈T

σn (φ,θ, t)
}

(11)

σn,max (φ,θ) = σn,a (φ,θ)+σn,m (φ,θ)

y

r

r

ry

y

x
z

y

r

+ =

Figure 2 : V-notched specimen, definition of the co-
ordinates r and δ and stress components damaging an
elementary material volume in the vicinity of the notch
tip.

Consider now a specimen subjected to a Mode I and II
loading and containing a V-shaped notch (Fig. 2). Ac-
cording to Williams (Williams, 1952), the stress state
along the notch bisector (δ=0 ˚ ) can be calculated by
the following equations proposed by Lazzarin and Tovo
(Lazzarin and Tovo, 1996):⎧⎨
⎩

σδ
σr

τrδ

⎫⎬
⎭

rn=0

=
1√
2π

rλ1−1K1

(1+λ1)+χ1(1−λ1)

·
⎡
⎣
⎧⎨
⎩

(1+λ1)
(3−λ1)
0

⎫⎬
⎭+χ1(1−λ1)

⎧⎨
⎩

1
−1
0

⎫⎬
⎭

⎤
⎦ (12)

⎧⎨
⎩

σδ
σr

τrδ

⎫⎬
⎭

rn=0

=
1√
2π

rλ2−1K2

(1−λ2)+χ2(1+λ2)

·
⎡
⎣
⎧⎨
⎩

0
0
1

⎫⎬
⎭+χ2(1+λ2)

⎧⎨
⎩

0
0
1

⎫⎬
⎭

⎤
⎦ (13)

In the above relationships λ1, λ2, χ1 and χ2 are constants
depending on the opening angle value (Atzori, Lazzrain,
Tovo, 1999; Lazzarin and Tovo, 1996; Williams, 1952).
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On the other hand, when the specimen of Figure 2 is sub-
jected to anti-plane loading, the stress components along
the notch bisector turn out to be (Dun, Suwito, Cunning-
ham, 1997; Quan and Hasebe, 1997):

{
τδy

τry

}
=

K3√
2π

rλ3−1
{

1
0

}
(14)

where the value of λ3 depends on the notch-opening
angle. In equations (12)-(14) K1, K2 and K3 are the
notch-stress intensity factors due to Mode I, Mode II and
Mode III loading, respectively. These factors can eas-
ily be calculated by applying the following definitions
(Dun, Suwito, Cunningham, 1997; Gross and Mendel-
son, 1972; Quan and Hasebe, 1997):

K1 =
√

2π lim
r→0

(σδ)δ=0 r1−λ1

K2 =
√

2π lim
r→0

(τrδ)δ=0 r1−λ2 (15)

K3 =
√

2π lim
r→0

(
τδy

)
δ=0 r1−λ3

When the notch-opening angle, 2α, is equal to 0 (i.e.
when the notch becomes a crack), and the specimen of
Figure 2 is subjected to Mode I loading, equation (12)
can be simplified to obtain the following well-known re-
lationships:

σr = σz =
FI ·KI√

2πr
(16)

σδ = σx = σz =
FI ·KI√

2πr
(17)

τrδ = τzx = 0 (18)

where FI is the geometrical correction factor for the
LEFM stress intensity factor due to Mode I loading, KI .
If the same cracked specimen (2α = 0) is loaded in tor-
sion, equation (14) results in the following simplified
form:

τδz = τxy =
FIII ·KIII√

2πr
(19)

In the above relationship FIII is the geometrical correc-
tion factor for the LEFM stress intensity factor due to
Mode III loading, KIII.

3 The Point Method: The Simplest Formalisation
Of The Theory Of Critical Distances

The TCD uses the elastic stresses in the local region close
to the notch. It can be formalised in different ways (see,
for example, Taylor, 1999), all of which involve the cal-
culation of a characteristic stress, whose range can be
compared to the plain fatigue limit. The multiaxial fa-
tigue criteria considered in the present study were origi-
nally formalised by considering smooth components and
assuming that the stress state to be used to estimate fa-
tigue damage had to be determined at the crack initiation
point. For this reason, in the next sections, the exist-
ing multiaxial fatigue criteria will be re-interpreted just
in terms of the one particular formulation of the TCD,
which is known as the Point Method (PM). Consider a
notched specimen subjected to a remote uniaxial fatigue
loading (Fig. 2). According to the PM, the specimen is
in the fatigue limit condition when the stress range at a
point, located a distance L/2 from the notch root, is equal
to the plain fatigue limit, i.e.:

Δσx

(
δ = 0, r =

L
2

)
= Δσ1

(
δ = 0, r =

L
2

)
= Δσ0 (20)

In the above equation, L is the material characteristic
length, which is calculated, for the correct load ratio, as
follows (Taylor, 1999):

L =
1
π

(
ΔKI,th

Δσ0

)2

(21)

It is worth noticing that the above definition results in
a constant similar to the one defined by Topper and co-
workers to address the short crack problem (see, for in-
stance, El Haddad, Dowling, Topper and Smith, 1980),
though here such a quantity is used in a different way.

