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Aircraft Structural Integrity Assessment through Computational Intelligence
Techniques

Ramana M. Pidaparti1

Abstract: This paper provides an overview of the com-
putational intelligence methods developed for the struc-
tural integrity assessment of aging aircraft structures.
Computational intelligence techniques reviewed include
artificial neural networks, inverse neural network map-
ping, wavelet based image processing methods, ge-
netic algorithms, spectral element methods, and particle
swarm optimization. Multi-site damage, corrosion, and
corrosion-fatigue damage in aging aircraft is specifically
discussed. Results obtained from selected computational
intelligence methods are presented and compared to the
existing alternate solutions and experimental data. The
results presented illustrate the applicability of computa-
tional intelligence methods for assessing the structural
integrity of aging aircraft structures and materials.
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1 Introduction

The Aloha airlines flight accident on April 28, 1988, was
a turning point in aviation history, and created aware-
ness of extensive damage that can be caused by aging
aircraft in the public as well as the aviation community.
A major portion of the upper fuselage of the aircraft was
lost in full flight at 24,000 feet. Multiple fatigue cracks
and corrosion damage were detected near the holes of
the upper row of rivets in several fuselage skin lap joints
(www.airdisaster.com/photos). Although the casualties
were not high, the damage done to the aircraft struc-
ture was irreversible. Several such accidents have since
been reported concerning aging aircraft. Inspection of
other similar aircraft revealed corrosion, disbonding, and
cracking problems in the lap joints.

The major problems of aging aircraft as described by
Lincoln (1995) and Chang (1995) include in-service
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cracking of the aircraft wing upper surface, widespread
fatigue damage of the various structural components,
uncertainty in variable amplitude loading, overload ef-
fects of aircraft, discrete source damage induced by for-
eign objects, and repairs of metallic components with
composite counterparts to extend the service life. Peri-
odic inspections of critical areas using appropriate NDE
(Nondestructive Evaluation) techniques are carried out
to ensure safety. The inspection intervals are calcu-
lated based on damage tolerance predictions of crack
growth or full scale testing (Bates, 1995). A wide
variety of NDI (non-destructive inspection) techniques
are available for characterizing damage from different
sources in materials and structures (Boving, 1989). Sev-
eral NDI systems (eddy current inspection systems, en-
hanced visual inspection system or stereographic sys-
tem, acoustic emission, and others) have been used to
detect the cracks/damage in aging structures and mate-
rials (Wilson and Hagemaier, 1999; Grandhi, Nkrumah,
Sundaresan, Kemerling, Thomas, 2005; Haugse, Leeks,
Ikegami, Johnson, Ziola, Dorighi, May, Phelps, 1999;
Rong-Sheng, 2004; Finlayson, Friesel, Carlos, Miller,
Godinez, 2000). Wilson and Hagemaier (1999) present
an overview of various NDI techniques for aging air-
craft. Acoustic emission technique has also been used for
crack monitoring (Grandhi, Nkrumah, Sundaresan, Ke-
merling, Thomas, 2005; Haugse, Leeks, Ikegami, John-
son, Ziola, Dorighi, May, Phelps, 1999), corrosion pro-
cess (Rong-Sheng, 2004), and structural health monitor-
ing (Finlayson, Friesel, Carlos, Miller, Godinez, 2000).
Sometimes, it is necessary to use a combination of dif-
ferent NDI methods to detect specific damage (cracks,
disbonds, etc.) characteristics.

Aging aircraft structures experience various complex
types of damage mechanisms that may include multi-
ple site damage (MSD), corrosion, corrosion-fatigue, and
creep-fatigue. The strength and durability characteristics
of aging structures/components depend on various pa-
rameters like loading spectrum, material geometry, and
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environment and then complex relationships. Wallace
and Hoeppner (1985) described many types of corro-
sion that may occur in aircraft structures. Lap joints are
a common structural element in many military aircraft
(KC-135, C-130, Jstars) and in transport aircraft fuselage
that is subjected to corrosion damage. Corrosion in lap
joints has many effects including material loss, pillowing
stresses, pillowing cracks, rivet failures and interactions
with fatigue, among others. Fatigue may interact with
corrosion in the lap joints, and their combined effect is
not completely understood. In order to estimate the ef-
fect of corrosion damage for structural analysis, the ma-
terial loss information alone is not sufficient. Advanced
structural integrity models require quantitative informa-
tion in the form of metrics either direct or indirect of cor-
rosion damage. The metrics for corrosion damage struc-
tural analysis may include corrosion morphology, crack
size and location, and rivet condition (Kinzie and Peeler,
1999).

