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From Damage to Crack: A B.E. Approach

V. Mallardo, C. Alessandri1

Abstract: The formation of cracks and their propaga-
tion in brittle materials has been intensively studied in the
last years. The main difficulty is related to the theoreti-
cal and numerical possibility to follow the development
of regions of highly localised strains. The nonlinear phe-
nomenon is physically different from the one which oc-
curs in ductile materials: it starts with a narrow fracture
process zone containing a large number of distributed mi-
crocracks which could lead to the formation of macroc-
racks and eventually to rupture. In the present paper, a
simple nonlocal damage model is coupled to the crack
analysis in order to describe the formation and propaga-
tion of a crack in quasibrittle materials. The numerical
scheme is based on the dual boundary element method
which allows for the discretisation of the boundary, of
the crack and of the part of the domain in which the dam-
age is supposed to occur.
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1. Introduction

A great interest has been devoted in the last years to
the description of non-linear phenomena accompanied by
highly localised strains. Such an interest, mainly focused
on brittle materials such as concrete, has triggered off the
development of various techniques in the Finite Element
(FE) context. The main idea is based on the possibility to
enrich the standard finite element interpolations by strain
or displacement discontinuities. The first attempt in such
direction is due to [ Ortiz and etc. (1987)], who proposed
to enrich the strain field with only one weak discontinu-
ity crossing each element, i.e. another weak discontinuity
line in the neighboring element is necessary to model the
entire localisation band. The idea was further improved
by [ Belytschko and etc. (1988)] who proposed to embed
a localisation zone into the finite element, i.e. an element
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could contain a band of localised strain bounded by two
parallel weak discontinuity lines. Finally a strong dis-
continuity was considered by [ Dvorkin and etc. (1990)].
Afterwards, many similar techniques, enriching standard
finite element interpolations by strain or displacement
discontinuities, were proposed in the technical literature
under different names and developed according to differ-
ent types of enrichment in the element. A comparative
study is given in [ Jirásek (2000)] with special refer-
ence to the constant-strain triangle. Such an approach
was proposed in order to overcome the stress locking
which arises in the traditional smeared-crack models for
concrete fracture. A practical implementation of a spe-
cific model with a strong (displacement) discontinuity
embedded in a constant-strain triangular element is given
in [ Jirásek and Zimmermann (2001a)]. Such a formu-
lation is tested on several typical fracture problems and
the results are compared to those obtained with smeared
crack models in [ Jirásek and Zimmermann (2001b)];
stress locking is also shown to occur in consequence of
an incorrect separation of nodes and a possible remedy,
advocating a transition from a smeared to an embedded
crack, is proposed. The smeared part is reformulated as
non-local, which allows to have an additional improve-
ment.

A different approach is based on the fictitious crack
model. When an un-reinforced concrete structure is sub-
jected to an increasing external load, the developing frac-
ture zone behaves in a softening way, i.e. contact stresses
decrease while the crack opening displacement increases.
Such a formulation has been implemented in a number of
finite element formulations, e.g. [ Carpinteri (1989)] and
[ Carpinteri and Valente (1989)] for mode I cracking be-
haviour and [ Bocca and etc. (1991)], [ Gerstle and Xie
(1992)] for mixed mode propagation. The dual boundary
element method (DBEM) reported by [ Portela and etc.
(1992)] has shown to be very effective when applied to
the fictitious crack model. In fact, in [ Saleh and Aliabadi
(1995)] the DBEM is shown to be computationally ef-
fective in simulating crack propagation especially when
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dealing with the nonlinear behaviour in concrete. With
this method the crack propagation path is not to be known
in advance: at each step of the crack extension the path is
computed simultaneously, whereas the crack increment
at each iteration has to be set in advance. In [ Saleh and
Aliabadi (1998)] the DBEM is applied to the analysis of
crack growth in reinforced concrete. Both concrete and
reinforcement are supposed to be connected, compatibly
with the shear coefficient of the bond, and the reinforce-
ment is assumed to behave as a elastic-perfectly plastic
material.