Equation (21) makes it evident that, L is a function of two
material properties, therefore it is also a material prop-
erty, which is different for different materials and R ra-
tios. Consider now a notched specimen subjected to tor-
sional fatigue loading (Fig. 2). In this case, the PM can
be formulated as follows (Susmel and Taylor, 2006):

Δτxy

(
δ = 0, r =

L
2

)
= Δσ1

(
δ = 0, r =

L
2

)
= Δτ0 (22)

This approach assumes that the length constant L is inde-
pendent of the type of loading. It is not entirely clear
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from the experimental data whether this is true or not
(see, for example, Endo and Murakami, 1987; Susmel
2004; Susmel and Taylor, 2006), however we have shown
that accurate predictions for notches in torsion can be
obtained using L values determined from tensile testing
(Susmel and Taylor, 2006), so this assumption will be
used in what follows.

4 The General Procedure To Re-Interpret The Clas-
sical Multiaxial Fatigue Criteria In Terms Of The
Theory Of Critical Distances

The existing multiaxial fatigue criteria are based on dif-
ferent theoretical assumptions resulting in the use of dif-
ferent stress quantities. In any case, independently of
the stress parameters employed to formalise such crite-
ria, they can always be expressed in the following general
form:

X +ωY = η (23)

In the above relationship, X and Y are stress parame-
ters depending on the applied multiaxial fatigue loading,
whereas ω and η are constants depending on the material
fatigue properties. In particular, ω and η have to be de-
termined by applying the considered criterion to two ex-
perimental cases: the cases normally used are the fully-
reversed plain uniaxial fatigue limit, σ0, and the fully-
reversed plain torsional fatigue limit, τ0. However, if the
criterion is generally applicable, and if it can be used in
conjunction with the PM, then it should also be possible
to obtain these constants from data on a specimen con-
taining a notch or crack, loaded in tension and in torsion,
respectively, using Eqs (20) and (22). Suppose that this
procedure results in two constants, ω∗ and η∗ only when
ω∗ = ω and η∗ = η it is possible to affirm that the consid-
ered multiaxial fatigue criterion can consistently be used
along with the TCD. In fact, if the above identities were
not assured, this would result in a criterion sensitive to
the sharpness of the notch, and therefore of little practi-
cal value.

In what follows, this test for consistency will be applied
using the case of a cracked body under Mode I and Mode
III loading (Fig. 3), for which we can write, for fully-
reversed uniaxial fatigue loading (Fig. 3a):

σx,a = σz,a =
FI ·KI,a√

πL
= σ0 (24)

and for anti-plane stress (Fig. 3b):

τxy,a =
FIII ·KIII,a√

πL
= τ0 (25)

The above considerations make it evident that this paper
considers only bi-dimensional situations resulting in bi-
axial stress field (plane stress) damaging the fatigue pro-
cess zone.

5 Criteria Based On The Stress Invariants

The first class of criteria to be considered are those which
are formulated as linear combinations of two scalar pa-
rameters: the amplitude of the square root of the sec-
ond invariant of the stress deviator and the hydrostatic
stress. These classical methods have widely been em-
ployed to assess real components, even though they seem
not to be capable of satisfactorily accounting for the pres-
ence of non-zero out-of-phase angles (Petrone and Sus-
mel, 1999). Another limitation of these approaches is
that they do not supply any information on the orienta-
tion of the crack initiation plane. Amongst such criteria
(Papadopoulos, 1997) the most popular one is probably
that proposed by Sines in 1959. Such a criterion is for-
malised as a linear combination of

√
J2,a and the mean

hydrostatic stress σH,m:√
J2,a +ω ·σH,m = η (26)

The constants of the above criterion can be determined
considering the fully-reversed torsional case and a uni-
axial case characterised by a load ratio, R, equal to 0. If
the plain fatigue limit under R=-1 is expressed as a func-
tion of the plain fatigue limit under R=0 by using Good-
man’s equation, then the above constants turn out to be
(Papadopoulos, 1997):

ω =
√

3σA

σT
; η = τ0 (27)

In our experience (Petrone and Susmel, 1999) this cri-
terion is not capable of satisfactorily accounting for the
presence of both non-zero out-of-phase angles and non-
zero mean stresses: it has been reported in the present
section for completeness, but it will not be considered in
the final re-analysis. Another well-known criterion based
on the calculation of the stress invariants is the one pro-
posed by Crossland in 1956, who uses the maximum hy-
drostatic stress, giving:√

J2,a +ω ·σH,max = η (28)
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Figure 3 : Specimens subjected to tensile stress (a) and to anti-plane stress (b) and corresponding stress states at the
critical point plotted in terms of Mohr’s circles (c, d).

Observing that under fully-reversed torsional fatigue
loading the relevant stress quantities are equal to:

√
J2,a =

τ0;σH,max = 0, and under fully-reversed uniaxial fatigue
loading to:

√
J2,a = σ0

/√
3;σH,max = σ0

/
3, the con-

stants of Eq. (28) turn out to be:

ω =
3τ0

σ0
−
√

3;η = τ0 (29)

To re-formulate the above criteria in terms of the TCD,
the condition expressed by Eqs (24) and (25) must be as-
sured. In particular under fully-reversed uniaxial fatigue
loading

√
J2,a and σH,max turn out to be:

√
J2,a =

σ0√
3

; σH,max =
2σ0

3
(30)

whereas under fully-reversed torsional fatigue loading
the above quantities are equal to:√

J2,a = τ0; σH,max = 0 (31)

Considering the conditions expressed by the above iden-
tities, the constants in equation (28) result in the follow-
ing values:

ω∗ =
1
2

(
3τ0

σ0
−
√

3

)
;η∗ = τ0 (32)

The fact that ω∗ �= ω proves that Crossland’s criterion
cannot rigorously be re-interpreted in terms of the TCD:
constant ω∗ is different for plain and cracked specimens
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and therefore will, in general, depend on the Kt value of
the notch.