After damage has been detected and quantified, it may
be necessary to prevent further growth and subsequent
catastrophic failure. This is accomplished by fracture
mechanics analysis and repair considerations for struc-
tural integrity. Considerable efforts have also been de-
voted to studying widespread fatigue damage behav-
ior and its effects on structural integrity (Smith, Hijazi,
Haque, and Mysore, 1999). Material degradation as a re-
sult of widespread fatigue damage, is quantified in terms
of reduction in strength, fracture toughness and fatigue
life. There is a vast amount of literature on damage detec-
tion using various techniques. However, only a focused
review of the literature on multi-site damage problems
in aging aircraft is presented here. Several approaches
have been used to estimate the residual strength of air-
craft panels with multisite damage (Swift, 1993; Wang,
Chow, Kawai and Atluri, 1998; Moukawsher, Heine-
mann, and Grandt Jr., 1996; Smith, Perry, Saville, Adil
Mouak, Myose, 2000). Swift (1993) developed an an-
alytical method to determine the residual strength of a
panel based on yield stress method. Fracture mechan-
ics techniques also have been used to predict the residual
strength of panels with multisite damage (Actis and Sz-
abo, 1992; Atluri and Tong, 1991). Several techniques
have also been proposed for establishing widespread fa-
tigue damage (WFD) stress intensity factors, for exam-
ple, finite element or boundary element methods, super
convergent and compounding methods (Actis and Szabo,

1992; Atluri and Tong, 1991; Wang and Atluri, 1996).
Several authors (Sivam and Ochoa, 1999; Howard and
Mitchell, 1995) have developed methods for identify-
ing and evaluating the effects of corrosion on aircraft.
Scheuring and Grandt (1995) have evaluated aging air-
craft materials for their mechanical and fatigue behavior.
Recently, Horst (2005) developed Monte-Carlo simula-
tions and Wavelet transforms methods to assess multi-
site damage problems in aging aircraft. A comprehen-
sive review of methodology for structural integrity as-
sessment has been carried out by Atluri (1997).

Assessing the structural integrity of many aerospace en-
gineering structures which are approaching or exceeding
their design life becomes increasingly important in de-
termining their load carrying capacity, serviceability and
safety. Structural health, or equivalently the state of dam-
age, is directly related to the structural performance and
hence has been singled out as a governing parameter with
regard to safety of operation (Bartelds, 1998). Structural
health of a structure can be established either directly,
where one checks for the damage type under considera-
tion such as corrosion, cracks, etc., by applying appropri-
ate inspection techniques, or indirectly, where the effect
of certain damage on the structural response characteris-
tic is known. Obviously in both the direct and indirect
approaches, the sensitivity and reliability of inspections
are important quantitative performance measures. They
are determined, on one hand by the laws of physics, but
on the other hand, in practice also by the hardware and
software quality of the inspection equipment, as well as
by the equipment operator/inspector.

Changes in the structural integrity of struc-
tures/components may affect the performance to
such an extent that remedial measures may become
necessary. To reduce the repair and maintenance costs,
one might perform early repair on the structures before
the damage grows to a dangerous size. Alternatively, the
repair may even be postponed till the aircraft is taken out
of service for scheduled maintenance. In the latter case,
it may become important to adapt operational usage
to limit or even stop the damage growth. If sufficient
knowledge exists to relate damage rates to mission types,
structural health can be achieved by usage monitoring
(Bartelds, 1998). Maintenance and repair of the structure
will be easier if maximum allowable values of the
damage parameters can be obtained so that the physical
health of the structure does not affect the performance
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Figure 1 : Schematic of the structural integrity assessment model to estimate structural durability in aging aerospace
structures

considerably.

This paper provides an overview of the computational
intelligence methods developed for the structural in-
tegrity assessment of aging aircraft structures. Compu-
tational intelligence techniques studied include artificial
neural networks (Russel and Norvig, 1995; Bryson and
Ho, 1969), inverse neural network mapping (Pidaparti,
Jayanti, Palakal, and Mukhopadhyay, 2003) , wavelet
based image processing methods (Umbaugh, 1998), par-
ticle swarm optimization (Reynolds, 1994; Eberhart and
Kennedy, 1995), genetic algorithms (Mares and Surace,
1996; Friswell, Penny, Garvey, 1998), and spectral el-
ement methods (Nag, Mahapatra, and Gopalakrishnan,
2002; Nag, Mahapatra, and Gopalakrishnan, 2002). Esti-
mating the severity of multi-site damage, corrosion dam-
age, and corrosion-fatigue damage in aging aircraft is
specifically discussed using these methods. Results ob-
tained from selected computational intelligence methods
are compared to the existing alternate solutions and ex-
perimental data for corrosion damage, multi-site damage,
and corrosion-fatigue damage problems.

