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Prediction of Crack Path Bifurcation under Quasi-Static Loading by the
Cohesive Model

W. Brocks1 and I. Scheider1

Abstract: Cohesive models are used for numer-
ical crack extension analyses in order to predict
the mechanical behavior of structures in cases
of crack path bifurcation. Possible applications
range from the macroscopic to the microscopic
scale. As an example of applications to macro-
scopic engineering structures, simulations of a
stiffened cylindrical shell under internal pressure
are presented, where a skin crack may penetrate
the rib or deviate. On the micro-scale, unit-cell
calculation for a fiber-reinforced material is per-
formed, where the fiber may debond or break.

Keyword: cohesive model, ductile tearing,
crack bifurcation, cracked shell, metal matrix
composite.

1 Introduction

Cohesive models are used for numerical crack
propagation analyses on various length scales for
several decades now. They are used as inter-
faces in finite element analyses, which represent
the damage and failure properties of the material.
As the crack can extend along the boundaries of
solid elements, only, the crack path is predefined
by the mesh Thus, predictions of arbitrary crack
paths are either foredoomed or, at least, require
an unreasonably high number of degrees of free-
dom, as cohesive surfaces have to be introduced at
the boundaries of all solid elements in a meshed
structure. However, interface elements can be ad-
vantageous for the numerical prediction of crack
paths, if there is only a limited number of alter-
natives for the crack to extend, i.e. in bifurcation
problems. Such problems play an important role
in the frame of structural integrity analyses.
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Crack branching has been successfully modeled
with cohesive elements mainly in brittle materials
under dynamic loading. The present contribution
addresses various different fracture mechanisms
including ductile tearing of metals under quasi-
static loading conditions. It aims at demonstrat-
ing the widespread applicability and versatility of
cohesive models ranging from the macro- to the
micro-scale. Two examples for predicting the me-
chanical behavior of structures in the presence of
cracks are presented. At the macroscopic scale,
the residual strength of a pressurized cylindrical
shell with stiffeners and a one-bay crack, which
may penetrate the stringer or deviate circumfer-
entially along the skin, is calculated. Secondly, a
unit-cell of a fiber-reinforced material is analyzed,
where the fiber may debond or break. The latter is
an example for an application at the microscale.

2 The Cohesive Model

2.1 Fundamentals

Dugdale (1960) and Barenblatt (1962) intro-
duced a cohesive zone ahead of the crack tip
in order to avoid the unrealistic infinite stress,
which is characteristic for the stress intensity fac-
tor approach. Modern phenomenological cohe-
sive models (Hillerborg et al., 1976, Needleman,
1987, 1990, Tvergaard and Hutchinson, 1992) de-
scribe various kinds of decohesion processes by
a relation between surface tractions or cohesive
stresses, σT = {σn,σt,σs}, having one normal
and two tangential components and the material
separation, δ T = {δn,δt ,δs}, where δ = [u] =
u+ −u− is the displacement jump over the inter-
face. Cohesive zones are introduced in finite el-
ement meshes as surface elements at the bound-
aries of solid elements along pre-defined crack
paths.
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The phenomenological constitutive relation of
the interface elements, the so-called cohesive or,
more precisely, decohesion law, σσσ = f(δδδ), cannot
be measured directly. The various functions for
the decohesion behavior proposed and used in the
literature (see overview by Brocks et al., 2003)
have in common that they contain two character-
istic parameters per crack opening mode, a cohe-
sive strength, σc, and a critical separation, δc. The
cohesive law represents the effective mechanical
behavior due to the physical processes of mate-
rial separation or fracture. For ductile materials,
the relevant separation mechanism is micro-void
nucleation, growth and coalescence, and the co-
hesive parameters can get a micromechanical in-
terpretation (Brocks, 2005). For mode I ductile
fracture, a rather versatile cohesive law,
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as proposed by Scheider (2001), is applied in the
following, see Figure 1. It contains two additional
shape parameters, δ1 and δ2. The interface ele-
ments are realized as user-defined element, UEL,
in the FE code ABAQUS for 2D and 3D ap-
plications, and they were particularly adapted to
plane stress and shell structures by incorporat-
ing the change of element thickness (Scheider and
Brocks, 2005, Brocks and Scheider, 2006).

