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Numerical Evaluation of T-stress Solutions for Cracks in Plane Anisotropic Bodies

P.D. Shah1, Ch. Song2, C.L. Tan1 and X. Wang1

Abstract: Numerical T -stress solutions in two dimen-
sional anisotropic cracked bodies are very scarce in the
literature. Schemes to evaluate this fracture param-
eter in anisotropy have been reported only fairly re-
cently. Among them are those developed in conjunction
with two different computational techniques, namely,
the Boundary Element Method (BEM) and the Scaled
Boundary Finite-Element Method (SBFEM). This paper
provides a review of the respective schemes using these
techniques and demonstrates their efficacy with three ex-
amples. These examples, which are of engineering im-
portance, involve cracks lying in a homogeneous medium
as well as at the interface between dissimilar media. The
numerical T -stress solutions obtained by the two dis-
tinct numerical schemes are compared and they show ex-
cellent agreement with each other, further establishing
the veracity of the two independent methodologies em-
ployed. They are also new additions to the very limited
number of reference solutions in the literature, particu-
larly for anisotropic elasticity.

keyword: T -stress, Anisotropic elasticity, Interface
crack, Boundary element method, Scaled boundary
finite-element method.

1 Introduction

Structural composites, single crystals, bicrystals and
thermal barrier coatings are examples of advanced ma-
terials which are increasingly being used in engineer-
ing applications. The study of cracks in these compo-
nents is important in order to assess their structural in-
tegrity. In conventional linear elastic fracture mechan-
ics (LEFM), the severity of the stresses in the vicinity of
the crack tip is characterized in terms of the leading sin-
gular terms in the Williams’ (1957) eigenfunction series
expansion, namely, the stress intensity factors. In two-
dimensional homogenous materials, the stress intensity
factors are primarily associated with the two modes of
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crack deformation, which are the opening mode KI and
the shear mode KII . The definition of KI and KII are the
same for both isotropic and anisotropic cracked homoge-
neous bodies. In the case of an interface crack between
dissimilar materials, the near crack-tip stress singularity
exhibits oscillatory behaviour [see, e.g., Williams (1959),
Rice (1988), Suo (1990)] and the stress intensity factors
are always coupled; they are usually represented as K =
KI+ iKII, where i =

√−1. Numerous schemes and com-
putational methods have been developed over the years to
obtain this fracture parameter for cracks in homogeneous
isotropic and anisotropic bodies, as well as for interface
cracks between dissimilar materials. They are now well
established in the literature and thus the stress intensity
factors will not be a focus of this paper.

The works of Larsson and Carlsson (1973), Rice (1974),
Cotterell and Rice (1980), Leevers and Radon (1982),
and Bilby et al. (1986), however, showed the importance
of including the leading non-singular term of Williams’
series expansion in explaining the stress constraint ef-
fects in the vicinity of the crack-tip. This leading non-
singular term, commonly referred to as the elastic T -
stress, is increasingly being recognized as an important
second fracture parameter for fracture assessments [see,
e.g., Betegon and Hancock (1991), Du and Hancock
(1991), Ainsworth et al. (2000)]. Several analytical and
numerical schemes for the evaluation of the T -stress in
cracked, isotropic bodies have been developed over the
years [see, e.g., Kfouri (1986), Sham (1991), Sladek et
al. (1997), Wang (2002), Fett (2002), Tan and Wang
(2003), Li et al. (2005)]. For non-isotropic bodies, how-
ever, similar studies on the determination of T -stress are
relatively recent and scarce in number. Contributions in
this regard include those by Ma et al. (1997), Yang and
Yuan (2000), Kim and Paulino (2004), Song (2005) and
Shah et al. (2006a). Those for bimaterial interface cracks
between isotropic as well as anisotropic materials, suffer
from similar scarcity. Among the few works on the eval-
uation of T -stress for interface cracks between dissimilar
materials are the works of Sladek and Sladek (1997) and
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Fett and Rizzi (2004), for isotropy. Corresponding stud-
ies for such cracks between anisotropic bodies have been
presented by Kim et al. (2001), Song (2005) and Shah
et al. (2006b) all of whom have proposed independent
schemes for the T -stress determination. However, only
the last authors have presented numerical solutions for T -
stress for cracks in homogeneous bodies and for interface
cracks between dissimilar bodies in anisotropy. There
is paucity of T -stress solutions for cracks in anisotropic
bodies indeed, even if they are obtained primarily for the
purpose of verification of new numerical schemes that
are developed.