2 Structural Integrity Assessment Model

The overall goal of our research is to develop a struc-
tural integrity assessment model/system to quantify the
damage due to different sources in aging structures, to
estimate the severity of the quantified damage, and in-
tegrate the developments into an intelligent system so
that it can be used to empirically predict fatigue failure
and fatigue life of aging materials and structures. Given
the different damage parameters for a structure, the goal
is to estimate a unique parameter, called a safety index
that gives an indication of the safety or reliability of the
structure. Figure 1 shows the schematic of a framework
for the structural integrity assessment model for predict-
ing the structural durability of an aged structure due to
multiple damage mechanisms resulting from corrosion,
fatigue, creep and others. A multi-disciplinary approach
consisting of materials, damage/fracture mechanics, ar-
tificial intelligence, computer vision, pattern recognition
techniques, and engineering optimization is being pur-
sued to assess the structural integrity due to damage in
aging structures. Figure 2 shows an overview of the
damage types in aging aircraft considered and the corre-
sponding computational intelligence techniques used to
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Figure 2 : Overview of the damage types in aging aircraft and the corresponding computational intelligence tech-
niques used to estimate the structural integrity

estimate the structural integrity. Computational intelli-
gence methods based on neural networks, inverse map-
ping, image processing, and particle swarm optimization
are developed to predict the residual strength, material
loss due to corrosion, and fatigue life of aging aircraft
panels. Thus, the computational intelligence methods
can be used to estimate the extent of damage and also its
severity. The intelligent system and the associated devel-
opments are being validated through a series of carefully
selected problems from aging aircraft structures. This
paper discusses some of the developments to date and
the progress of the proposed intelligent computations to
assess the extent of structural damage in aging aircraft
structures and materials.

3 Assessment Of Multi-Site Damage (MSD)

Presence of loaded holes in an aircraft structure causes
high stress concentration near the edges of the holes,
which in turn, facilitates crack formation at the edges.
These small cracks slowly grow to coalesce with adjacent
cracks and form a continuous crack referred to as the lead
(or center) crack spanning a few rivet holes. This sort of
crack formation at various sites of the structure is called
Multiple Site Damage (MSD) and is very detrimental to
structural integrity. Panels with MSD in addition to the
lead cracks may exhibit a further loss in strength, espe-
cially, in panels made of ductile materials, like 2024-T3
aluminum (Smith, Hijazi, Haque, and Mysore, 1999).
Corrosion exacerbates the effects of the stress and fa-
tigue not only when corrosion occurs simultaneously but

also as a result of pre-existing corrosion (Koch, 1995).
Scheuring and Grandt (1995) have shown that fatigue
life and fatigue crack growth rate of aircraft aluminum
are adversely affected by pre-existing corrosion. Hence,
the presence of MSD along with corrosion needs to be
considered for more accurately predicting the structural
integrity of the MSD panels as shown in Fig. 3. As these
two phenomena act together to cause damage to the struc-
ture, the designer has to take into account both the effects
together instead of treating them separately. The neural
network approach (Russell and Norvig, 1995) is capable
of predicting the desired values of residual strength and
corrosion parameters, due to two independent effects.

The objective of the neural network approach is to pre-
dict the residual strength and corrosion properties of air-
craft aluminum panels with MSD. A multi-layer, feed-
forward neural network, with back-propagation learning
algorithm (Bryson and Ho, 1969), is developed (Pida-
parti, Jayanti and Palakal, 2002). The input parameters
used for network can be divided into three categories as
shown in Figure 4. The parameters affecting only the
residual strength of the MSD panel are panel width, num-
ber of holes, hole diameter, center crack length, average
MSD crack length and material loss, while those affect-
ing the corrosion rate and corrosion rating of the panel
include the material type, corrosion environment type,
yield strength, temperature and the duration of exposure.
Yield strength and panel thickness are the two inputs that
are common to both these phenomena. Figure 4 shows
all the input parameters (total of 13) affecting the corro-
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Figure 3 : Schematic showing the various damage parameters for aircraft fuselage panels with Multiple Site Damage
(MSD) and corrosion

sion behavior and residual strength of MSD panels. All
the parameters except material type designator and corro-
sion environment are continuous variables. Material type
designator can take integer values from 1 to 4 depending
on whether the material belongs to the 2xxx, 3xxx, 6xxx
or 7xxx series of Aircraft Aluminum, respectively. Sim-
ilarly, the corrosion environment can take integer values
from 1 to 5, depending on the type of environment.