All the approaches presented model the crack as a dis-
continuity immersed in a linearly elastic material, either
as a displacement discontinuity incorporated into the fi-
nite element interpolation or as a crack line (surface in
3D) considered as a part of the boundary to discretise in
the Boundary Element (BE) formulation.

It must be pointed out that such approaches do not cope
properly with the existence of a narrow fracture process
zone containing a large number of distributed microc-
racks at the fracture front. In the last twenty years, the
continuum damage mechanics has been set up as a link
between the classical continuum and the fracture me-
chanics. This approach tries to model the development,
the growth and the coalescence of microdefects which
could lead to the formation of macrocracks and eventu-
ally to rupture. One of the most commonly used damage
models introduces an arbitrary variable tensor to model
the growth and the diffusion of microcracks inside the
solid. Such tensor is introduced in the constitutive equa-
tions in order to describe the region of the body in which
a degradation of the material elastic properties due to the
microcracking phenomenon occurs. The development
of the material damage produces a strain softening be-
haviour. As pointed out already by Hadamard, the dy-
namic initial-boundary-value problem changes from hy-
perbolic to elliptic type and it becomes ill posed. The
finite element numerical solution is non-objective with
respect to the choice of the mesh and, upon the mesh
refinement, it converges to a solution with a vanishing
energy dissipation. To overcome such drawbacks, some
regularisation techniques have been proposed. One of
these is based on the formulation of a nonlocal contin-
uum: the constitutive law at a point of a continuum in-
volves weighted averages of a state variable over a cer-
tain neighbourhood of that point. A characteristic length
is also introduced to control the spread of the nonlocal

weight function. A lot of work has been done in the finite
element context; see for example [ Bažant and Jirásek
(2002)] for a survey of progress of nonlocal integral for-
mulations of plasticity and damage.

The very first coupling of BEM with nonlocal operators
is given by [ Garcia and etc. (1999)]. The main draw-
back is the assumption of constant damage in every inter-
nal cell and the collocation of the boundary integral equa-
tions in every internal node. It must be pointed out that
boundary element formulations are very suited to repre-
sent high gradients and they can be recommended in the
cases which exhibit stress or strain concentrations. The
BEM, in fact, is able both to furnish a very precise eval-
uation of the stress tensor in any internal point and to
reduce tremendously the number of the unknowns when
the nonlinear zone is relatively small in comparison with
the overall size of the finite domain. Only in 2002-2003
have [ Lin and etc. (2002)] and [ Sládek and etc. (2003)]
incorporated a nonlocal strain softening localization lim-
iter of integral type into the classical BEM formulation;
nevertheless they implement a softening plasticity model
rather than a damage model and they use a formulation
which gives rise to some locking effects in FE and it is
unable to deal with snap-back behaviours. Snap-back be-
haviours in physically nonlinear problems were faced by
[ Mallardo and Alessandri (2004)] who showed a gen-
eral procedure to combine the arc-length technique with
the BEM.

In the present paper the Authors intend to present a for-
mulation which links the continuous damage approach
with the formation and propagation of a macro-crack.
The nonlocal damage theory is applied in order to evalu-
ate the damage distribution over the solid, to regulate the
starting point of the macro-crack and to lead its propaga-
tion. An automatic procedure is also used in order to for-
mulate the weight function in terms of geodetic distance,
i.e. the minimum length of the path not intersecting the
boundary surface of the body. A numerical example is il-
lustrated in order to show the efficiency of the procedure.

In Section 2, a brief description of the nonlocal damage
model adopted is given; in Section 3 the DBEM formu-
lation in damage mechanics is presented and in Section 4
some numerical results are provided.
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2. The nonlocal damage model

In the present contribution the damage is assumed to be
isotropic, i.e. d is scalar, and the formulation is confined
to the case of small induced strains. The stress-strain
relation can be written in the following way:

σ = (1−d)Cel : ε (1)

where Cel is the fourth order elastic moduli tensor, σ and
ε are the stress and the strain tensor respectively

The model is set consistently with thermodynamic prin-
ciples by the introduction of a kinematic internal variable
α, a energy per unit of volume Y :

Y :=
1
2

ε : Cel : ε (2)

and a force X of the type:

X := k lnn c
1−α

(3)

where k, c and n are material parameters.