The Boundary Element Method (BEM) is now well es-
tablished as a very efficient computational technique for
LEFM analysis. Another more recently developed nu-
merical technique which is also very well suited for frac-
ture mechanics analysis is the Scaled Boundary Finite-
Element Method (SBFEM) [Song (2005)]. It is a semi-
analytical boundary element method based on finite el-
ements; unlike in conventional BEM, no fundamental
solutions are required in the formulation, and yet it has
many of the characteristics of BEM modeling. As men-
tioned above, the present authors have recently devel-
oped distinctly different schemes for the determination of
T -stresses for cracks in elastic, homogeneous anisotropic
solids in conjunction with the BEM [Shah et al. (2006a,
2006b)] and with the SBFEM [Song (2005)]. These
two numerical techniques can thus provide independent
checks of T -stress solutions for new reference problems,
to further demonstrate the veracity of the techniques for
extracting this fracture parameter in numerical LEFM
stress analysis. This is the aim of the present paper.

In the next section, the steps and formulation for the de-
termination of T -stress for cracks in anisotropic elasticity
using the BEM will first be reviewed and discussed. This
will be followed by same when using the SBFEM. To
demonstrate the veracity of these two relatively new ap-
proaches, three problems from engineering applications
are analyzed and the numerical solutions obtained are
compared. They could serve as additional reference re-
sults in the literature, in view of the paucity of these so-
lutions in anisotropy.

2 Determination of T-stress using Boundary Ele-
ment Method

The BEM for two-dimensional anisotropic elasticity is
well established in the literature and it is also well recog-

nized as an efficient numerical tool for obtaining stress
intensity factors in linear elastic fracture mechanics anal-
ysis [see, e.g., Tan and Gao (1990, 1992)]. Hence their
formulations will not be discussed here. The schemes
for the determination of T -stress for cracks in plane,
anisotropic bodies using the BEM have recently been
proposed by Shah et al. (2006a, 2006b). The key
steps applicable to an interface crack between dissimi-
lar anisotropic bodies will be briefly reviewed here; it
is equally applicable to a crack in a homogenous body.
The method is based on the mutual or M-integral and uti-
lizes the field values at points remote from the crack tip,
thereby yielding more reliable and accurate results. With
reference to Fig. 1, the field points are located along the
contour Γo of the path-independent J-integral given as

J =
∫
Γ0

(Wn1 − tiui,1)dΓ (1)

where W is the strain energy density; ui and ti are the
displacement and tractions respectively; and n jis the unit
outward normal vector of the contour (i, j = 1,2).

Defining the J-integral for two independent equilibrium
states A and aux, the M-integral, is expressed in terms of
J−integral as follows,

M = J(A+aux)−J(A) −J(aux) (2)

where

J(A) =
∫
Γ0

[
1
2

(
σA

i jε
A
i jn1

)−σA
i jn juA

i,1

]
dΓ (3a)

J(aux) =
∫
Γ0

[
1
2

(
σaux

i j εaux
i j n1

) −σaux
i j n ju

aux
i,1

]
dΓ (3b)

Thus,

M =
∫
Γ0

(
σA

i jε
aux
i j n1−σA

i jn ju
aux
i,1 −σaux

i j n ju
A
i,1

)
dΓ (4)

In Eqs. (2)-(4), the superscripts A denote the field so-
lutions under study, and aux denote the auxiliary set of
solutions. The auxiliary solutions are chosen here to cor-
respond to those due to a point (line) force f applied at
the interface crack-tip along the crack plane of a semi-
infinite crack as shown in Fig. 1. For a bimaterial inter-
face crack, the available solution for a composite wedge
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subjected to a point force at the apex [Chung and Ting
(1995)] is utilized to obtain the auxiliary fields given be-
low by setting the wedge angle equal to 2π. The dis-
placement gradients and the stresses in the global X1−X2