The data for training the NN was obtained from vari-
ous sources in the literature (Smith, Hijazi, Haque, and
Myose, 1999; Wang, Chow, Kawai, and Atluri, 1998;

Moukawsher, Heinemann, and Grandt Jr., 1996; Smith,
Perry, Saville, Mouak, and Myose, 2000; Sivam and
Ochoa, 1999; Sheuring and Grandt Jr., 1995). Figure 5
shows the correlation between the neural network predic-
tions and the experimental values of residual strength for
the training set. A set of nine panels were set aside for
testing the generality of the network and were therefore
not included in the training data set for the neural net-
work. The residual strength predictions for these panels
using various methods are presented in Fig. 6. The NN
predictions are compared with different analytical mod-
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Figure 4 : A neural network model for predicting the residual strength and corrosion rating for a MSD panel in
aging aircraft
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els along with the existing experimental data (Moukaw-
sher, Heinemann, and Grandt Jr., 1996; Smith, Perry,
Saville, Mouak, and Myose, 2000; and Sheuring and
Grandt Jr., 1995). The average absolute error of predic-
tion by the neural network method was less than 12% for
all the test panels. However, the mean absolute error in
the residual strength predicted by other analytical meth-
ods was as high as 50% for some panels. Overall predic-
tions from neural network are consistently close to the
experimental data. The neural network is able to predict
fairly well the corrosion rate and the ASTM rating for the
panels. In this study, the network model captures the cor-
rosion phenomena fairly accurately as presented in Fig

6. Overall, the neural network predictions are reason-
ably close to the experimental values of residual strength
and corrosion. Pidaparti and Palakal (1998 and 1995) de-
veloped an optimization NN to predict the fatigue crack
growth in MSD panels in aging aircraft.

3.1 Sensitivity Analysis

A sensitivity analysis is carried out to observe which
of the geometry, material and environmental parameters
are important in affecting residual strength and corrosion
rate. After the knowledge is captured through neural net-
works, an inverse mapping approach (Pidaparti, Jayanti,
Palakal, and Mukhopadhyay, 2003) is used to obtain the
sensitivity of various parameters. Table 1 ranks the im-
portance of various parameters for residual strength and
corrosion rate. It can be seen from Table 1 that lead
crack-length and post-corrosion material are most impor-
tant for residual strength where as the duration of expo-
sure and yield strength of the material is important for
corrosion rate. Based on the ranking results, it is obvious
that it is very important to control/monitor the lead crack-
length in MSD panels for structural integrity purposes.
Also, if MSD panels are operating in a corrosive envi-
ronment, post corrosion material existing in the panel is
very important for the residual strength of MSD panels.
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Figure 6. Comparison of neural network predictions of residual strength for an aging aircraft 
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Figure 6 : Comparison of neural network predictions of residual strength for an aging aircraft MSD panel with other
analytical methods and experimental data [11, 12, 18]

Table 1 : Ranking of various input parameters from sensitivity studies for MSD problem

Rank Residual Strength 

Corrosion

Rate

1 Lead crack length Duration of exposure 

2 Post-corrosion material  Yield Strength 

3 Average MSD crack length Environment type 

4 Yield strength Center crack length 

5 Hole spacing 
Average MSD crack 

length

4 Assessment of Corrosion Damage

An approach for automatic corrosion identification and
quantification based on NDI images is discussed in this
paper. Also, a neural network method is developed to
predict the residual strength and fatigue life of corroded
panels based on the amount of material loss. The pro-
posed methodology of corrosion identification and quan-
tification gives an indication of the extent of damage, in
terms of material loss, based on the images that are ob-
tained using various NDI techniques such as eddy cur-
rent, ultrasound, x-ray and others. Since visual inspec-
tion of the structure or the NDI images is a tedious and

an unreliable task, an automatic method of detection and
quantification would be of immense help to the material
inspection personnel and would also raise safety stan-
dards. In this section, we discuss how to quantify the
corrosion damage due to different NDI sources in aging
structures/components and estimate the severity of the
quantified damage using intelligent computational meth-
ods. Image analysis-based techniques are being devel-
oped for the identification and quantification of corro-
sion damage based on NDI techniques (acoustic imag-
ing, infrared imaging, eddy current imaging, impedance
imaging and X-ray radiography). The overall process
of identification and quantification of corroded regions
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from NDI images is shown in Figure 7 (Palakal, Pida-
parti, Rebbapragada, and Jones, 2001).

4.1 Corrosion Damage Identification

The images that are obtained through conventional NDI
methods are not suitable for automatic identification of
damaged regions. Therefore, the damage identification
process involves three major steps: feature extraction,
segmentation, and classification. Wavelet analysis tech-
niques are used for feature extraction, a Clustering tech-
nique is used for segmentation, and a K-means distance-
based method is used for damage classification. The
classification process involves segmenting the image into
various regions. Multi-resolution wavelet analysis is per-

formed on the NDI images to obtain a set of wavelet co-
efficients as feature vectors. These features were used
for the identification of the damaged regions on the NDI
images using clustering techniques and neural networks.
Each of the segments on the segmented image would cor-
respond to a damaged region or an undamaged region
(see Fig. 7).