6 Criteria Based On The Mesoscopic Approach

Taking advantage of the work of Dang Van published in
1973, many researchers have attempted to propose crite-
ria based on an interpretation at a mesoscopic level of the
material fatigue behaviour. In the present section the cri-
teria proposed by Dang Van himself and Papadopoulos
will be considered. Dang Van’s criterion summarises a
sophisticated attempt to describe the fatigue damage evo-
lution in a metal at a mesoscopic scale resulting in the use
of the macroscopic shear stress and hydrostatic stress.
The rigorous in field application of such an approach is
not trivial, due to the complex procedure which has to be
applied to account for the presence of non-proportional
loading as well as non-zero mean stress (Dang Van, Cail-
letaud, Flavenot, Le Douaron and Lieurade, 1989; Dang
Van, Griveau and Messagge, 1989). In the present sec-
tion, the criterion is considered in its simplest form (Bal-
lard, Dang Van, Deperrois and Papadopoulos, 1995):

[σ1(t)−σ1,m]− [σ3(t)−σ3,m]
2

+ω ·σH (t) = η (t ∈ T )

(33)

Applying the above equation to the fully-reversed uniax-
ial and fully-reversed torsional case, constants ω and η
turn out to be:

ω = 3

(
τ0

σ0
− 1

2

)
; η = τ0 (34)

On the contrary, when applied to a cracked body using
Eqs (24) and (25), the constants take the following val-
ues:

ω∗ =
3
2

(
τ0

σ0
− 1

2

)
; η∗ = τ0 (35)

Again, by showing that ω∗ �= ω we demonstrate that
Dang Vang’s criterion cannot be re-interpreted in terms
of the TCD.

Papdopoulos’ mesoscopic approach postulates that mul-
tiaxial fatigue strength of ductile materials depends
on the following two stress parameters (Papadopoulos,
1987):

Mσ =

√Z 2π

φ=0

Z π

θ=0
T 2

σ (φ,θ)sinθ ·dθ ·dφ (36)

σH,max = max
t∈T

[
σ1(t)+σ2(t)+σ3(t)

3

]
(37)

where

Tσ (φ,θ) =

√Z 2π

ξ=0
τ2

r,a (φ,θ,ξ)dξ (38)

If the critical point of the component is subjected to a tri-
axial stress state, integral Mσ takes the following form
(Papadopoulos, 1995):

Mσ =

√
1
3

[
σ2

x,a +σ2
y,a +σ2

z,a +3τ2
xy,a +3τ2

xz,a +3τ2
yz,a

−σx,a ·σy,a cosψx,y −σy,a ·σz,a cosψy,z

−σx,a ·σz,a cosψx,z]
1
2 (39)

According to Papadopoulos’ criterion, a smooth compo-
nent (0.5 ≤ τ0

σ0
≤ 0.6) is in the fatigue limit condition

when the following condition is assured (Papadopoulos,
1987; Papadopoulos, 1995):

Mσ +ω ·σH,max = η (40)

If the previous equation is calibrated by using the fully-
reversed uniaxial and torsional plain fatigue limit, the
constants of Eq. (40) turn out to be (Papadopoulos,
1995):

ω =
τ0 −σ0

/√
3

σ0
/

3
;η = τ0 (41)

To reinterpret Papadopoulos’ criterion in terms of the
TCD, Mσ and σH,max have to be determined by consid-
ering the stresses at the critical distance, L/2, when the
cracked specimens of Figure 3 are subjected to Mode I
as well as to Mode III loading. In particular, under fully-
reversed uniaxial fatigue loading Papadopoulos’ stress
quantities turn out to be:

Mσ =

√
σ2

x,a +σ2
z,a −σ2

x,a ·σ2
z,a

3
;

σH,max =
σx,a +σz,a

3
(42)

whereas under fully-reversed Mode III loading they turn
out to be:

Mσ = τxy,a; σH,max = 0 (43)
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Applying these parameters to calculate the constants of
Eq. (40) for cracked specimens gives the following re-
sult:

ω∗ =
1
2

[
τ0 −σ0

/√
3

2σ0
/

3

]
;η∗ = τ0 (44)

These relationships make it evident that:

ω∗ =
1
2

ω (45)

This means that Papadopoulos’ criterion cannot always
be successfully re-interpreted in terms of the TCD. In
particular, if constants ω∗ and η∗ were used to predict
the fatigue strength of a plain specimen under tension-
compression the value of the plain fatigue limit would
result in a quantity depending on the τ0 to σ0 ratio. To
be precise, under fully-reversed uniaxial fatigue loading
the condition postulated by Eq. (38) would result in the
following one:

σx,a ≤ 2
√

3τ0

1+
√

3 τ0
σ0

(46)

It is interesting to observe that, if the τ0 to σ0 ratio
were expressed according to Von Mises’ hypothesis (At-
zori, Meneghetti and Susmel, 2005), the above condition
would turn out to be:

σx,a ≤ σ0 (47)

This fact confirms that Papadopoulos’ criterion can co-
herently be re-interpret in terms of the TCD only when
the τ0 to σ0 ratio is equal to 1

/√
3. Unfortunately, ex-

perimental evidence shows that this ratio varies in the
range 0.5-1.0 (Atzori, Meneghetti and Susmel, 2005); we
conclude that, in the general case, the criterion of Pa-
padopoulos cannot be used in conjunction with the TCD.