The existence of a damage activation function g(Y,X) is
now assumed. Under the hypothesis of generalised asso-
ciative damage behaviour, the damage activation function
can be written as:

g(Y,X) := Y −X (4)

The flaw laws read:

g(Y,X)≤ 0
.
d =

.

λ =
.
α with

.

λ ≥ 0 and
.

λg = 0 (5)

in any point of the body V .

At the generic iteration and at the points where the dam-
age activation function is zero (points x ∈Vd ⊆ V ), the
response is elastic-damaging and the following relations
must hold in Vd:

.
g ≤ 0

.

λ ≥ 0
.

λ .
g = 0 (6)

Expanding the damage activation function in its rate form
leads to:

.
g(Y,X) =

.
Y − .

X (7)

where:

.
Y = ε : Cel :

.
ε (8)

and

.
X = − kn

1−α
.
α lnn−1

(
c

1−α

)
(9)

The nonlocal version of the simple model described
above is obtained by substitution of the strain energy Y
with its nonlocal value. This choice has the advantage
that for the linear damage model all the constitutive cal-
culations can be carried out locally in a way which is
formally equivalent to the local version, despite of the
nonlocality introduced.

If Y (x) is the local value at a point x∈V , the correspond-
ing nonlocal value is defined by:

Y (x) =
Z

V
W (x,y)Y(y)dV(y) (10)

The weight function W(x,y) is given by:

W(x,y) =
W0(x,y)

W (x)
(11)

where W0(x,y) is a monotonically decreasing nonnega-
tive function of the distance r here chosen as the Gauss
distribution function, i.e.:

W0(x,y) = e
−‖x−y‖2

2l2 (12)

W(x) is introduced in order to ensure that uniform dam-
age fields are not modified by the spatial average. This is
guaranteed by posing:

W(x) =
Z

V
W0(x,y)dV(y) (13)

The distance r must be intended as the geodetic distance,
i.e. the minimum distance between the points x and y en-
tirely contained in the domain and never crossing the en-
tire boundary, cracks included. This means that the dis-
tance r must take into account possible nonconvex sides
of both the domain and internal cracks.

The geodetic distance between the central nodes of ev-
ery couple of domain cells is evaluated just once in the
entire nonlinear analysis. Such computation results to be
useful in the evaluation of the nonlocal value Y (x). The
integration (10) is performed by evaluating the radius r
between the cell node and the Gaussian point as sum of
two terms: one is the geodetic distance (previously eval-
uated and stored) between x(x ≡A in figure 1) and the



168 Copyright c© 2006 Tech Science Press SDHM, vol.2, no.3, pp.165-175, 2006

A

B

Figure 1 : Comparison between the geodetic distance
(dashed line) and the minimum distance (dotted line)
connecting two generic points A and B

central node of the domain cell surrounding the Gaus-
sian point and proximate to x, the latter is the distance
between such a central node and the Gaussian point (≡B
in figure 1).

The current results are already able to show the reliability
of the adopted technique which however need be further
investigated.

The parameter l in Eq. (12) plays the role of an inter-
nal length controlling the nonlocal spatial spread of the
damage.

On the assumptions made, the nonlocal damage activa-
tion function becomes:

g(Y ,X) = Y −X (14)

whereas the flaw laws and the damage evolutive laws
mantain the same local expressions.

In the iterative procedure of the incremental DBEM prob-
lem the distribution of the damage parameter d will pro-
vide both the level over which the crack occurs and its
direction of propagation.

3. The elastic-damaging DBEM

The boundary integral equations governing the problem
given by the continuum damage relations introduced in
the previous section can be obtained as in the classical
plasticity.

In fact, the stress tensor rate
.