4.2 Corrosion Damage Quantification

Once the damage regions are identified on the image, the
next task is to quantify the damage. The extent of ma-
terial loss is used to quantify the damage on the pan-
els. Various features that are obtained on the corroded
region based on histogram and/or wavelet analysis dur-



Aircraft Structural Integrity Assessment through Computational Intelligence Techniques 139

                          (a)                                   (b) 

                            (c)                                     (d) 

Figure 8 : Corrosion damage assessment – experimental data obtained from the National Research Council of
Canada (courtesy of Dr. Peeler of AFRL and Dr. Forsyth of NRC). The original damage panels (a) & (c) were
obtained using Eddy Current at 12kHz. Images on right (b) & (d) are identified and quantified corroded regions
obtained using the proposed techniques. The color index shows the material loss as, Black: 0%; Blue: 0% - 5%;
Green: 5% - 10%; Yellow: 10% - 15%; Magenta: 15% - 20%; and Red: 20% - 25%.

ing the segmentation stage will be used to estimate the
material loss. Once the damaged segments are identi-
fied, first-order and second-order features are extracted
from each identified segment (Umbaugh, 1998). First or-
der statistical features are computed using the histogram
of the NDI images. These include mean, standard de-
viation, skew, energy, and entropy. The second order
features such as angular second moment, inverse sec-
ond moment, entropy, and contrast are calculated using
a co-occurance matrix. The co-occurance matrix is an
estimate of the second order joint probability density. A
back-propagation NN is then used to quantify the dam-
age.

To demonstrate the corrosion damage assessment ap-
proach, an aircraft corroded panel imaged using Eddy
current NDI technique was used for corrosion damage
identification and quantification. Figure 8 shows the
original panel along with the quantified results of cor-
roded panel using the approach presented earlier. The
quantification of damage is based on the extent of mate-
rial loss. For further results on material loss prediction,
see (Palakal, Pidaparti, Rebbapragada, and Jones, 2001).

Quantified information about the damage can be used for
further analysis such as severity evaluation, prediction,
repair guidance, and so on.

4.3 Correlation of Material Loss to Residual Strength
and Fatigue Life

In order to estimate the effect of corrosion damage on
structural integrity, the material loss information alone
is not sufficient. We need to know the residual strength
and fatigue life characteristics when an aircraft panel is
corroded. Advanced structural integrity models require
quantitative damage information for structural analysis.
A neural network is developed to predict the residual
strength and fatigue life of a corroded panel. Figure 9
shows the neural network predicted values of residual
strength corresponding to a given material loss due to
corrosion. The results of neural network model are com-
pared to the experimental data obtained by Sivam and
Ochoa (1999). It can be seen from Fig. 9 that a good
agreement is found.
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of fatigue life of corroded panels with experimental data
[16]

5 Assessment of Corrosion – Fatigue Damage

To assess the structural integrity of aircraft panels sub-
jected to corrosion-fatigue damage, a neural network
(NN) methodology is developed to predict the initiation
and propagation life. Since it is important to charac-
terize both the initiation and propagation life separately,
these two parameters were used as the outputs for the
neural network (Pidaparti, Jayanti, Sowers, and Palakal,
2002). The most important factors that determine the
life of the panels are the fatigue loading and corrosion
properties. Fatigue loading is characterized by maximum
stress amplitude (Δσ), stress ratio (R) and the frequency
of loading (f). Apart from these parameters, environ-
ment plays a major role in the corrosion fatigue mecha-
nism. Duration of exposure (Dexp) of the material to cor-
rosive environment is considered in developing the neu-
ral model, for incorporating the effect of environmental
conditions. Hence, these factors are chosen as part of the
input parameters for neural networks developed in this
study. In addition to the external parameters, geometry
of the crack is also a very important factor for accurately
modeling the corrosion fatigue mechanism. Corrosion-
fatigue crack growth rates are strongly influenced not
only by the specific combinations of cyclic loads, mate-
rial and environment, but also by the crack size. Hence,
the present model uses the critical pit size (aci), which is
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Figure 10 : (a) Comparison of initiation life for training
set between NN prediction and the network input for ini-
tiation life; (b) Comparison of propagation life for train-
ing set between NN prediction and the network input for
propagation life

the pit size when a crack grows from a corrosion pit. The
initial pit size (a0) represents the material and manufac-
turing quality. The final crack size (a f ), before failure,
(as defined by the user or the inspection criteria) is also
used as one of the inputs. The final crack size is asso-
ciated with the failure condition, the experimental termi-
nation condition, or the replacement or repair condition
of the panel. However, in this study it represents the de-
tectable crack size, which will help in the maintenance
planning of the aging aircraft components.