7 Criteria Based On The Critical Plane Approach

Many different researchers have proposed multiaxial
high-cycle fatigue criteria based on the critical plane con-
cept. Even though these methods have been formalised
in many different ways, they take as their common start-
ing point the assumption that crack initiation occurs on
the plane experiencing the maximum shear stress ampli-
tude (critical plane). They postulate that fatigue dam-
age depends on the combined effect of the shear stress

amplitude and the normal stress relative to the critical
plane (Papadopoulos, Davoli, et al., 1997; Socie and
Marquis, 2000; You and Lee, 2006). In the present study,
three different critical plane approaches were consid-
ered: Matake’s criterion (Matake, 1977), McDiarmid’s
criterion (McDiarmid, 1991 and 1994) and, finally, the
Modified Wöhler Curve Method (MWCM) (Susmel and
Lazzarin, 2002; Lazzarin and Susmel, 2003). We de-
liberately did not review the well-know criterion pro-
posed by Findley in 1959, because, as highlighted by
Papadopoulos (Papadopoulos, 1997) it predicts that non-
zero mean torsional stress affects the torsional fatigue
limit value: unfortunately, the validity of this dependence
is refuted by the experimental evidence, both for plain
(Sines, 1959) and notched specimens (Gough, 1949).
The criteria due to Matake and McDiarmid can be for-
malised as follows:

τa(φ∗,θ∗)+ω
σn,max

τa
(φ∗,θ∗) = η (48)

According to the hypotheses these criteria are based on,
when applied to smooth components, constants ω and η
take the following form:

Matake’s criterion:

ω =
2τ0

σ0
−1;η = τ0 (49)

McDiarmid’s criterion:

ω =
τ0

2σT
;η = τ0 (50)

It is important to highlight that McDiarmid’s criterion
is an empirical formula based on the assumption that a
plain component subjected to fully-reversed uniaxial fa-
tigue loading is in its fatigue limit condition when:

σx,a =
2τ0(

1+ τ0
2σT

) (51)

This condition is rigorously assured only when the right-
hand side of Eq. (51) equals the material’s fully-reversed
plain fatigue limit: unfortunately, this is not always true.
The MWCM, on the other hand, is written as (Susmel
and Lazzarin, 2002):

τa (φ∗,θ∗)+
[

τA∞ − σA∞

2

] σn,max

τa
(φ∗,θ∗) ≤ τA∞. (52)
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where

ω = τ0 − σ0

2
;η = τ0 (53)

To re-interpret the above criteria in terms of the TCD, it
is possible to make use of Mohr’s circles as shown in Fig-
ures 3c and 3d. In particular, under fully-reversed uniax-
ial fatigue loading, for a cracked plate in the fatigue limit
condition, it is trivial to write the following identities:

τa = σn,max =
σx,a

2
=

σz,a

2
=

σ0

2
(54)

Whereas, according to Eq. (25), the plate of Figure 3b
is in the fatigue limit condition, when the relevant stress
parameters, that is, τa and σn,max, are equal to:

τa = τ0;σn,max = 0 (55)

The above identities can directly be used to calculate
constants ω∗ and η∗ of Matake’s criterion when re-
interpreted in terms of the TCD, obtaining:

ω∗ =
2τ0

σ0
−1;η∗ = τ0 (56)

In the same way, constants ω∗ and η∗ can be calculated
for the MWCM when applied in terms of the PM:

ω∗ = τ0 − σ0

2
;η∗ = τ0 (57)

Finally, according to the consideration reported above,
to coherently calculate constants ω∗ and η∗ for McDi-
armid’s criterion it is necessary to form the following hy-
pothesis on the plain fatigue limit value:

σ0 =
2τ0

1+ τ0
2σT

(58)

By using the above expression for σ0, when the condi-
tions expressed by Eqs (24) and (25) are assured, con-
stants ω∗ and η∗ in McDiarmid’s criterion expressed in
terms of the TCD turn out to be:

ω∗ =
τ0

2σT
;η∗ = τ0 (59)

These considerations show that these critical plane ap-
proaches can successfully be re-interpreted in terms of
the TCD: for these criteria the condition ω∗ = ω and
η∗ = η is always assured. We conclude then, that the
only multiaxial fatigue laws which can be consistently
used with the TCD are the critical plane criteria.

8 Extending The Approach To Open V-Notches And
Triaxial Stress States

The aim of the present section is to briefly investigate ac-
curacy and reliability of the critical plane approaches in
the presence of stress states having a higher level of com-
plexity than the ones considered in the previous section.

Initially, attention can be focused on open V-notches
subjected to nominal uniaxial fatigue loading. To cor-
rectly address this problem, it is important to observe
that, when dealing with blunt V-notches, in the vicinity
of the stress concentrator apex the influence of the notch
opening angle on the stress filed distribution is negligi-
ble. In the light of this fact, it is logical to believe that the
TCD correctly predicts the high-cycle fatigue strength of
blunt notches also in the presence of large values of the
notch opening angle (Taylor and Susmel, 2003; Taylor
and Wang, 2000).