σi j can be written as:

.
σi j =

.
σel

i j −
.
σd

i j =
.
σel

i j −d
.
σel

i j = Cel
i jlm

.
εlm −dCel

i jlm
.
εlm (15)

where
.
σel

i j is named elastic stress tensor rate and
.
σd

i j is
named damaged stress tensor rate. Analogously, the trac-
tion rate can be expressed as:

.
ti =

.
σi jn j =

.
t
el
i − .

t
d
i =

.
t
el
i −d

.
t
el
i (16)

Furthermore, by manipulating the governing differential
equilibrium equation in a way which is classical in the
BE context, an integral relation, giving the displacement

at any internal point X ∈
◦
Ω (Ω is the body under analysis

with boundary Γ), can be obtained:

.
ui(X) =

Z
Γ

u∗i j(X,x)
.
t j(x)dΓ(x)−

Z
Γ

t∗i j(X,x)
.
uj(x)dΓ(x)

+
Z

Ω
ε∗i jk(X,x)

.
σd

jk(x)dΩ(x) (17)

where u∗i j(X,x) and t∗i j(X,x) are respectively displace-
ment and traction in the direction given by the unit vector
ej (direction j) at point x corresponding to a unit point
force acting in the direction i applied at point X of an in-
finite elastic medium. The term ε∗i jk(X,x) represents the
strain ε∗jk at any point x due to a unit point load acting
in the i direction and applied at the point X of an infinite
elastic medium.

The stress state at any point can be obtained by applying
the generalized Hooke’s law to the elastic part of the total
strain rate tensor:

.
σi j(X) =

Z
Γ

U∗
i jk(X,x)

.
tk(x)dΓ(x)

−
Z

Γ
T ∗

i jk(X,x)
.
uk(x)dΓ(x)

+ −
Z

Ω
Σ∗

i jkl(X,x)
.
σd

kl(x)dΩ(x)+gi j(
.
σd

kl) (18)

where U∗
i jk, T ∗

i jk, Σ∗
i jkl and gi j are related to the Kelvin’s

fundamental solution and can be found in any BE book
(see for instance [ Aliabadi (2002)]).

The calculation of stresses at any point of Ω is of fun-
damental importance for the stepwise solution of nonlin-
ear material problems; for this reason the expression of
stress, rather than strain, tensor rate has been preferred.
It is worthy to underline that the expression (18) is the
mathematically correct value of the stress tensor rate re-
lated to the displacement-traction rate distribution

.
u j,

.
t j



From Damage to Crack: A B.E. Approach 169

on Γ, and not an approximate evaluation as in the case of
FE or Finite Difference (FD) approaches. Of course, the
stress value will be a consequence of the assumed shape
functions on the boundary and on the part of the domain
where the nonlinear term is different from zero.

The integral representation of the displacement rate for a
boundary point ξ can be obtained by a suitable limiting
process (X →ξ) in which the point X is an internal point
surrounded by part of a spherical (or circular in 2D) sur-
face of radius ε, i.e. by the application of the concept of
Cauchy principal value of an integral. The arising bound-
ary integral equation is given by:

ci j(ξ)
.
u j(ξ)+ −

Z
Γ

t∗i j(ξ,x)
.
uj(x)dΓ(x)

=
Z

Γ
u∗i j(ξ,x)

.
t j(x)dΓ(x)+

Z
Ω

ε∗i jk(ξ,x)
.
σd

jk(x)dΩ(x)

(19)

where the integral on the left hand side is to be interpreted
in the sense of Cauchy principal value and the coefficient
ci j(ξ) is equal to 0.5 if the tangent plane at ξ is contin-
uous. Eq. (19) furnishes an integral equation involving
boundary variable only, i.e. displacement and traction
vector rates.

Relation (18) was deduced for points located within the
body; therefore it cannot be used to determine the bound-
ary stress rates. The limit of such expression, when the
load point X approaches the boundary, would contain
a hypersingular term. Its evaluation could be avoided
by expressing the stress at any boundary point in terms
of both boundary tractions and displacements and strain
components along the tangent direction to the boundary
evaluated by means of the shape functions. Alternatively,
discontinuous domain cells could be used in proximity of
the discretised boundary.