The data for training the neural network was obtained
from various studies published in the literature (Harlow
and Wei, 1999; Rokhlin, Kim, Nagy, and Zoofan, 1999;



Aircraft Structural Integrity Assessment through Computational Intelligence Techniques 141

Table 2 : Comparison of fatigue life predictions from present NN model with experimental data

Case NN Prediction Experimental Data 

Stress Amplitude,   = 180 MPa 

Duration of Exposure, Dexp = 192 Hrs 

Frequency, f = 10 Cycles/day 

Initial Pit Size, ao = 0.125 mm 

Final Crack Size, af   = 3 mm 

184,237 cycles 198,659 cycles 

Ref. [34]

Stress Amplitude,   = 198 MPa 

Duration of Exposure, Dexp = 144 Hrs 

Frequency, f = 10 Cycles/day 

Initial Pit Size, ao = 0.024 mm 

Final Crack Size, af   = 3 mm 

306,255 cycles 306,086 cycles 

Ref. [34] 

Stress Amplitude,   = 206 MPa 

Duration of Exposure, Dexp = 72 Hrs 

Frequency, f = 15 Cycles/day 

Initial Pit Size, ao = 0.0897 mm 

Final Crack Size, af   = 3 mm 

426,682 cycles 422,076 cycles 

Ref. [33] 

Zamber and Hillberry, 1999). Since there was a lack of
sufficient data quantifying the initiation and propagation
lives separately, the analytical equations suggested by
Wang, Pidaparti, and Palakal (2001) were used to com-
plement the missing life data (either initiation or prop-
agation life) for training. The rationale for using these
equations is the fact, that these equations take into ac-
count the nucleation of the pit, while other analytical
method do not consider the pit nucleation in the initiation
life. Hence the neural network was trained with a total
failure life same as the experimental values, but with an
initial life as predicted by Wang, Pidaparti, and Palakal
(2001).

The network converged to a target mean square error of
0.001 after 9660 epochs. The correlation of the predicted
lives after training versus the lives predicted by the an-
alytical equations as well as experiments is presented
in Figure 10. Figures 10 (a) and (b) presents the com-
parisons for the NN predicted initiation and propagation
lives respectively. Figures 10 (a) and (b) show the NN
predicted results for the training set. In order to see how
the trained NN can predict general cases, separate data
sets were created for validation. The predictions of fa-
tigue life from NN model for three representative cases
are compared to the experimental data in Table 2. It can
be seen from Table 2 that a good agreement is found

0
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0.1

1.00E+04 1.00E+05 1.00E+06

Failure Life (Cycles)
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Analytical [34]
Analytical [35]
ANN prediction

Critical
Pit

Figure 11 : Effect of critical pit size on the total fail-
ure life predicted by NN in comparison to analytical and
experimental data

between the neural network model and the experimental
data from multiple sources for various changes in input
conditions. A more detailed comparison of results can be
found in Pidaparti, Jayanti, Sowers, and Palakal (2002).
To show the generality of NN predictions, the effects of
critical pit size and frequency of fatigue loading are pre-
sented next.

The critical pit size greatly affects the fatigue life. In
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Figure 12 : Comparison of neural network predictions of fatigue life for an aging aircraft panel with experimental
data

order to predict the fatigue life of an aircraft panel with
given a pit size and a critical pit size, the predictions with
varying critical pit size were obtained after training the
network. Figure11 shows the NN predictions as a func-
tion of critical pit size. The simulations obtained from
NN are also compared to those obtained by experimental
data (Zamber and Hillberry, 1999) as well as analytical
solutions (Wang, Pidaparti, and Palakal, 2001). It can be
seen that a reasonably good agreement is found between
NN predictions and the other data from the literature.

In order to predict the effect of varying frequency of fa-
tigue loading on the fatigue life, a simulation was carried
out where the frequency of loading varies from 1.25 to 20
cycles/day. Figure 12 presents the fatigue life as a func-
tion of the loading frequency. The other parameters for
the specimen are Δσg= 180MPa, R = 0.1,aci = 0.112mm,
a f = 3mm, a0 = .001mm, while the duration of exposure
(Dexp) is 144hrs. The cross mark in Fig. 12 indicates the
experimental result for the case with the similar specimen
but with a stress amplitude of 198MPa. It can be seen that
NN predictions are again close to the experimental data.

5.1 Optimization of Fatigue Life

In the corrosion-fatigue damage optimization problem,
we are trying to predict the damage parameters for max-
imum fatigue life, so that the damaged panel has maxi-
mum durability. It must however, be noted that due to the
large number of parameters and uncertainty in corrosion-
fatigue damage mechanism, the optimization algorithm
is likely to converge to local minima at times. The ob-
jective of our approach is to obtain the different dam-

age parameters that will give relatively high durability in
terms of the fatigue life. Since it is difficult to control the
external environment and loading, obtaining the global
maximum value of fatigue life may not be of practical
use. Obtaining different combinations of the damage pa-
rameters giving relatively higher fatigue lives (local max-
ima), might be of interest for aiding the maintenance of
the structure. In this study, the primary goal for using
the Particle Swarm Optimization (PSO) technique is not
to obtain the global optimum, but to explore the possible
failure conditions and the interaction of the damage pa-
rameters, so as to control the damage or repair it at the
earliest. Since it is difficult to control all the damage pa-
rameters for an existing structure (e.g. temperature, yield
strength of the material, etc.), this method can give an in-
sight into other parameters that can be controlled (diame-
ter of rivet holes, pitch, etc.), so as to have predetermined
reliability characteristics.