Figure 1: Cohesive law according to Eq. (1) for
δ1 = 0.05 δc, δ2 = 0.50 δc.

The parameter δ1 in Eq. (1) should be chosen
as small as possible to obtain a high initial stiff-
ness of the cohesive elements, as the deforma-
tion of the structure has to be dominated by the
deformation of the solid elements. The parame-
ter δ2 allows for a variation between deformation
controlled, δ2 → δ1, and an abrupt stress release,
δ2 → δc. Alternatively to δc, the mode-I energy-
release rate or separation energy, Γc, which repre-
sents the area under the traction-separation law,
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can be introduced as a cohesive parameter. Esti-
mates for the cohesive parameters in mode I frac-
ture are the maximum true tensile stress at fracture
of a notched tensile bar for the cohesive strength,
σc, and the J-integral at crack initiation, Ji, for the
separation energy, Γc, (Cornec et al., 2003). Note
however, that the cohesive model is also applica-
ble to the analysis of structures without cracks.

All cohesive models can be used for normal and
tangential separation as well as for mixed mode
loading. Unidirectional shear separation is treated
in the same way as normal separation, Eq. (1).
At combined normal and shear fracture, the shear
damage will reduce the ductility in normal direc-
tion and vice versa

σn = fn (δn,δt ,δs) , σt,s = ft,s (δn,δt ,δs) . (3)

Various proposals for the mixed-mode coupling
can be found in the literature (Tvergaard, 1990,
Tvergaard and Hutchinson, 1993, Xu and Needle-
man, 1993, Camacho and Ortiz, 1996). Here, the
approach of Scheider (2001) for simulating cup-
cone fracture of a tensile bar is applied. A multi-
plicative decomposition of the interaction law be-
tween normal (mode I) and shear (mode II) sepa-
ration,

σn = σc f (δn)g(δt), σt = σc f (δt)g(δn), (4)

is assumed, where f (δ ) follows Eq. (1) and g(δ )
is specified as
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If the normal separation, δn, reaches its final crit-
ical value, δnc, then g(δn) = 0, i.e. no shear
stresses can be transmitted by the interface, and
this applies accordingly for the tangential separa-
tion.

2.2 Applications from macro to micro

Among various other applications, cohesive el-
ements have in particular proven their capabili-
ties for modeling crack extension in thin-walled
shells and panels (Siegmund and Brocks, 2000,
Roy and Dodds, 2001, Chabanet et al., 2003,
Scheider et al., 2006). The two components of
shear separation can then be identified as in-plane,
mode II, and out-of-plane, mode III, i.e. σT ={

σI ,σII,σIII
}

and δ T =
{

δI ,δII,δIII
}

. Plane
stress analyses of shells and panels neglect the
out-of-plane shear component, which neverthe-
less plays an important role in ductile fracture
of thin panels. Even under remote mode I con-
ditions, an extending crack generally inclines to
an angle of 45o to the remote loading direction,
Figure 2, thus inducing a local mode III field, a
phenomenon known as "slant fracture" (Schroth
et al., 1987, Kamat and Hirth, 1994, Mahgoub
et al., 2003). Since cohesive elements in plane
stress or shell finite element analyses are inter-
faces of line type, the inclined crack surface can-
not be modeled with these elements and the mate-
rial separation is therefore reduced to a fictitious
mode I fracture. Due to this phenomenological
description of the separation process, the cohesive
parameters differ from those for a “real” mode I
fracture.

Crack branching problems have been successfully
modeled mainly for brittle materials under dy-
namic loading. Pioneering investigation on dy-
namic fracture applying the cohesive model have
been published by Xu and Needleman (1994). To
allow for arbitrary crack branching, cohesive sur-
faces have been introduced between all contin-
uum elements. Xu and Needleman (1996) later
presented an investigation on cracking at an inter-
face between PMMA and aluminum under impact
loading. Further studies on interfacial dynamic
fracture applying viscoplastic constitutive equa-
tions were presented by Siegmund and Needle-

Figure 2: Slant fracture under remote mode I
loading, material Al 5083.

man (1997). Repetto et al. (2000) simulated frag-
mentation of a glass rod under impact loading.
Ruiz et al. (2001) performed 3D simulations of
tension-shear processes and mixed mode fracture
in concrete.