The integral relations (19) and (18) are not sufficient to
solve the problem when a crack is present. Both for bi-
lateral and unilateral crack, the unknowns at every point
of the crack lines are the double of the corresponding
available equations. The first approach in the BE context,
solving such a drawback, proposed the multi-region for-
mulation, in which the crack line belongs to the boundary
of two different subregions. A more novel and efficient
approach (DBEM) is based on the procedure proposed by
[ Portela and etc. (1992)] in which a traction equation
at every crack node is added in order to obtain a square
system of equations. The dual equations are given re-

spectively by the displacement equation at the node ξ′

of the crack as belonging to one line and by the traction
equation at the node ξ′′ of the crack as belonging to the
opposite face. The displacement boundary integral equa-
tion at a crack node is slightly different (see for instance
[ Alessandri and Mallardo (1999)] for details) from the
classical one. Provided that the tangent line at the crack
node is continuous, it is given by the following relation:

1
2

ui(ξ′)+
1
2

ui(ξ′′)+ −
Z

Γ
t∗i j(ξ′,x)

.
uj(x)dΓ(x)

=
Z

Γ
u∗i j(ξ′,x)

.
t j(x)dΓ(x)

+
Z

Ω
ε∗i jk(ξ′,x)

.
σd

jk(x)dΩ(x) (20)

In order to give the expression of the traction equation it
is necessary to write the integral expression of the stress
tensor rate on a smooth boundary point:

1
2

.
σi j(ξ)+ =

Z
Γ

T ∗
i jk(ξ,x)

.
uk(x)dΓ(x)

= −
Z

Γ
U∗

i jk(ξ,x)
.
tk(x)dΓ(x)

+ −
Z

Ω
Σ∗

i jkl(ξ,x)
.
σd

kl(x)dΩ(x)+
1
2

gi j(
.
σd

kl) (21)

and on a smooth crack point:

1
2

.
σi j(ξ′′)+

1
2

.
σi j(ξ′)+ =

Z
Γ

T ∗
i jk(ξ′′,x)

.
uk(x)dΓ(x)

= −
Z

Γ
U∗

i jk(ξ′′,x)
.
tk(x)dΓ(x)

+ −
Z

Ω
Σ∗

i jkl(ξ′′,x)
.
σd

kl(x)dΩ(x)+
1
2

gi j(
.
σd

kl) (22)

where =
R

denotes the Hadamard principal value integral.
Both previous equations stem from a careful limiting pro-
cess carried out on the Eq. (18) when the internal point X
approaches the external boundary and the crack surfaces.
The traction components,

.
t i, can be obtained by the re-

lation
.
t i =

.
σi jn j, and on a smooth crack point they are

given by:

1
2

.
t i(ξ′′)− 1

2

.
ti(ξ′)+n j(ξ′′) =

Z
Γ

T ∗
i jk(ξ′′,x)

.
uk(x)dΓ(x)

= n j(ξ′′) −
Z

Γ
U∗

i jk(ξ′′,x)
.
tk(x)dΓ(x)+

n j(ξ′′) −
Z

Ω
Σ∗

i jkl(ξ′′,x)
.
σd

kl(x)dΩ(x)+
1
2

n j(ξ′′)gi j(
.
σd

kl)

(23)
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The boundary Γ is divided into NΓ continuous three
noded (quadratic) elements whereas the crack Γc is di-
vided into NΓc discontinuous flat elements. The elements
on the crack are chosen to be flat in order to evaluate
the singular integrals analytically. The displacement and
traction rates, as well as the geometry, can be approxi-
mated in each boundary element Γl by products of the
shape function Mn

Γ(η) and the nodal values, where η rep-
resents the local coordinate. The domain discretisation
needs to be performed only for that region Ωd ⊆ Ω sus-
ceptible of damage, whereas for other numerical tech-
niques the whole domain must be discretised. This is
especially attractive in damage mechanics for brittle ma-
terials since the area expected to be damaged tends to
the macro-crack shape. The domain Ωd is divided into
NΩ quadratic triangular or quadrilateral cells (with shape
functions Mn

Ω(η,ζ)).