The previously developed neural network model for cor-
rosion fatigue (Pidaparti, Jayanti, Sowers, and Palakal,
2002) was used in the PSO algorithm to provide the initi-
ation and propagation lives (Dowling, 1993), which con-
stitute the fitness function. The initial fitness function for
corrosion fatigue problem is as follows:

f = α1(Initiation Life)+α2(Propagation Life) (1)

If the factors α1 and α2 are chosen such that their sum is
1, then the fitness function can be thought of as the total
fatigue failure life. After incorporating the penalty, the
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new fitness function is given by,

fn =
1
f
+κp (2)

The penalty function, p, is defined as the distance by
which a particle exceeds the input domain. For a given
particle, penalty for individual inputs is determined and
the maximum of the individual penalties is set as the
penalty for the particle.

The objective of the PSO is to minimize the new fitness
function, fn, so that the original fitness function, f, is
maximized and the penalty, p, is minimized for the parti-
cles. It is worth noting here, that the individual penalties
of the particles in the different input directions should
have the same order of magnitude (tens or hundreds) so
that all the inputs have a similar effect in determining the
penalty. This is very important since we are considering
the maximum individual penalty as the particle’s penalty.
For example, the typical values for the critical pit size
are in the range of 0.01-0.96 mm, while those for stress
amplitude and duration of exposure are in hundreds. The
penalty for a particle lying far outside the input space for
a critical crack size will still be a small value as com-
pared to the penalty for a particle that has the duration
of exposure value lying a little outside the feasible space.
Hence, all the individual penalties are amplified by suit-
able factors so as to have the same order of magnitude
as the others. The factor κ, in Equation (2) ensures that
the values of both terms on the right hand side are of the
same order. This will ensure that the optimization is not
governed by the penalty function, but by the original fit-
ness function. The constraints were incorporated into the
penalty function such that they reduce the value of the fit-
ness function of the particle for cases where the particle’s
position lies outside the feasible space. The constraints
for the corrosion fatigue problem can be found in Ref.
(Pidaparti and Jayanti, 2003).

PSO Algorithm

Particle Swarm Optimization (PSO), is related to cultural
algorithms (Reynolds, 1994), and is similar to evolution-
ary programming (Eberhart and Kennedy, 1995). Each
particle in PSO is treated as a point in an N-dimensional
(input) space. The ith particle (individual) is represented
as XI= (xi1, xi2, xiN), where xi1, xi2, . . . etc., are the N
input variables for the problem considered. The func-
tion to be optimized is called the fitness function. In the
present study, the fitness function is the reliability charac-

teristics which are measured in terms of the fatigue lives
predicted by the neural network models. Hence, the po-
sitions of the particles in the input space are the input
vectors for the neural network models, while the outputs
from the neural networks form the fitness function. The
best previous position (the position giving the maximum
fitness value) of the ith particle is stored in memory and
represented as PI = (pi1, pi2, . . . , piN). The index of the
best particle among all the particles in the population is
represented by the symbol g. The rate of change of po-
sition (velocity) for particle i is represented as VI = (vi1,
vi2, . . . , viN). The new positions and velocities of the par-
ticles are obtained according to the following equations
(Eberhart and Kennedy, 1995):

Vin = w∗ vin +c1 ∗ rand()∗ (pin−xin)
+c2 ∗Rand()∗ (pgn−xin) (3)

xin = xin +vin

where c1 and c2 are two positive constants, rand () and
Rand () are two random functions in the range [0,1], and
w is the inertia weight. The above equation is used to
calculate the particles new velocity according to its pre-
vious velocity and the distances of its current position
from its own best experience (previous best position) and
the group’s best experience. This process of updating the
positions of the particles to get the optimum position is
done until a specified number of iterations. At the end of
the final iteration, it is assumed that all the particles have
converged or are close to a single position in the input
space where the fitness function has a global optimum.