Cohesive elements cannot only be used at a
macroscale for predicting the structural behavior
of components. They are also frequently used for
analyzing damage mechanisms in the microstruc-
ture of materials. For these purposes, so-called
representative volume elements (RVEs) are in-
troduced, which are assumed to represent a typ-
ical material volume consisting of various con-
stituents. Depending on the microstructure, RVEs
have the size of a few mm3 down to a few μm3.
The model proved successful for microcracking
at grain boundaries of brittle ceramics (Zavattieri
and Espinosa, 2001). Tijssens et al. (2001) ana-
lyzed an RVE of concrete on a mesolevel consist-
ing of aggregates in a cement paste.

The smallest RVE of a microstructure is a unit
cell, which may consist of a matrix containing a
single inclusion, only. The propagation of cracks
at fiber-matrix interfaces was modeled by Needle-
man (1990) and Tvergaard (1990, 1993, 1995).
The initiation mechanisms of damage in ductile
metals, namely particle cracking and debonding,
were investigated by Steglich et al. (1999).

This fragmentary overview over the respective lit-
erature demonstrates the widespread applicability
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and versatility of cohesive models ranging from
structural integrity to micromechanical analyses.

3 Residual strength of aircraft fuselages

3.1 Problem Statement

The certification of airplanes requires a series of
complex and expensive test procedures on com-
ponents of different kinds, from specimens and
single parts to the complete aircraft. Thus, the
approval of new materials for use in aerospace in-
dustry as well as the implementation of optimized
design represents an immense expense. Devel-
oping acknowledged methods for which some of
these experiments can be replaced by numerical
simulations is hence a big challenge.

Present-day aircraft design is based on a dam-
age tolerance concept (Atluri, 1997; Broek, 1996;
Kaplan and Wolff, 1996; Congourdeau and Jour-
net, 2004), which acknowledges the existence of
cracks and structural damage. The construction
has to be designed in a way that any crack exten-
sion during service will not lead to catastrophic
failure within the inspection intervals. The pre-
diction of the residual strength of stiffened and
un-stiffened thin-walled panels and shells in air-
craft structures is an essential part of any damage
tolerance analysis. Typical characteristics, which
a respective failure assessment concept has to take
into account, are (i) pronounced stable crack ex-
tension prior to failure and (ii) constraint effects
and related issues, which make any application of
standard test methods for fracture toughness im-
possible or too conservative.

Analytical and numerical methods have been
specifically adapted to thin-walled structures, for
instance R-curve approaches based on the crack
tip opening displacement (CTOD) or the crack tip
opening angle (CTOA), see Newman et al. (1999,
2003). In the following, cohesive elements are ap-
plied.

3.2 Analysis of a Stiffened Cylindrical Shell

Cylindrical shells with circumferential stiffeners
under internal pressure may be regarded as sim-
plified models of an aircraft fuselage. The follow-
ing example examines crack extension and resid-

ual strength of a pressurized shell of diameter
2R = 200 mm, width 2W = 200 mm, skin thick-
ness t = 1 mm, containing a one-bay crack located
between two stringers, a0/W = 0.5, see Figure 3.

Figure 3: Stiffened cylinder with one-bay crack
subject to internal pressure.

The FE model represents a 60o section of the total
shell and accounts for symmetry, see Figure 4.

Figure 4: FE-model (quarter section) of the pres-
surized cylinder with crack.

The material is an aluminum alloy Al 6056 T78,
which is considered as potential replacement of
Al 2024, an alloy traditionally used for airplane
fuselages. The material data and model param-
eters summarized in Table 1 have been deter-
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mined in a broad study of the strength and tough-
ness properties of welded panels by Nègre et al.
(2005). The shape parameters of the cohesive law
were chosen as δ1/δc = 0.01 and δ2/δc = 0.05.