Cartesian coordinate system may be written as

u
(w)aux
i, j =

1
πr

{−hin j(θ)− (N1 (θ)h)i m j (θ)
}

(5)

σ(w)aux
1 j =

1
πr

[N3 (θ)h] j m2 (θ) (6a)

σ(w)aux
2 j = − 1

πr
[N3 (θ)h] j m1 (θ) (6b)

where w corresponds to the w−th material (for bimaterial
interface, w = 1,2), and

n1(θ) = cosθ; n2(θ) = sinθ;

m1(θ) = −sinθ; m2(θ) = cosθ (7)

Also, in Eqs.(5)-(6), Ni are the elements of the funda-
mental elasticity matrix N [see, e.g., Ingebrigtsen and
Tonning (1969)] given as

N1(ω) = −T−1(ω)RT (ω) (8a)

N2(ω) = T−1(ω) (8b)

N3(ω) = R(ω)T−1(ω)RT (ω)−Q(ω) (8c)

where ω is the angle of inclination of the interface crack
with respect to the x1-axis (see Fig. 1), and

Q =
[

C1111 C1121

C1121 C2121

]
=

[
C11 C16

C16 C66

]
(9a)

R =
[

C1112 C1122

C2112 C2122

]
=

[
C16 C12

C66 C26

]
(9b)

T =
[

C1212 C1222

C1222 C2222

]
=

[
C66 C26

C26 C22

]
(9c)

C in Eq.(9) being the reduced stiffness matrix for the ma-
terial.

The elasticity matrices, Q(ω), R(ω), T(ω) are obtained
from Q, R, T following the transformation law with the
rotated local coordinates, as

Q(ω) = Qcos2 θ+(R +RT ) sinθcosθ+T sin2 θ (10a)

R(ω) = Rcos2 θ+(T −Q) sinθcosθ−RT sin2 θ (10b)

T(ω) = Tcos2 θ− (R +RT ) sinθcosθ+Q sin2 θ (10c)

Furthermore, the vector h, which remains invariant for
both materials forming the interface, is given as

h = L
−1f (11)

where

L =
1
π

θn∫
θ0

−N3 (ω)dω (12)

and f is the point force vector applied at the wedge apex,
i.e.

f =
{

f1

f2

}
(13)

The M-integral expression in Eq. (4) inherits the property
of path independence from J-integrals. Thus, consider-
ing an arbitrary contour radius ε when shrunk to zero, it
becomes

M = lim
ε→0

∫
Γε

(σA
i jε

aux
i j n1 −σA

i jn ju
aux
i,1 −σaux

i j n ju
A
i,1)dΓ (14)

Since the M and J-integrals are bounded, there is no con-
tribution from the singular terms in M-integral in Eq.
(14). The asymptotic field in state A can be separated into
singular and non-singular components designated with s
and T , respectively as follows:

σA
i j = σs

i j + σT
i j (15)

uA
i j = us

i j + uT
i j (16)

Thus, the contour integral from θ = -π to +π leaves only
the non-vanishing contribution from the T -stress, and the
M-integral reduces to

M = lim
ε→0

∫
Γε

(σT
i jε

aux
i j δ1 j −σT

i ju
aux
i,1 −σaux

i j uT
i,1)n jdΓ (17)

where it can be shown that

σT
i j =

a
′(2)
11

a
′ (1)
11

T δi1δ j1, for 0 ≤ θ ≤ π(material−1) (18)
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σT
i j = T δi1δ j1 for −π ≤ θ ≤ 0(material−2) (19)

T in Eqs.(18) and (19) being the T -stress along material-
2.

Finally, Eq. (17) reduces to

M = Ta
′(2)
11 f (20)

or,

T =
M

a
′(2)
11 f

(21)

where a
′(2)
11 corresponds to the first element of the elastic

compliance matrix for the material-2 in the local coor-
dinates X

′
i . The T -stress values in material 1 and 2 are

related as

T (1)a
′(1)
11 = T (2)a

′(2)
11 (22)

In the present work, the values of the T -stress obtained
are with reference to material-2.