Before the crack initiation, the discretised form of the
Eq. (19), along with the expression (18) of the stress ten-
sor rate at any internal point, is adopted in the iterative
scheme which is necessary to satisfy the rate constitu-
tive equations. The classical collocation approach fur-
nishes the unknown displacement and traction rates on
the boundary and the distribution of the damage d at ev-
ery cell node. Once the damage in one or some points
passes a fixed threshold close to the unity, i.e. a macro-
crack arises, a crack line is inserted and some new un-
knowns are introduced into the formulation. Such un-
knowns are given only by the two displacement rates at
every crack node, provided that the crack is supposed
to behave bilaterally. In order to obtain these new un-
knowns, it is necessary to add the discretised form of the
Eqs. (20), (23) to the previous system of equations. In
both cases, all the equations can be collected in a matrix
form as:

A
.
x =

.
f+Q

.
σd

(24)

.
σ = −A′ .

x+
.

f′ +(Q′ +E ′)
.
σd

(25)

where the Dirichlet/Neumann conditions on the bound-
ary Γ are included, the bold letters mean vectors and the
capital letters mean matrices. The unknowns, displace-
ment/traction rate on the external boundary, plus (possi-
ble) displacement rates on the crack faces are collected in
.
x whereas A, A′, Q, Q′ and E ′ involve boundary and do-
main integrals of the fundamental solutions. The weakly

singular integrals are evaluated either by logarithmic
quadrature rule or by Gaussian quadrature after perform-
ing a suitable coordinate transformation. The numeri-
cal value of the strongly singular integrals is obtained by
using the rigid body technique in the displacement in-
tegral equation, the procedure proposed by [ Guiggiani
and Gigante (1990)] in the other cases. The hypersin-
gular terms are evaluated analytically (see for example
[ Alessandri and Mallardo (1999)] for details) provided
that the crack line is geometrically straight. The nearly
singular terms are evaluated by dividing in subelements.

In a finite time step Δt, the evolution problem, governed
both by the Eqs. (24), (25) and by the constitutive rela-
tions, presents finite increment unknowns Δx, Δσ rather
than derivatives

.
x,

.
σ with respect to the time parame-

ter. The proposed formulation may furnish snap-back
branches in the equilibrium path, i.e. it may be necessary
to introduce an arclength constrain in the general system
of equations. This is achieved by following the scheme
proposed in [ Mallardo and Alessandri (2004)].

The constitutive relations are integrated by the Euler
backward scheme, i.e. the increment of damage d is ob-
tained by imposing the consistency condition at the end
of the step. Due to the linearity of the adopted damage
function 1−d and to the choice of Y as a nonlocal vari-
able, the expression of the damage increment results to be
formally equivalent to the local formuation. The nonlo-
cal value of the variable Y is obtained by using the same
domain discretisation adopted for the evaluation of the
nonlinear term occurring in the integral equations.

4. The crack modelling strategy

A criterion, which is similar to Beltrami’s one, can be
assessed for the proposed damage model. All the mate-
rial elements ahead of the crack tip, where the damage
parameter d is higher than a critical value d, fail. It can
be postulated that the crack increment Δa is a function of
the position of the point in which d is maximum, i.e.

Δa = β | xcrack tip −xdmax | (26)

When dealing with mode I behaviours, it is simpler to
determine in advance the direction of the crack growth.
In the example presented in this paper, for instance, the
crack trajectory is collinear with the initial crack and thus
well known. On the other hand, in the mixed mode prob-
lems it can be postulated that the growth of the crack
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Boundary discret.

Crack discret.

Domain discret.

Boundary/crack
element end

Figure 2 : Boundary, crack and domain discretisation

occurs in the direction given by the line connecting the
crack tip and the point in which the maximum value of
the damage d occurs. As a matter of fact, it is worthy to
observe that in the general situation, it may be necessary
to implement a correction technique, similar to the one
proposed by [ Portela and etc. (1993)], in order to obtain
the direction of the actual crack-extension increment.