Simulations

We predicted the various damage parameters for an
aircraft panel under corrosion-fatigue environment us-
ing the particle swarm optimization approach discussed
above. After making the necessary adjustments in the
constraints and fitness functions, the PSO is used to ob-
tain the damage parameters for the desired reliability.
The PSO algorithm was run for 50 iterations with the
following parameters:

Maximum Velocity = 1.3

C1 = C2 = 1

Number of Particles (Agents) = 100

Inertia Weight, w = 0.329
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Table 3 : Prediction of input conditions for a given corrosion fatigue life (initiation and propagation lives) through
particle swarm optimization

Fitness Function (f) Predicted input parameters 

f = 0.9Ni  +  0.1Np

Stress Amplitude,   = 233 MPa 

Duration of Exposure, Dexp = 285 Hrs 

Stress Ratio, R = -0.780 

Frequency, f = 5.226 Hz 

Initial Pit Size, ao = 0.014 mm 

Final Crack Size, af   = 17.644 mm 

f = 0.5Ni  +  0.5Np

Stress Amplitude,   = 176 MPa 

Duration of Exposure, Dexp = 202 Hrs 

Stress Ratio, R = 0.800 

Frequency, f = 4.982 Hz 

Initial Pit Size, ao = 0.00291 mm 

Final Crack Size, af   = 15.548 mm 

f = 0.1Ni  +  0.9Np

Stress Amplitude,   = 218 MPa 

Duration of Exposure, Dexp = 395 Hrs 

Stress Ratio, R = 0.152 

Frequency, f = 8.374 Hz 

Initial Pit Size, ao = 0.013 mm 

Final Crack Size, af   = 4.062 mm 

The factor for the penalty function, k was set to 0.001,
so that both the terms on Equation (3) for the corrosion-
fatigue problem are in the range of 10−1- 100. Results of
simulation obtained from the optimization procedure are
presented in the next section.

Three sets of simulations were performed with differ-
ent fitness functions for the problem of corrosion-fatigue
damage. The results of input parameters obtained from
the particle swarm optimization are summarized in Table
3. The first simulation corresponds to a function given
by: f = 0.9 Ni + 0.1Np.which represents maximum fa-
tigue initiation life. This simulation yielded a maximum
initiation life of 4.99 x 1010 cycles. It can be seen from
Table 3 that in order to have a maximum initiation life,
the final crack size is around 17.644 mm. The second
set of simulation corresponds to a fitness function given
by: f = 0.5Ni + 0.5Np. This case corresponds to hav-
ing equal importance in initiation life and propagation
life. This simulation yielded both initiation and propa-
gations lifes to be of the order of 4.25 x 1011 cycles. It

can be seen from Table 4 that the predicted parameters
can be easily inferred which leads to a smaller propa-
gation life, if other factors were ignored in calculating
the fatigue lives. However, in principle, a smaller stress
ratio, a smaller stress amplitude and shorter duration of
exposure, coupled with high frequency loading, may in-
crease the fatigue life of the structure (Dowling, 1993).
Cases 1 and 2 presented in Table 3 clearly show this phe-
nomena, thereby further reinforcing the proposition that
the neural network model has correctly captured the in-
herent physical process of the corrosion-fatigue damage
mechanism. The third simulation corresponds to a case
for maximum propagation life. The fitness function in
this case is given by: f = 0.1 Ni + 0.9Np. This simula-
tion yielded a maximum propagation life of 4.99 x 10 10

cycles. It can be seen from Table 4 that the final crack
size is around 4.062 mm, and they are larger values of
stress amplitude and duration of exposure. It can be seen
from Table 3 that PSO may provide a set of parameters
for a given fitness function, thus illustrating that a proper
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combination may be useful for controlling the structural
integrity of an aging aircraft. More examples related to
corrosion-fatigue optimization can be found in Pidaparti
and Jayanti (2003).

6 Summary

The computational intelligence methods developed for
the structural integrity assessment of aging aircraft struc-
tures are summarized in this paper. The computational
intelligence techniques include artificial neural networks,
inverse neural network mapping, wavelet based image
processing methods, particle swarm optimization, ge-
netic algorithms, and spectral element methods. The spe-
cific damage types considered include multi-site damage,
corrosion, and corrosion-fatigue damage. The results ob-
tained from the computational intelligence methods com-
pared reasonably well to the existing alternate solutions
and experimental data. From a practical point of view,
the developed framework for estimating the structural
integrity using computational intelligence methodology
has advantages and limitations. For example, trained
neural networks from various data sources (experimen-
tal data, analytical and computational methods) can gen-
eralize various damage phenomena and can predict rea-
sonably well the structural integrity for some general
cases. However, it should be kept in mind that the neu-
ral network training data should include some extreme or
unprobable cases so that the knowledge about the phe-
nomena is captured for general predictions. Shyur, Lux-
hoj, and Williams (1996) used neural networks to predict
component inspection requirements for aging aircraft and
compared to multiple regression models and concluded
that neural networks offer a promising technology.

The computational intelligence methods discussed are
part of an intelligent structural damage assessment sys-
tem (ISDAS) being developed for the purpose of estimat-
ing the structural integrity of aging aircraft panels with
multiple damage mechanisms. The ISDAS program uses
analytical/neural network solutions to predict the residual
strength, fatigue crack-initiation, fatigue crack-growth,
and fatigue life based on several user-defined failure cri-
teria. Currently, this system is being extended to include
an optimization method to determine the safety index of
an aged structure.
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