Also, in the case of plane strain conditions, a11should be
replaced by b11 using [see, e.g., Tan and Gao (1992)]

bi j = ai j −ai3a j3/a33 (23)

The M-integral should be evaluated in the local coor-
dinate systemX

′
i using Eq. (4). In present work, the

M-integral is first obtained in global coordinates and
then transformed into local coordinates following the J-
integral transformation by Kishimoto et al. (1980), as
follows:

M(Local) = M1(Global)cosω+M2(Global) sinω (24)

where

Mk(Global) =
∫
Γ0

(σA
i jε

aux
i j nk −σA

i jn ju
aux
i,k −σaux

i j n ju
A
i,k)dΓ

(25)

The scheme outlined above relies on the auxiliary field
solutions based on Stroh’s formalism [Chung and Ting,
(1995)] and is applicable to both homogenous and inter-
face crack materials. The authors [Shah et al. (2006a)]
have also developed the M-integral formulation based on
Lekhnitskii’s formalism [Lekhnitskii (1968)] and it is ap-
plicable to homogenous cracked bodies.

Material 2

2

X'2

Material 1

O

f

X 1

X'1

X 2

Figure 1 : A composite wedge comprising of two
anisotropic materials and point force f applied at the
apex.

3 Determination of T-stress using Scaled Boundary
Finite-Element Method

The scaled boundary finite-element method was origi-
nally developed for the dynamic analysis of unbounded
domains [ Wolf and Song (1996)]. At the initial stage
of the development, it is called the consistent infinites-
imal finite-element cell method reflecting the technique
used in the derivation. The term “scaled boundary finite-
element method” was used for the first time in Song and
Wolf (1997), where the scaled boundary transformation
is introduced and the application is extended to bounded
domains. An appealing feature of this method in LEFM
is that the solution in the radial direction passing through
the scaling centre is obtained analytically without any a
priori assumptions. Therefore, the stress singularity oc-
curring at the crack tip can be conveniently modeled by
choosing the scaling centre there. Using this technique,
Song and Wolf (2002) analyzed the orders of singular-
ity and stress intensity factors for multi-material plates,
while Lindemann and Becker (2002) studied the free-
edge stresses around holes in laminates. Similarly, Song
(2004a) has obtained dynamic stress intensity factors,
and Müller et al. (2005) have obtained predictions of
the directions of cracks emerging from notches at bima-
terial junctions. This method has been further extended
to include the power-logarithmic singularities, and to cal-
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culate orders of singularity, T -stresses and higher order
terms under mechanical loading in Song, (2005). Singu-
lar stress field under thermal loading has also been inves-
tigated in Song (2006).

The derivation of the scaled boundary finite-element
method is detailed in Song and Wolf (1997, 2000). The
evaluation of T -stresses is addressed in Song (2005).
Only the main concepts are summarized in this paper.

As an example, a multi-material wedge made of four ma-
terials shown in Fig. 2a is considered. A scaling centre O
is chosen at the multi-material corner. Only the bound-
ary S is discretized. The geometry of a line element
is interpolated using the shape functions [N(η)] formu-
lated in the local coordinate η and the nodal coordinates
{x}and{y}. As explained later, the two faces OA and
OB and the material interfaces passing through the scal-
ing centre are defined by a constant η, and are not dis-
cretized. The domain is described by scaling the bound-
ary with the dimensionless radial coordinate ξ pointing
from the scaling centre O to a point on the boundary.
With no loss of generality, the origin of the Cartesian co-
ordinates (x̂, ŷ) is placed at the scaling centre. ξ = 0 at
O, and ξ = 1 on the boundary are chosen

{x(ξ,η)} = ξ[N(η)]{x}
{y(ξ,η)}= ξ[N(η)]{y} (26)

ξ, η are called the scaled boundary coordinates.