On the contrary, when V-notches become sharp, the
stress distribution ahead of the stress concentrator apex
is strongly influenced by the value of the notch opening
angle itself: the exponents of William’s equations change
as the opening angle value increases. We never investi-
gated this problem systematically, but whenever we tried
to use the TCD to predict the high-cycle fatigue strength
in the presence of sharp V-notches having a large value
of the opening angle, predictions were always highly ac-
curate (see, for instance, the sound agreement between
estimations and experimental results obtained when ap-
plying the TCD to welded joints (Taylor, Barrett and Lu-
cano, 2002), that is, to sharp V-notches having opening
angle equal to 135 ˚ ).

It is also worth noticing here that, in 2005, Atzori, Laz-
zarin and Meneghetti deeply investigated the problem
of predicting the high-cycle fatigue strength of sharp V-
notches characterised by different values of the opening
angle. In such a study, they critically reviewed several
methods, coming to the conclusion that the PM (but also
other approaches based on different theoretical frame-
works) works very well in the presence of large values
of the notch opening angle (even though the critical dis-
tance is defined considering a crack, that is, a stress raiser
having notch opening angle equal to zero).

Consider now a sharp V-notch subjected to a remote uni-
axial fatigue loading. When the notch opening angle, 2α,
is larger than zero, Eqs (12) and (13) show that σx be-
comes larger than σz. The corresponding stress state is
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a

Figure 4 : Mohr’s circles for a sharp notch having open-
ing angle larger than zero.

described by Mohr’s circles sketched in Figure 4. In such
a situation, the PM postulates that a component is in the
fatigue limit condition when:

σx,a = σ1,a = σ0 > σz,a (60)

and the validity of the above relationship has been con-
firmed by systematic re-analyses done considering spec-
imens of different material and characterised by different
geometrical features (Taylor and Susmel, 2003; Taylor
and Wang, 2000). According to the symbolism of Figure
4, it is possible now to easily write the following identi-
ties (Susmel and Taylor, 2003):

τa = σn,max =
σ1,a

2
=

σ0

2
(61)

which are still valid even in the presence of notch root
radii different from zero, because the stress field at any
point along the notch bisector is always described by
Mohr’s circles similar to those sketched in Figure 4 (Laz-
zarin and Tovo, 1996). In other words, even when the
root radius of a notch subjected to a remote uniaxial fa-
tigue loading is larger than zero, the stress field along the
notch bisector is always biaxial. According to the above
remarks, it is trivial to demonstrate that the critical plane
approaches considered in the previous section can suc-
cessfully be re-interpreted in terms of the TCD even in
the presence of non-zero notch-opening angles and non-
zero root radii: the condition ω∗ = ω and η∗ = η is al-
ways assured.

Now it can be observed again that all the considerations
on the reviewed criteria reported in the previous sec-
tions were formalised considering bi-dimensional prob-
lems resulting in a plane stress condition at the tip of the

stress concentrator. Of course, dealing with more general
situations, a triaxial stress state should have been consid-
ered. Unfortunately, at this stage this problem is difficult
to be address, due to the lack of experimental results and
to some added complications in the theoretical analysis.
The TCD was originally formalised in terms of the max-
imum principal stress (Taylor, 1999), whose distribution
ahead of cracks is the same both under plane stress and
under plain strain: for this reason, under uniaxial fatigue
loading the TCD can successfully be applied to predict
the fatigue limit of stress concentrators independently of
the multiaxiality of the stress field in the fatigue process
zone.

On the contrary, if one wanted to correctly account for the
triaxiality of the stress field ahead of a crack under plane
strain (for instance, by defining a convenient equivalent
stress), the situation would become much more complex:
as far as the authors are aware there are still no sound
approaches which can be used to address this complex
and tricky problem.

In any case, to conclude this section, it is possible to
say that, unfortunately, the problem is far from being
completely solved: more effort is needed in this area,
both from an experimental and a theoretical point of
view, to propose sound methods suitable for assessing
three-dimensional stress concentrators subjected to tri-
axial stress states. All the considerations reported in the
present paper were instead based on the assumption that
the reference configuration was that of a crack subjected
to plane stress, and all the calculations summarised above
were done in accordance with this simplifying hypothe-
sis. It is worth noting, however, (as will be demonstrated
below) that the present bi-dimensional approach turned
out to be very successful for predicting the available ex-
perimental data.

9 Quantitative Comparison Of The Selected Crite-
ria

The theoretical arguments reported above demonstrated
that the critical plane approaches are the only multiax-
ial fatigue criteria which can rigorously be re-interpreted
in terms of the TCD. In the present section, to check
the practical accuracy of such criteria, they are employed
to predict fatigue limits of notched specimens subjected
to multiaxial fatigue loading. Table 1 summarises the
experimental data used for this systematic validation
(Gough, 1949; Susmel and Taylor, 2003; Kurath, Dow-
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Table 1 : Summary of the experimental data generated under multiaxial fatigue loading.

T 0 0 L

Spec.

type Material  Ref. 