Table 1: Material and model parameters for Al
6056 T78
Young’s modulus E [GPa] 70
yield strength σY [MPa] 302
hardening exponent n [-] 0.67
cohesive strength (normal) σc [MPa] 550
critical separation (normal) δc [mm] 0.073
cohesive energy (normal) Γc [J/m2] 20.5

The cohesive model offers some variability in the
potential direction of crack extension, as cohesive
elements may be placed along various paths. In
the present example, the locations of cohesive el-
ements allow for crack extension in three direc-
tions, along a surface line of the skin, through the
stringer and in circumferential direction along the
stringer. The stringer thickness has been varied
between t = 1.3 mm and 2.4 mm. The objective
of this parameter study was to find out whether
the crack continues extending in its original di-
rection and thus ruptures the stringer or deviates
and extends in circumferential direction along the
stringer without penetrating it. Respective effects
have been found on real structures.

The load-displacement curves for three values of
stringer thickness, t, namely 1.3, 1.8 and 2.4 mm,
are shown in Figure 5. The crack extension
starts shortly below maximum load, i.e. residual
strength. The latter increases remarkably, when
the stringer thickness changes from 1.3 mm to
1.8 mm. At the same time, the stability char-
acteristics of the load-deformation behavior al-
ter. Whereas there is a smooth maximum for
t = 1.3 mm, the pressure vs. CTOD curve de-
creases steeply after its maximum, that means
structural failure will occur abruptly. No signif-
icant further increase of maximum load is ob-
served for t > 1.8 mm. The increase of struc-
tural strength corresponds to a change of the crack
path. For a stringer thickness of 1.3 mm the crack
extends in its original direction in the shell struc-
ture and through the stringer, see Figure 6a. For

stringer thicknesses of 1.8 mm and higher, the
crack deviates at the stringer and extends circum-
ferentially along the stringer without cutting it,
see Figure 6b.

In addition to the effect of the stringer stiffness,
which was studied here, one could also investi-
gate the bonding strength of the stringer to the
skin. In this case, the circumferential propagation
of the crack would mean that the stringer peels
off, which can actually be observed in tests.

Though no experimental data are available for val-
idation, the broadly based experimental and nu-
merical study of crack extension on C(T) and
M(T) specimens by Scheider et al. (2006) doc-
uments the significance of the parameter studies
performed on the shell structures. In addition to
its predictive capabilities the excellent numerical
performance of the cohesive model favors its ap-
plication for predicting the residual strength of
components like aircraft fuselages.

4 Damage of Metal Matrix Composites

4.1 Damage Mechanisms

Metal matrix composites (MMCs) with light
metal matrices find increasing applications in
transportation engineering, especially in the
automotive industry, for example, partially
fiber-reinforced pistons and hybrid reinforced
crankcases in passenger cars and truck engines,
and particle-reinforced brake discs for trucks, mo-
torcycles, and passenger cars. The full potential
of these materials can only be achieved, however,
if accurate and reliable predictions of the consti-
tutive behavior including the failure mechanisms
under different loading and environmental condi-
tions can be made. The reinforcing effect of short
fibers can be attained only if there is a signifi-
cant stress transfer from the matrix to the fibers
(Kelly and Tyson, 1965). Therefore, the interface
between fiber and matrix plays an important role.

Failure of fiber-reinforced components is gener-
ally preceded by an accumulation of different
types of internal damage. Failure mechanisms
on the micromechanical scale include: reinforce-
ment (fiber, particle or flake) fracture, interfacial
debonding and matrix damage. They vary with
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Figure 5: Pressure vs. crack-tip opening displace-
ment for a stiffened cylindrical shell containing a
one-bay crack, effect of stringer thickness.

Figure 6: Crack extension in the pressurized
cylindrical shell, effect of stringer thickness on
crack path: (a) t = 1.3 mm, (b) t = 1.8 mm.

the type of loading and depend on the properties
of the constituents. Cohesive elements are a valu-
able means of studying the interaction of the vari-
ous mechanisms and the effects of varying param-
eters.