The scaled boundary coordinates in two dimensions re-
semble the polar coordinates r̂ and θ. The boundary S
of the problem domain V in Figure 2a is transformed to
a circle described by a constant radial coordinate ξ = 1
(Fig. 2b) in the scaled boundary coordinates. The do-
main V is thus specified by 0 ≤ ξ ≤ 1. A straight line,
such as the side faces OA and OB and material interface
OF, passing through the scaling center O remains as a
straight line and is described by a constant η. When the
origin of a polar coordinate system coincides with the
scaling centre as in Fig. 2b, the radial coordinate r̂ is
expressed in the scaled boundary co-ordinates as

r̂(ξ,η) = ξr(η) = ξ
√

x2(η)+y2(η) (27)

where r(η) is the radial coordinate on the boundary. The
angle θ is represented in a discretized form by the ele-
ment number and the local coordinate η

θ(η) = arctan
y(η)
x(η)

(28)

(a)

(b)

Figure 2 : Representation of multi-material wedge in
scaled boundary coordinates: (a) scaling centre O, ra-
dial coordinate ξ and boundary discretization; (b) trans-
formed domain.

As the whole boundary is visible from the scaling cen-
ter, θ(η) is a single-valued function in its principal value
(−π < θ ≤ π).

Along the radial lines passing through the scaling cen-
tre O and a node on the boundary (Fig. 2) the nodal
displacement functions {u(ξ)} are introduced. The dis-
placements in the domain at a point (ξ,η) are interpolated
from the nodal functions

{u(ξ,η)}= [Nu(η)]{u(ξ)} (29)

where [Nu(η)] denotes the shape functions for displace-
ment interpolation. In this paper, isoparametric high-
order elements with Gauss-Lobatto shape functions are
used. After performing the scaled boundary transforma-
tion and applying the weighted residual technique in η
direction, the scaled boundary finite-element equation in
displacement is written as

[E0]ξ2{u(ξ)},ξξ +([E0]− [E1]+ [E1]T )ξ{u(ξ)},ξ
− [E2]{u(ξ)}= 0 (30)

where [E0], [E1] and [E2] are coefficient matrices. Body
forces, as discussed in Song (2006), are not considered in
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this paper. The strains are expressed in the scaled bound-
ary coordinates as

{ε(ξ,η)}= [B1(η)]{u(ξ)},ξ+ξ−1[B2(η)]{u(ξ)} (31)

where [B1(η)] and [B2(η)] depend on the geometry of the
boundary only.

The solution of Eq. (30) for the displacement functions
is expressed as (Song, 2004)

{u(ξ)}=
N

∑
i=1

[Ψui]ξ−[Si]{ci} (32)

Where [Si] is the ith block of the block-diagonal decom-
position of a matrix constructed from [E0], [E1] and [E2].
The real parts of the eigenvalues of [Si] are equal to zero
or negative. The displacements are thus finite within the
domain (0≤ ξ≤ 1). The term [Ψui] contains the Ritz vec-
tor and {ci} denotes the integration constants which are
determined from the boundary conditions. The stresses
are obtained by substituting the displacement solution,
Eq. (32), into Eq. (31).

{σ(ξ,η)} =
N

∑
i=1

[D] [Ψσi(η)]ξ−[Si]−[I]{ci} (33)

where [D] is the elasticity matrix and [Ψσi(η)] denotes
the stress modes. When the real parts of the eigenvalues
in a diagonal block [Si] satisfy −1 < Re(λ([Si])) < 0, the
stresses in the corresponding term are singular. When
multiple eigenvalues with parallel eigenvectors appear in
a diagonal block [Si], power-logarithmic functions occur
in the stress solutions. The extraction of the stress inten-
sity factors is discussed in Song (2006).

The T -stress is evaluated by addressing the diagonal
block satisfying λ([Si]) = −1. The stresses in the cor-
responding term in Eq. (33) are expressed as (with a su-
perscript T instead of the subscript i)

{σT (η)} = [ΨT
σ(η)]{cT} (34)

The stresses {σT (η)} in the global coordinates are
computed element-by-element at discrete Gauss integra-
tion points together with the angle θ(η). The stresses
{σT}(Global) at a specified angle θ are obtained by inter-
polation. The stresses {σT}(Local) in the local coordinates
(Xi in Figure 1) where the T -stress is defined can be eval-
uated by transformation from {σT}(Global). The T -stress
is the x-component of {σT}(Local). Note that the singular
stress field is not computed when evaluating the T -stress.