Considering the evolution damage-crack problem from
a discrete incremental standpoint for a finite time step
Δt = ts+1 − ts, the system of equations (24-25) can be
written as:

AΔxs = fΔλs +QΔσd
s (27)

Δσs = −A′Δxs + f′Δλs +QΔσd
s (28)

where Δλs represents the sth load factor increment.

In an incremental crack extension analysis, each new
crack-extension increment is modelled with new discon-
tinuous boundary elements. The remeshing of the bound-
ary is not required in the DBEM. The new discontinu-
ous boundary elements generate new equations and up-
date those already existing with new unknowns, i.e. new
rows and new columns are generated in the matrix of the
system of equations (27). The new set of integral equa-
tions are obtained by collocating both (21) and (23) at
the opposite crack nodes. If the crack has a point on the
boundary Γ, the boundary elements converging into this
point must be transformed into discontinuous elements,
i.e. edge discontinuous elements are employed in this
region to avoid a common node at the intersection.

Figure 3 : Adaption of the discretisation

The part of the domain where the damage is supposed
to occur is modelled with continuous quadratic triangu-
lar/quadrilateral cells. The cells, which have at least one
side coincident either with the external boundary Γ or
with the crack line, are discontinuous.

A general frame showing the discretisation at the generic
intermediate step after the crack initiation is drawn in fig-
ure 2.

The general modelling strategy developed in the present
paper can be summarised as follows:

1. The external boundary and the part of the domain
where the damage is supposed to occur are modelled
with either continuous or discontinuous quadratic
elements.

2. The system of equations (27-28) furnishes the solu-
tion in terms of both displacement and traction in-
crements on the boundary Γ and damage d in the
domain.

3. The first crack element is positioned in terms of the
first damage distribution in which at least one dam-
aged point exceeding the critical value is present.

4. A new arclength step is proceeded. A new damage
distribution is obtained numerically and, therefore,
the crack extends for a quantity Δa in the direction
of the maximum damage increment. The domain
discretisation around the new crack elements must
be transformed.

5. The analysis proceeds further until the rupture oc-
curs.
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Figure 4 : Two-dimensional specimen subjected to direct
tension test. Geometry and load condition.

For each step applying the proposed damage crack model
a re-meshing of the part of the domain close to the crack
tip needs to be performed (see for instance figure 3). This
is due to the new crack elements which penetrate into a
domain cell.

Another fundamental requirement of re-meshing arises
from the geometric modification of the element. Once a
new mesh has been created, the history-dependent dam-
age should be mapped from the old mesh to the new
one. The mapping involves one step: to interpolate the
damage parameter from the nodal (cell) points of the old
mesh to the nodal (cell) points of the new mesh by using
the shape functions. The procedure is much simpler than
the one developed in the FE context where three steps are
necessary: first transfer all the damage of the old mesh
from the Gaussian points to the element nodes, then in-
terpolate the state variable from the nodal points of the
old mesh to the nodal points of the new mesh, finally re-
determine the value in the Gaussian integration points of
the new mesh.

An important question arises concerning the crack line
which is inserted according to the damage distribution.
On the basis of the proposed model, the crack extends
when the damage around the crack tip reaches a critical
value d. If d is set equal to the unity, the stress trans-
fer is fully correct, i.e. the crack extends towards points
in which the stress tensor is zero. On the contrary, this
does not happen if the critical value of the damage is

Figure 5 : Domain discretisation adopted for the slab.

set less than one, i.e. lines on which the stress tensor is
different from zero are substituted by traction free crack
lines. Such a phenomenon may be source of numerical
errors and needs to be analysed carefully. The draw-
back could be avoided if the transition between damage
and traction-free crack is led by using the fictitious crack
model. The material in the fracture zone is partly de-
stroyed (d = d < 1), but it is still able to transfer stresses.
Both a closing normal force and a frictional force act on
both crack lines. The intensity of these forces has an
initial value which depends on the previous value of the
damage d and, for instance linearly, on the relative dis-
placement on the crack.