4.2 Unit Cell Model of a Metal-Matrix Com-
posite

The present study investigates a composite of a
Ti6 Al4 V matrix with SiC fibers. It is idealized as
a periodic array of cylindrical unit cells of length
Lc = 2 mm and radius Rc = 1 mm, each containing
a longitudinally aligned fiber of length Lc = 1 mm
and radius R f = 50 μm. The spherical cylinder
shown in Figure 7 is a simplification of a volume
filling hexagon cylinder allowing for simple ax-
isymmetric calculations.

The cell is loaded by uniaxial tension. In the ini-
tial unloaded state, the fiber is under compression

Figure 7: Cylindrical unit cell model of a metal-
matrix composite.
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resulting from the processing: Due to the different
thermal expansion coefficients in fiber and ma-
trix, the stresses in the fiber raise up to 2000 MPa,
which is considered in the simulation by a thermal
step with a temperature decreasing from 770oC
to 20oC. The residual stresses have a significant
effect on the fiber debonding characteristics and
hence the overall mechanical behavior (Thionnet
and Renard, 1998). In particular, Dinters et al.
(1996) showed that the shear stresses at the inter-
face are such that debonding occurs already after
cooling. In the present configuration, the residual
stresses will postpone the failure of the fiber and
the interface, since the residual stresses counter-
vail the applied external tensile loading.

The properties of the elasto-plastic matrix and the
elastic fiber are taken from Jin et al. (2002) and
summarized in Table 2.

Table 2: Material parameters for Ti 6 Al 4 V ma-
trix and SiC fibers

Matrix Fiber
Young’s mod-
ulus

E [GPa] 11.7 469

yield strength σY [MPa] 907 -
thermal
expansion
coefficient

106 α[K−1] 11.2 4.0

The matrix has a circumferential crack of depth
a0 = 0.1 mm in the center plane. The crack will
extend in radial direction towards the fiber, where
it may cut the fiber or bifurcate in z-direction and
detach the fiber from the matrix. Cohesive ele-
ments are introduced at the fiber-matrix interface
and at the symmetry plane, z = 0, both in the
fiber and in the matrix, to model interface failure,
fiber failure and matrix failure, respectively. The
fiber–matrix interface elements are endowed with
a normal strength and a shear strength and follow
the mixed-mode criterion of Eq. 4. The cohesive
properties summarized in Table 3 are more or less
estimates used for a numerical parameter study.
The failure strength, σ c, of the fiber is provided
by Jin et al. (2002), the fiber-matrix shear strength
from Zeng et al. (2002). The shape parameters of
the cohesive law are chosen as δ1/δc = 0.001 and

δ2/δc = 0.10.

Table 3: Cohesive properties of the fiber, the ma-
trix and the fiber-matrix interface

σc [MPa] Γc [kJ/m2] δc [mm]
fiber
debonding
(normal)

1000 0.55 0.001

fiber
debonding
(tangential)

450 0.25 0.001

fiber
breaking
(normal)

4450 2.45 0.001

matrix
cracking
(normal)

1100 12.10 0.020

Because of symmetry, only one half of the unit
cell is meshed in the finite element model. The
symmetry conditions are realized by the following
boundary conditions,

ur(0, z) = 0, 0 ≤ z ≤ Lc/2

uz(r,0) = 0, 0 ≤ r ≤ (Rc−a0)
(6)

Periodicity of the unit cells requires that the
boundaries remain straight,

ur(Rc/2, z) = ur(Rc/2,0), 0 ≤ z ≤ Lc/2

uz(r,Lc/2) = uz(0,Lc/2), 0 ≤ r ≤ Rc/2
(7)

Loading of the cell occurs displacement con-
trolled at the upper surface, i.e. uz(0,Lc/2) is pre-
scribed. The unit cell is subjected to uniaxial ten-
sion in the present case, i.e. ur (Rc/2,0) is not
constrained. Biaxial tension would increase the
stress triaxiality and affect the failure modes, of
course.

In order to study the effect of the fiber geome-
try on the damage mechanisms occurring during
loading and the final failure, the fiber diameter has
been varied between 100 μm and 300 μm, where
all cohesive parameters remained unchanged.