4 Results and Discussion

The methodologies presented above to extract T -stress
in cracked anisotropic elastic bodies using the two in-
dependent numerical tools, namely BEM and SBFEM,
have been applied to some problems of practical engi-
neering importance. The results obtained using these two
approaches are compared to test their veracity. In the first
example, an inclined fault crack lying along the interface
between dissimilar anisotropic sedimentary rocks is ana-
lyzed. The second example is the problem of a crack em-
anating from a fastener hole in a large anisotropic plate.
Finally, a single edge crack in a bicrystal YCBO junction
used in electronic applications is considered.

4.1 Example 1

Table 1 : Elastic mechanical properties of sandstone and
dolomite reservoir rock.

Elastic 

Constants

Sandstone

(Material 1) 

Dolomite

(Material 2) 

11E 16.59 GPa 61.46 GPa 

22E 17.95 GPa 47.61 GPa 

33E 20.39 GPa 55.6 GPa 

12G 7.67 GPa 20 GPa 

23G 8.23 GPa 23.3 GPa 

31G 7.53 GPa 24.38 GPa 

12v 0.167 0.153 

13v 0.142 0.173 

23v 0.156 0.171 

12,1 0.025  0.142 

12,2 0.137 0.033

12,3 0.015

31,23 0.087

Fault cracks lying between different layers of rock are of
great interest in civil engineering and geotechnical fields.
For illustration here, a fault crack lying along the inter-
face between sandstone reservoir rock (Material 1) and
dolomite reservoir rock (Material 2) in a large domain
is investigated. These rocks both demonstrate general
anisotropic mechanical behaviour, their elastic properties
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2
a

o

2W

Material 2
H

Material 1

o

H

Tip A

Tip B

Figure 3 : A large plate with a central crack located along
the interface between dissimilar anisotropic rocks.

Table 2 : Normalised T -stress for an interface crack
in a large rectangular domain comprising sandstone and
dolomite.

T/ o

Tip A Tip B 

BEM SBFEM % Diff BEM SBFEM % Diff

0 -1.7318 -1.7317 0.01 -1.7309 -1.7308 0.01 

15 -1.5507 -1.5450 0.37 -1.5503 -1.5534 -0.20

30 -0.8324 -0.8273 0.61 -0.8248 -0.8303 -0.67

45 0.0180 0.0175 2.78 0.0333 0.0326 2.10 

60 0.7920 0.7879 0.52 0.8112 0.8097 0.18 

in the principal axes directions are as given in Table 1
[Rasolofosaon and Zinszner (2002)].

For the purpose of analysis, the numerical solution do-
main is taken to be rectangular, as shown in Fig. 3, with
H/W = 2, and the relative size of the interface crack,
a/W = 0.1; the bimaterial continuum is subject to re-
mote uniform tension σo. Plane strain conditions are
assumed and the material principal axes for both rocks

Crack Tips
B

A

(a) BEM mesh 

(b) SBFEM mesh 

Figure 4 : The BEM and SBFEM meshes: Example 1.
ω=15o

are arbitrarily chosen to coincide with the global Carte-
sian axes. The angle of inclination of the interface be-
tween the rocks, ω, where the crack lies, is varied from
0o to 60o in 15oincrements. Fig. 4 shows the BEM and
the corresponding SBFEM mesh used. The BEM mesh
contains two sub-regions for the problem and traction-
singular quarter-point elements are used at the crack-tips.
In the SBFEM mesh, the plate is divided into two sub-
domains by a vertical line at the middle of the plate. Each
sub-domain contains one crack tip. The scaling centres,
indicated by the marker ‘⊕’, are located at the crack tips.
The boundary of a sub-domain is divided into elements.
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2r

o

2W

H

a

H

o

E
22

E
11

Figure 5 : Crack emanating from a circular hole in a
rectangular plate.

The ends of an element is marked by ‘∗’. The crack faces
passing through the scaling centres are not discretized
and thus are not shown on the mesh. High-order isopara-
metric elements with Gauss-Lobatto shape functions are
employed. P-refinement of the mesh is carried out until
the difference between the T -stress from two successive
refinements is less than 1%. The numerical results ob-
tained from the two computational techniques are listed
in Table 2. It can be seen that the normalised T -stress
becomes increasingly less negative in magnitude at both
the interface crack tips as the angle of inclination, ω, is
increased and becomes positive when ω ≥ 45o, signify-
ing increasing stress constraint at the crack-tips. It is also
evident that the agreement of the numerical results ob-
tained using both numerical methods is excellent indeed;
the discrepancies are, in general, less than one percent.