[MPa] [MPa] [MPa] [mm]  

Load type

SAE 1045 Kurath et al., 1989 621
(2)

304
(2)

 176
(1)

 0.159
(2)

 Fig. 5a Be/To 

Ck 45 (SAE 1045) Sonsino, 1994 621
(2)

304
(2)

 176
(1)

 0.159
(2)

 Fig. 5b Be/To 

S65A Gough, 1949 1003 584 371 0.056
(3)

 Fig. 5c Be/To 

0.4% C Steel (Norm.) Gough, 1949 648 332 207 0.178
(4)

 Fig. 5d Be/To 

3% Ni Steel Gough, 1949 526 343 205 0.144
(4) Fig. 5d Be/To 

3/3.5% Ni Steel Gough, 1949 722 352 267 0.516
(4) Fig. 5d Be/To 

Cr-Va Steel Gough, 1949 752 429 258 0.101
(4) Fig. 5d Be/To 

3.5% NiCr steel (NI) Gough, 1949 895 540 352 0.150
(4) Fig. 5d Be/To 

3.5% NiCr steel (LI) Gough, 1949 897 509 324 0.109
(4) Fig. 5d Be/To 

NiCrMo steel (75-80 tons) Gough, 1949 1243 594 343 0.106
(4) Fig. 5d Be/To 

BS040A12 Susmel et al., 2003 410 273 171 0.200 Fig. 5e MI-II 
(1) Calculated using Von Mises' criterion 

(2) Material properties taken from DuQuesnay, Yu, Topper, 1988; 

(3) Determined by using the fully-reversed uniaxial fatigue test (Susmel, 2004); 

(4) Determined by using both the uniaxial and the torsional fatigue results (Susmel, 2004). 

Be= bending; To= torsion; MI-II= in-phase Mode I and II loading

ing, Galliart, 1989) - the assumptions made to estimate
some of the material properties reported in Table 1 are
widely discussed in (Susmel, 2004), whereas the geome-
tries of the considered specimens are sketched in Figure
5. The accuracy in estimating fatigue limits of the dif-
ferent multiaxial fatigue criteria have been quantified ac-
cording to the fatigue strength error index proposed by
Papadopoulos (Papadopulos, 1995):

E[%] =
(

X +ω ·Y
η

−1

)
·100 (62)

The above definition implies that when E=0 fatigue life
estimations are exact; when E<0 predictions are non-
conservative and when E>0 predictions are conserva-
tive. According to the usual accuracy shown by the TCD
(Taylor and Susmel, 2003; Taylor and Wang, 2000), es-
timations were considered to be acceptable when falling
within an error interval of ±20%. The critical plane ap-
proaches should be capable of accounting for both the
mean stress effect and the presence of non-proportional
loading. Regarding the mean stress effect, we did not
address this problem while re-interpreting multiaxial fa-
tigue criteria from a TCD point of view; all the calcu-
lations were based on the assumption that the cracked
specimens were subjected to fully-reversed loading (R=-
1). Thus the material characteristic length, L, was de-
termined by using fatigue properties (i.e., σ0 and Kth)
determined under R ratios equal to –1.

However, the rigorous application of the TCD under uni-
axial fatigue loading requires the determination of L un-
der the correct load ratio: the L value of a given mate-
rial changes as the load ratio, R, changes (Taylor, 1999;
Atzori, Meneghetti and Susmel, 2005). Therefore, the
use in the presence of non-zero mean stresses of mul-
tiaxial fatigue criteria re-interpreted in terms of the PM
should require the definition of a correct value for L. Un-
fortunately, this would result in an increase of the prob-
lem complexity, making these methods not suitable for
systematically post-processing FE linear elastic results.
To overcome this problem, we have previously argued
(Susmel, 2004) that L must be always determined un-
der fully-reversed uniaxial fatigue loading, because the
presence of non-zero mean stresses as well as non-zero
out-of-phase angles must be directly accounted for by
the criterion used to estimate fatigue damage. In other
words, L determined under R=-1 was considered to give
representative information of the “pure” material crack-
ing behaviour. Therefore, according to the above consid-
erations, the accuracy of the considered critical plane ap-
proaches was checked in the presence of non-zero mean
stresses by always using the L value determined under
R=-1.

Initially, to check the validity of the above assumption,
the reviewed multiaxial fatigue criteria were applied to
predict fatigue limits of notched specimens subjected to
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Figure 5 : Geometries of the notched specimens tested under multiaxial fatigue loading (dimensions in millimetres).

uniaxial fatigue loading. Table 2 summarises the per-
formed estimations. In particular, the results listed in Ta-
ble 2 were generated testing flat specimens, made of both
steel - SAE 1045 (DuQuesnay, Yu and Topper, 1988)
and SM41B (Tanaka and Nakai, 1983) - and aluminium -
2024-T351 (DuQuesnay, Yu and Topper, 1988) - , with a
central hole of radius ranging from 0.12mm up to 2.5mm.

It is important to highlight that, according to the main hy-
pothesis the speculations reported above were based on,
stress fields in the vicinity of the notch tips of the con-
sidered specimens were determined by linear-elastic FE

analyses carried out assuming a plane stress condition.