The overall mechanical behavior of the fiber-
matrix aggregate, i.e. load F = 2π

∫ Rc
0 σzz(r) r dr

vs relative elongation, 2uz/Lc, appears to be rather
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insensitive to changes of the fiber diameter. Par-
ticularly, maximum load and fracture strain do not
vary significantly. A close look on the respective
curves however reveals small pop-in events near
maximum load for fiber diameters 2R f ≥ 150 μm,
which actually indicate a change of the failure
mechanism.

The effects of damage evolution become more
distinct by plotting the fiber stresses, σzz, at
z = 0, r = 0 vs. matrix crack opening,
COD = 2uz(r = Rc/2, z = 0). Figure 8 dis-
plays the results for two fiber diameters, namely
2R f = 120 μm and 2R f = 200 μm.

Figure 8: Fiber stresses, σzz, at z = 0 vs. matrix
crack opening, COD, for varying fiber diameters.

The fiber is subject to compressive residual
stresses in the beginning which results from pro-
cessing. Damage of the aggregate starts with de-
tachment of the fiber at its top face (1) followed
by some tangential debonding at the interface in
the early stages of loading and growing matrix
crack. Total failure requires complete breaking of
the matrix in all cases, but the fiber behaves differ-
ently depending on its diameter. If the fiber diam-
eter is small, 2R f = 120 μm, final failure occurs
by fiber breakage (2a), when the stresses reach the
fiber strength of σc = 4450 MPa. For the larger
fiber diameter, 2R f >= 200 μm, final failure oc-
curs by complete fiber debonding from the matrix
(2b) and the normal stresses are limited by the tan-
gential fiber debonding strength of 450 MPa due
to local equilibrium. For both mechanisms, fiber

(a)

(b)
Figure 9: Isocontours of stresses σzz at final fail-
ure for (a) 2R f = 120 μm, (b) 2R f = 200 μm.

stresses decrease to zero at total failure (3). The
respective stress state in the cell is displayed in
Figure 9.

The residual stress state is strongly inhomoge-
neous in the thinner fiber, Figure 9a. Though the
stresses σzz at z = 0 and z = Lf /2 are nearly zero,
significant compressive stresses of up to 1100
MPa occur in-between as the fiber is still bonded
to the matrix in this area. At the already debonded
upper third of the fiber compressive stresses occur
in the matrix.

The stresses σzz in the thicker fiber are predom-
inantly zero, Figure 9b. The gap between the
fiber’s top surface and the matrix and the open-
ing of the matrix crack is clearly visible. Residual
stresses in the matrix change from compression
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close to the fiber to tension apart.

The example demonstrates the potential of cohe-
sive models to analyze phenomena and mecha-
nisms of damage evolution in heterogeneous ma-
terials. It provides physically significant param-
eters for characterizing microstructural features
like debonding or fracture strength of inclusions.

5 Summary and Conclusions

The cohesive model has proven its ability to pre-
dict crack extension and crack path bifurcation on
various length scales. Possible applications range
from the assessment of residual strength of com-
ponents down to the analysis of damage phenom-
ena in heterogeneous materials. Though only sim-
ulations of cracked structures have been presented
here, cohesive models do not rely on the existence
of an initial crack in general. This is an important
advantage compared to fracture mechanics con-
cepts.

Suitable meshing is crucial however to realize the
actual crack path. Other methods like contin-
uum damage models or XFEM are better suited
for simulations of completely arbitrary and con-
tinuously changing crack paths. Particularly in
three-dimensional models, the approach of intro-
ducing cohesive elements between all continuum
elements may lead to an unreasonably high num-
ber of elements. In addition, the initial elastic
stiffness of the cohesive law becomes an impor-
tant and often critical issue.

Cohesive interfaces are advantageous, when there
is a limited number of possibilities for the crack to
grow. The model is numerically stable for large
crack extensions, it is not subject to any patho-
logical mesh dependence like damage models and
it provides physically meaningful parameters for
characterizing strength and toughness of materi-
als.
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