4.2 Example 2

The second example considered is the problem of a crack
emanating from a circular hole in a rectangular compos-
ite material plate. This has important applications in, for
example, the aerospace industry. The composite material
considered is graphite-epoxy and its elastic engineering
constants along the material principal axes directions are
as follows [Tan and Gao (1992)]:

E11= 144.8 GPa; E22=11.7 GPa; G12= 9.66 GPa;

Table 3 : Normalised T -stress for a crack emanating
from a circular hole in a graphite/ epoxy plate.

a/r T/
o

 (BEM) T/
o

 (SBFEM) % Diff 

0.05 -0.3612 -0.3664 -1.44 

0.1 -0.2343 -0.2383 -1.71 

0.2 -0.1649 -0.1669 -1.21 

0.3 -0.1552 -0.1561 -0.58 

0.4 -0.1607 -0.1607 0.00 

0

0.5 -0.1706 -0.1699 0.41 

0.05 -0.3054 -0.3067 -0.43 

0.1 -0.2528 -0.2563 -1.38 

0.2 -0.1207 -0.1244 -3.07 

0.3 -0.0977 -0.0977 0.00 

0.4 -0.1248 -0.1222 2.08 

30

0.5 -0.1599 -0.1558 2.56 

0.05 -0.5631 -0.5585 0.82 

0.1 -0.4950 -0.4893 1.15 

0.2 -0.3816 -0.3782 0.89 

0.3 -0.2915 -0.2904 0.38 

0.4 -0.2229 -0.2229 0.00 

60

0.5 -0.1772 -0.1770 0.11 

0.05 -4.0512 -4.0187 0.80 

0.1 -3.6562 -3.6282 0.77 

0.2 -3.0616 -3.0416 0.65 

0.3 -2.6502 -2.6375 0.48 

0.4 -2.3684 -2.3580 0.44 

90

0.5 -2.1744 -2.1660 0.39 

v12=0.21

The geometry analysed is shown in Fig. 5, with H/W =2,
r/W =0.1. Several crack sizes are considered, with crack
length to the hole radius ratio, a/r, ranging from 0.05 to
0.5. The crack size is intentionally taken to be relatively
small to study the effects of the stress concentration intro-
duced by the circular hole on the obtained T -stress val-
ues. The angle of orientation of principal material axes
with the global Cartesian axes, ψ, is also varied from 0o

to 90oto study its effects on this fracture parameter. It
should be noted that E11 being the higher modulus, is ori-
ented along the load direction x2. The plate is subjected
to remote uniform tension σo and plane stress conditions
are assumed. Fig. 6 shows the typical BEM and the
SBFEM meshes employed for the stress analysis of this
problem for the same geometry. The results for the varia-
tion of the normalised T -stress with the “material angle”
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Crack Tip

(a) BEM mesh  

 (b) SBFEM mesh 

Figure 6 : BEM and SBFEM meshes: Example 2
(a/r=1).

ψ and relative crack size, a/r, are presented in Table 3.
Again, it can be seen that the results from SBFEM agree
very well with the corresponding values from BEM. Of
significance to note is that the computed values of the
normalised T -stress are all negative, signifying low stress
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(b) Remote Tension 

Figure 7 : A bicrystal with an edge crack.

constraints at the crack-tip. As expected, their magni-
tudes become significantly larger when ψ = 90o when
compared to the case when ψ = 0o, due to the higher
modulus in the direction of the load application in latter
case.

4.3 Example 3

Bicrystal interface materials are extensively being used
in electronic applications for their excellent supercon-
ductive properties. A flaw along the bicrystal interface
junction is another good example of an interface crack
between dissimilar anisotropic materials. A bicrystal
junction between YCBO (YBa2Cu3O7) crystals is stud-
ied here. Such bicrystals are used in, e.g. Josephson junc-
tions used in super-sensitive magnetometers (SQUIDs).

 

(a) BEM mesh 

(b) SBFEM mesh 

Figure 8 : BEM and SBFEM meshes: Example 3.