The accuracy obtained in predicting notch fatigue lim-
its under fully-reversed uniaxial fatigue loading was not
surprising: as demonstrated in the previous section, un-
der fully-reversed uniaxial fatigue loading there exists
a perfect correspondence between the PM and the crit-
ical plane approaches re-interpreted in terms of the TCD.
More interesting is the observation that, apart from one
prediction, all the criteria were capable of estimations
falling within an error interval of ±20% when applied to
predict fatigue limits under load ratios, R, larger than –1.
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Table 2 : Accuracy of the critical plane approaches in predicting notch fatigue limits under uniaxial fatigue loading
(M=Matake, McD=McDiarmid and MWCM= Modified Wöhler Curve Method).

Error
0 0

(1)
T rn

M McD MWCM Material Ref. 

[MPa] [MPa] [MPa] [mm]

Notch

Type
R

[%] [%] [%] 

0.12 Short -1 -5.2 -11.9 -4.4 

0.25 Short -1 -5.5 -12.2 -4.7 

0.5 Sharp -1 13.1 5.0 11.3 

1.5 Blunt -1 -7.1 -13.7 -6.1 

0.12 Short 0 16.3 1.7 15.7 

0.25 Short 0 -0.8 -13.3 2.8 

0.5 Sharp 0 13.7 -0.6 13.8 

A
L

-2
0
2

4
-T

3
5
1
 

DuQuesnay et al., 1988 124 72 460 

1.5 Blunt 0 7.8 -5.7 9.3 

         

0.12 Short -1 -19.1 -21.6 -16.5 

0.25 Short -1 -10.0 -12.8 -8.6 

0.5 Sharp -1 -2.3 -5.3 -2.0 

1.5 Blunt -1 2.2 -1.0 1.9 

2.5 Blunt -1 8.2 4.8 7.0 

0.12 Short 0 -16.6 -21.2 -9.4 

0.25 Short 0 2.6 -3.0 5.2 

0.5 Sharp 0 11.0 5.0 11.6 

1.5 Blunt 0 6.3 0.5 8.1 

S
A

E
 1

0
4

5
 

DuQuesnay et al., 1988 304 176 720 

2.5 Blunt 0 10.7 4.7 11.4 

         

0.16 Sharp -1 -13.7 -20.3 -11.9 

0.39 Sharp -1 -1.0 -8.5 -0.9 

0.83 Sharp -1 -9.9 -16.8 -8.6 

3 Sharp -1 2.1 -5.7 1.8 

0.16 Sharp 0 -39.6 -44.2 -34.4 

S
M

B
4
1

 

Tanaka, Nakai, 1983 

Tanaka, Akiniwa, 1987 
163 94 423 

0.16 Sharp 0.4 -13.6 -30.4 1.5 
(1)

Calculated using Von Mises' criterion

The obtained accuracy is very promising, strongly sup-
porting the idea that L can always be determined under
fully-reversed fatigue loading, the detrimental effect due
to non-zero mean stress being correctly accounted for by
the multiaxial fatigue criteria themselves.

Table 3 shows that a similar level of accuracy was also
obtained when applying the considered fatigue damage
parameters to the results generated by Gough testing
notched specimens under bending and torsion with super-
imposed static stresses (Gough, H. J.). Table 3 confirms
that, independently of the employed criterion, predic-
tions fell always within the usual error interval of ±20%.
As to the accuracy in predicting out-of-phase loading sit-
uations, the last two rows of Table 3 show that all the crit-

ical plane based methods examined here, were capable
of correctly predicting the multiaxial high-cycle fatigue
strength of the only two results found in the technical lit-
erature and generated under out-of-phase loading. These
results are promising, even though it is evident that more
experimental work has to be done to better investigate the
fatigue behaviour of notched components under complex
stress states.

The error in the systematic application of the three con-
sidered critical plane approaches to the 66 sets of experi-
mental data found in the literature, is summarised in Fig-
ure 6: this diagram was constructed assuming a normal
distribution of the errors (mean values and standard de-
viations are reported in Table 4). The error distributions
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Table 3 : Accuracy of the considered critical plane approaches in predicting multiaxial fatigue strength due to out-
of-phase loading as well as due to non-zero mean stresses (M=Matake, McD=McDiarmid and MWCM= Modified
Wöhler Curve Method).

Error 
Material Ref. b,a b,m t,a t,m x,xy

M McD MWCM

    [MPa] [MPa] [MPa] [MPa] [°] [%] [%] [%] 

347.3 266.3 0 0 0 16.4 4.2 16.8 

361.2 0 0 169.8 0 3.7 -3.5 3.1 

318 266.3 0 169.8 0 8.0 -3.6 11.8 

0 0 276.3 169.8 0 -7.6 -7.6 -7.6 

0 266.3 243.9 0 0 14.5 4.1 13.3 

0 266.3 230 169.8 0 9.8 -0.6 10.6 

294.15 0 196.1 169.8 0 12.1 2.8 10.6 

S65A Gough, 1949 

270.9 266.3 180.6 169.8 0 18.0 4.8 19.4 

SAE 1045 Kurath et al., 1989 156.9 0 100.6 0 90 -12.2 -14.2 -7.1 

CK45 Sonsino, 1994 188.9 0 131.6 0 90 9.5 7.2 9.4 

Table 4 : Mean values and Standard Deviations of the
error distribution for the three considered critical plane
approaches.