5. Numerical examples

A numerical example is presented in order to show the
efficiency of the procedure. The example refers to the
slab in figure 4 where a plane stress behaviour is as-
sumed and measures are given in millimeters. The Young
modulus and the Poisson coefficient are respectively E =
36000MPa and ν = 0.15. Such an example is a useful
benchmark, often adopted in the FE context, which is
able to show clearly the onset of the localisation of the
strain in correspondence of the crack initiation. An in-
creasing displacement is applied on the top edge of the
slab, the corresponding distributed reaction with resul-
tant R is not uniform.

The analysis of the localisation and the effect of the non-
local approach, as a remedy to avoid the corresponding
mesh-dependency of the numerical results, have been
deeply investigated by the Authors. It can be demon-
strated that the nonlocal damage model here presented
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Figure 6 : Damage contour maps at various points of the force-displacement curve.

Figure 7 : Damage contour map at u=0.00569 mm and
at u=0.00620 mm. Zoom at the left notch.

turns out to be objective with the mesh when coupled
with the BEM. Therefore, in this paper the domain dis-
cretisation drawn in figure 5 is adopted: 236 quadratic
quadrilater cells in the domain and 154 quadratic bound-
ary elements (with 308 boundary nodes) on the external
boundary Γ.

Figure 6 shows the regularised damage contour at dif-
ferent load levels up to the occurrence of the first crack
line. The last contour plot, corresponding to the re-
action force R = 120.29N and to the top displacement
u = 0.00569mm is the first equilibrium point in which the
damage parameter exceeds a pre-defined critical value
−
d = 0.85.
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Figure 8 : Diagram showing traction reaction R versus
top displacement u.

The points in which such a behaviour occurs coincide
with the notches and represent the part of the boundary
where the crack initiates. A zoom on the left notch of the
slab at the load level u = 0.00569mm is given in figure 7.
The expanding line corresponds to d = 0.85 whereas the
remaining three lines correspond to the levels 0.8, 0.75
and 0.7.

In the zoom on the left, the red point gives the point of the
crack initiation. The same zoom on the right describes
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the crack configuration at u = 0.00620 mm, i.e. some
load steps further. The crack propagates in the correct
direction.

In figure 8 the force-displacement curve, i.e. the resultant
reaction R at the top edge versus the imposed displace-
ment is presented. The filled line represents the structural
response of the proposed model for the first two steps of
the crack propagation. The numerical analyses are still in
progress. It is not clear yet how the dissipation can influ-
ence the transformation from damaged line to crack line,
when the fictitious crack model is not involved. Further-
more, a deeper analysis of the dissipation over the cells
close to the propagating crack line would be necessary to
prevent crack propagation taking wrong directions. The
dashed line of the diagram in figure 8 represents the re-
sponse of the same slab when the nonlocal damage model
is implemented without crack. The line is not drawn in its
complete path up to R = 0. It is possible to observe that
the damage plus crack response follows the same equi-
librium path at least in the first load steps.

6. Conclusions

A BE formulation involving both nonlocal damage and
discrete crack has been developed. The model intends
to analyse the formation of the crack and its propaga-
tion in brittle materials, such as concrete. The nonlinear
phenomenon is described by a nonlocal damage model
which shifts to the macro-crack when the level of dam-
age exceeds a critical value. A numerical example is pre-
sented in order to show the efficiency of the formulation
when 1) the macro-crack is set as bilateral 2) the geome-
try and the load conditions generate a mode I behaviour.
In order to deal correctly with the first steps of transi-
tion between damage and macro-crack a fictitious crack
model is proposed.

References

Alessandri C, Mallardo V. (1999): Crack identification
in two-dimensional unilateral contact mechanics with the
boundary element method. Comput Mech vol. 24, pp.
100-109.

Aliabadi MH. (2002): The Boundary Element Method,
Vol. 2: Applications in Solids and Structures. Wiley:
New York.
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