For the purpose of illustration of the numerical analysis
here, a single edge crack is introduced along the bicrys-
tal interface or junction as shown in Fig. 7. The range of
values of the geometric parameters analysed are: H/W
= 4, a/W= 0.1, 0.2, 0.3, 0.4 and 0.5. Plane stress condi-
tions are assumed and the specimen is subjected to pure
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Table 4 : Normalised T -stress, T /σo, for an interface
crack along a YCBO bicrystal junction for pure bending.

T/ o

Pure Bending 
o

a/W

BEM SBFEM %Diff 

0.1 -0.3327 -0.3331 -0.12 

0.2 -0.2099 -0.2100 -0.05 

0.3 -0.0698 -0.0698 0.00 

0.4 0.1062 0.1065 -0.28 

0

0.5 0.3494 0.3504 -0.29 

0.1 -0.3012 -0.3015 -0.10 

0.2 -0.1750 -0.1751 -0.06 

0.3 -0.0243 -0.0243 0.00 

0.4 0.1716 0.1720 -0.23 

15

0.5 0.4502 0.4513 -0.24 

0.1 -0.2859 -0.2862 -0.10 

0.2 -0.1533 -0.1534 -0.07 

0.3 0.0103 0.0103 0.00 

0.4 0.2277 0.2282 -0.22 

30

0.5 0.5426 0.5439 -0.24 

0.1 -0.2927 -0.2930 -0.10 

0.2 -0.1515 -0.1516 -0.07 

0.3 0.0248 0.0249 -0.40 

0.4 0.2610 0.2616 -0.23 

45

0.5 0.6052 0.6067 -0.25 

0.1 -0.3241 -0.3244 -0.09 

0.2 -0.1739 -0.1740 -0.06 

0.3 0.0116 0.0117 -0.69 

0.4 0.2582 0.2588 -0.23 

60

0.5 0.6154 0.6169 -0.24 

0.1 -0.3745 -0.3748 -0.08 

0.2 -0.2177 -0.2178 -0.05 

0.3 -0.0303 -0.0302 0.33 

0.4 0.2134 0.2139 -0.23 

75

0.5 0.5599 0.5613 -0.25 

0.1 -0.4281 -0.4285 -0.09 

0.2 -0.2700 -0.2701 -0.04 

0.3 -0.0898 -0.0898 0.00 

0.4 0.1367 0.1371 -0.26 

90

0.5 0.4496 0.4508 -0.27 

bending and pure tension. The following material prop-
erties are assumed for both crystals [elastic properties in
[100]-crystal planes at 300K, Ramakrishnan and Krish-

namurthy (1991)]:

E11= 118.33 GPa; E22= 91.99 GPa; G12= 42.31 GPa; and
v12= 0.268.

with the principal axes oriented at ±ψ with respect to
the Cartesian axes, as shown in Fig. 7. The values of ψ
investigated are 0o, 15o, 30o, 45o, 60o, 75oand 90o

Fig. 8 shows the typical meshes employed for the stress
analysis. The computed results are listed in Tables 4 and
5 where excellent agreement between the corresponding
sets of results from the two computational techniques is
again observed. It is interesting to note that the T -stress
for the uniform remote tension load case all showed neg-
ative values; this is not true, however, for the pure bend-
ing case where the crack-tip stress constraint becomes
increasing enhanced as the interface crack gets progres-
sively larger. From the numerical results, the orientation
of the material principal axes evidently also has an ef-
fect on the T -stress, although not as significantly as the
change in the crack size.

5 Conclusions

The T -stress is increasingly being recognized as an im-
portant second characterizing parameter for fracture as-
sessments. For plane anisotropic elasticity, numerical so-
lutions of this parameter, even for reference purposes,
are very scarce indeed. Different schemes to deter-
mine this parameter for plane anisotropic elasticity have
recently been independently developed in conjunction
with the Boundary Element Method (BEM) and Scaled
Boundary-Finite Element Method (SBFEM). They have
been reviewed in this paper and three practical exam-
ples have been analysed by these two independent ap-
proaches. Excellent agreement of the numerical results
has been obtained which demonstrates their veracity.
These problems and solutions could serve as reference
cases for future studies in this area by alternative tech-
niques.
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