Criterion
Mean 

Value

Standard 

Deviation

Matake -7.47 16.67 

McDiarmid -12.94 18.27 

MWCM -1.82 11.33 
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Figure 6 : Probability Density Function vs. Error dia-
gram for the three considered critical plane approaches.

shown by Figure 6 prove that the best accuracy was ob-
tained by applying the MWCM: about 92% of all the pre-

dictions fell within our limits of 20% error. Moreover, it
can be seen that the three peaks of the error distributions
fell within the non-conservative zone (Tab. 3), but the
mean value (equal to about –2%) obtained by applying
the MWCM was very close to zero, making this the most
valid criterion.

To conclude this section, it is possible to say that the only
criteria which can rigorously be re-interpreted in terms
of the TCD are the critical plane approaches and, among
them, the systematic validation discussed above proved
that the most accurate one is the MWCM.

10 Discussion

This paper summarises an attempt to use the conventional
multiaxial fatigue criteria in conjunction with the TCD.
By examining the stress fields at the fatigue limits and
thresholds for plain and cracked specimens, it was shown
that self-consistent predictions could be made, i.e. that
the material constants in the criteria remained truly con-
stant, only for the critical plane criteria. Other criteria,
using stress invariants or mesoscopic approaches, were
shown to be inconsistent with the TCD by this same test.
This argument was then generalised to include also V-
shaped notches and notches with non-zero root radius.

It is important to highlight that the above calculations
were done assuming as reference configuration the one of
a cracked plate where the crack tip was subjected to plane
stress. This assumption was a consequence of the fact
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that, in this paper, we considered only bi-dimensional
problems. As far as the authors are aware there are
no methods strictly devised to assess three-dimensional
stress concentrators subjected to triaxial stress states: it
is evident that a great effort has to be made in order to for-
malise fatigue life estimation techniques which are suit-
able for addressing such a complex problem.

A second important assumption in this analysis was that
the critical distance L is a material constant, independent
of the type of loading. In fact we know that this is not
strictly true: L has been shown to vary with R ratio (Tay-
lor, 1999; Atzori, Meneghetti and Susmel, 2005) and so
we can expect that, in general, it will also vary with the
degree of multiaxiality. However, our previous work sug-
gested that this was not a major factor in the predictive
accuracy of the model, and this has been borne out by the
accuracy of the predictions made in the much larger as-
sessment of experimental data presented here. The likely
reason for this is that, due to the nature of the stress gra-
dient at the notch, a change in the value of L tends to have
only a small effect on the value of the predicted fatigue
strength. Thus this simplifying assumption seems to be
valid, at least for the whole range of notch geometries
which are likely to be encountered in practice.

Having examined a number of different critical plane ap-
proaches, the one which was found to be more accurate,
and therefore the one which is recommended from this
study, is the MWCM. When combined with the TCD in
the form of the Point Method, this criterion was able to
account for the effect of multiaxiality in notches with a
very wide range of geometries and Kt factors, loaded at
different R ratios.

Despite this success, it is clear that the effect of R ratio
cannot be completely described by the MWCM, or in-
deed by any one criterion, as it is well known that differ-
ent criteria are needed to describe mean-stress effects in
different materials (Frost, Marsh and Pook 1974; Susmel,
Tovo and Lazzarin, 2005) - e.g. Gerber’s parabola, Di-
etman’s parabola, Goodman’s straight line, Soderberg’s
relationship, etc.. Consider a plain specimen subjected
to a remote uniaxial fatigue loading characterised by a
load ratio larger than –1. If the MWCM were a “per-
fect” method, it should predict the plain fatigue limit of
this specimen, even if calibrated by using fatigue prop-
erties generated under fully-reversed loading. Unfortu-
nately, this is not always true, because, as the classical
criteria, its accuracy depends on the material sensitivity

to superimposed static stresses (Susmel, Tovo and Laz-
zarin, 2005).

Consider now a notched specimen subjected to Mode I
loading with a load ratio, R, different from -1. Even as-
suming that the MWCM might correctly predict the uni-
axial plain fatigue limit under the applied load ratio, the
notch fatigue limit prediction would not be correct in any
case, in fact, as mentioned above, the L value changes as
the load ratio changes (Taylor, 1999; Atzori, Meneghetti
and Susmel, 2005).

These considerations highlight the fact that, even though
the MWCM performs predictions which are accurate
from an engineering point of view, from a theoretical
point of view this method is just a pragmatic approxi-
mation of a complex phenomenon.

Finally, to conclude this section, it is possible to highlight
the high accuracy shown by the critical plane approaches
re-interpreted in terms of the TCD when used to predict
notch fatigue limits under out-of-phase loading: the ob-
tained results are promising, but the only two experimen-
tal results found in the literature are not enough to ex-
press a final verdict about this aspect.

11 Conclusions

The critical plane approaches are the only multiaxial fa-
tigue criteria which can coherently be re-interpreted in
terms of the TCD; the use of other criteria leads to in-
consistencies in the values of the material constants for
plain, cracked and notched specimens;

Among the reviewed critical plane approaches, the
MWCM was found to be the most accurate one, giv-
ing predictions falling within an error interval of about
±20%;

A number of assumptions were made in obtaining these
predictions, notably the constancy of the critical distance
L and the response of the material to different R ratios.
These assumptions, though clearly questionable in the
general case, can be justified by the high accuracy of the
predictions obtained.

More work has to be done in this area to better un-
derstand the behaviour of three-dimensional stress con-
centrators subjected to in-phase and out-of-phase triaxial
stress states.
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